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Abstract: Little information exists in humans on the regulation that oxidized low-density lipoprotein
(oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes.
The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors
(SRs) and cell death markers in human visceral adipocytes. Human differentiated adipocytes from
visceral adipose tissue from non-obese and morbidly obese subjects were incubated with increasing
oxLDL concentrations. mRNA expression of SRs, markers of apoptosis and autophagy, secretion of
adipocytokines, and glucose uptake were analyzed. In non-obese and in morbidly obese subjects,
oxLDL produced a decrease in insulin-induced glucose uptake, a significant dose-dependent increase
in tumor necrosis factor-α (TNF-α), IL-6, and adiponectin secretion, and a decrease in leptin secretion.
OxLDL produced a significant increase of Lox-1 and a decrease in Cxcl16 and Cl-p1 expression.
The expression of Bnip3 (marker of apoptosis, necrosis and autophagy) was significantly increased
and Bcl2 (antiapoptotic marker) was decreased. OxLDL could sensitize adipocytes to a lower
insulin-induced glucose uptake, a more proinflammatory phenotype, and could modify the gene
expression involved in apoptosis, autophagy, necrosis, and mitophagy. OxLDL can upregulate Lox-1,
and this could lead to a possible amplification of proinflammatory and proapoptotic effects of oxLDL.
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1. Introduction

Obesity is a risk factor of diabetes mellitus type 2 (T2DM) and atherosclerosis. The development
of these pathologies is associated with a dysregulated secretion of adipocytokines, which is associated
with the chronic low-grade inflammation observed in obesity [1]. In the regulation of adipocytokine
secretion, several factors are involved such as different lipoproteins [2]. Oxidized low-density
lipoproteins (oxLDL) play an important role in the evolution of obesity [3], metabolic syndrome [4],
and cardiovascular disease [5]. Various studies suggest that adipocytes could be involved in the
regulation of the metabolism of lipoproteins such as oxLDL. These oxLDL are uptaken by cells by
means of scavenger receptors (SRs), which have been found in adipocyte cell lines such as 3T3-L1 in
human and animal adipocytes [6]. Class A scavenger receptors (macrophage scavenger receptor 1
(MSR1) and macrophage receptor with collagenous structure (MARCO)), class B receptors (scavenger
receptor class B, member 1 (SR-B1) and CD36), class E receptors (oxidized low density lipoprotein
receptor 1 (LOX-1)), class F receptors (scavenger receptor class F member 1/2 (SRECI/II)), and class G
receptors (C-X-C motif chemokine ligand 16 (CXCL16)) account for over 90% of oxLDL uptake [7,8].
As it is known, CD36 is an SR whose expression is regulated by oxLDL [9]. However, the other SRs can
also have the ability to bind to oxLDL and may be involved in mediating the cellular effects of these
oxLDL. Some toxic oxidized lipids (oxysterols, lipid peroxides, etc.) of oxLDL may stimulate the liver
X receptor (LXR) pathway and the subsequent induction of LXR-target genes such as ATP-binding
cassette transporters A1 (ABCA1) [10], and may lead to lysosomal damage, which may participate in
apoptosis, cellular autolysis, and death [11,12]. Apoptosis induced by high concentrations of oxLDL is
initiated by the decrease of antiapoptotic proteins (BCL2) and the increase and activation of caspase
cascade (caspase 3 (CASP3)) [13]. Autophagy is a pathway mediated by lysosomes that degrades
cytosolic components. OxLDL promotes apoptosis and autophagy in different cell types, but there is
little information about these effects in human adipocytes. Furthermore, oxLDL produces a decrease
in insulin sensitivity, possibly by inhibiting the signaling kinases responsible for the cellular response
to insulin and/or by activating the nuclear factor kappa B subunit 1 (NF-κB) complex, which regulates
genes involved in inflammation and cell survival [6].

The internalization of oxLDL by adipocytes could be involved in the clearance of oxLDL from
plasma. However, its uptake by adipocytes may also be associated with an alteration of adipocyte
metabolism and more specifically with the chronic low-grade inflammation associated with obesity.
One study in 3T3-L1 demonstrated that oxLDL is endocytosed via CD36 [14]. However, most of
the effects of oxLDL have been identified in macrophages, endothelial cells, or in 3T3-L1 adipocytes,
but their effect on human adipocytes is not well known.

Based on the evidence mentioned above, the aims of this study were to demonstrate the effects
of oxLDL on different SRs, markers of inflammation, apoptosis, autophagy, and transcription factors
involved in the regulation of oxLDL effects in adipocytes from non-obese and morbidly obese subjects.
On the other hand, we wanted to evaluate the effect of oxLDL on the uptake of glucose by adipocytes
and analyze the role of oxLDL in the development of insulin resistance.

2. Materials and Methods

2.1. Subjects

We evaluated 10 morbidly obese subjects who underwent biliopancreatic diversion of Scopinaro
(BPD) at the Virgen de la Victoria University Hospital, Malaga (Spain) [15] and 10 non-obese subjects
who underwent laparoscopic surgery for cholelithiasis at the Regional University Hospital, Malaga
(Spain). Samples from these subjects were used to perform the experiments shown below. Table 1
summarizes the biochemical and anthropometric variables of the non-obese and morbidly obese
subjects. The non-obese subjects were selected with a similar body mass index (BMI) to the average
BMI of the population of our area (27.5 ± 2.1 Kg/m2) [16]. In addition, these non-obese subjects had a
slightly high homeostasis model assessment of insulin resistance (HOMA-IR). These subjects were
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selected so that there were no significant differences between the non-obese and morbidly obese groups
and that obesity was the only main factor to consider. We used a distribution of males/females similar
to the distribution of male/female found in subjects who underwent bariatric surgery (1/2). Subjects
were excluded if they were receiving insulin or hypoglycemic agents, had cardiovascular disease,
arthritis, acute inflammatory disease, or infectious disease. All subjects were of Caucasian origin.
The study was conducted in accordance with the guidelines laid down in the Declaration of Helsinki.
All participants gave their written informed consent and the study was reviewed and approved by the
Malaga Provincial Research Ethics Committee (CEI_CP13-00188).

Table 1. Anthropometric and biochemical variables of the non-obese and morbidly obese subjects
included in this study.

Variables Non-Obese Subjects
(n = 10)

Morbidly Obese Subjects
(n = 10)

Sex (male/female) 4/6 4/6
Age (years) 42.18 ± 15.1 40.79 ± 9.02
Weight (Kg) 74.3 ± 12.5 131.8 ± 20.1 ¶

BMI (kg/m2) 27.0 ± 3.4 49.3 ± 7.8 ¶

Waist (cm) 98.2 ± 11.3 135.5 ± 15.7 ¶

Hip (cm) 101.0 ± 9.1 149.1 ± 15.3 ¶

Waist/hip ratio 0.97 ± 0.12 0.91 ± 0.10
SBP 127.4 ± 19.7 149.1 ± 15.3 ∗

DBP 80.6 ± 10.2 82.7 ± 12.5
Glucose (mg/dL) 96.7 ± 17.5 91.3 ± 16.1

Cholesterol (mg/dL) 201.1 ± 35.3 185.0 ± 37.7
Triglycerides (mg/dL) 135.3 ± 61.1 116.1 ± 51.7

HDL (mg/dL) 48.5 ± 8.5 48.8 ± 11.2
LDL (mg/dL) 126.8 ± 32.4 113.6 ± 31.9

Insulin (µIU/mL) 9.2 ± 6.3 13.6 ± 4.2
HOMA-IR 2.7 ± 1.6 4.4 ± 3.5

Oxidized-LDL (mU/L) 60562.5 ± 10687.7 70658.1 ± 13975.4 ∗

The results are given as the mean ± standard deviation. BMI: body mass index. SBP: systolic blood pressure. DBP:
diastolic blood pressure. HDL: high density lipoproteins. LDL: low density lipoprotein. HOMA-IR: homeostasis
model assessment of insulin resistance index. Significant differences between non-obese and morbidly obese subjects
(∗ p < 0.05; ¶ p < 0.001).

2.2. Laboratory Measurements

Blood samples from all subjects before surgery were collected after a 10-h fast. The serum was
separated and immediately frozen at −80 ◦C. Serum biochemical variables were measured in duplicate
as previously described [15]. HOMA-IR was calculated: HOMA-IR = fasting insulin (µIU/mL) ×
fasting glucose (mol/L)/22.5.

2.3. Isolation of Stromal Vascular Fraction and Mature Adipocytes

The biopsy samples were washed in physiological saline and immediately processed. Visceral
adipose tissues (VAT) from non-obese and morbidly obese subjects were digested with 3 mg/mL
collagenase type II (Worthington Biochemical Corporation, Lakewood, NJ, USA) in Dulbecco’s Modified
Eagle Medium (DMEM) for 45 min at 37 ◦C in a shaking water bath, as previously described [17].
Digests were filtered through a 100-µm cup filter. Adipocytes and stromal vascular fraction (SVF) were
isolated by centrifugation (100 g and 3 min). The adipocytes were isolated and immediately frozen in
QIAzol Lysis Reagent (Qiagen, GmbH, Hilden, Germany) at −80 ◦C until mRNA analysis. The pellet
of the digested VAT samples contained the SVF.



Biomolecules 2020, 10, 534 4 of 20

2.4. In Vitro Differentiated Adipocyte Culture

All reagents were from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA) unless otherwise
specified. In vitro cultures were performed as previously described [17]. The pellet of SVF was
washed twice with DMEM and treated with an erythrocyte lysis buffer for 10 min at room temperature.
SVF were plated in DMEM supplemented with 20% fetal bovine serum (FBS), 1% L-glutamine,
and 1% penicillin/streptomycin under standard culture conditions at 37 ◦C in a humidified atmosphere
containing 5% CO2. The plating medium was changed every three days until confluence (80–90%).
Newly confluent cultures were sub-cultured in six-well plates and grown to confluence. At this
stage, designated as day 0 (Figure 1A), differentiation was induced by treatment with adipogenic
medium composed of StemXVivo™ Osteogenic/Adipogenic Base Media with StemXVivo Adipogenic
Supplement (R&D Systems, Inc., Minneapolis, MN, USA) for the differentiation of human mesenchymal
stem cells (HMSC) into adipocytes. This medium was changed every three days. After 15 days of
differentiation, adipocytes were differentiated [17,18] and presented a phenotype of mature adipocytes,
as detected by Oil Red-O staining (Figure 1B) and fatty acid binding protein 4 (FABP4) (Figure 1C) and
adiponectin (Figure 1C) immunofluorescence staining, markers of mature adipocytes [19]. The culture
medium of in vitro differentiated adipocytes was changed, and adipocytes were incubated with 0, 25,
and 50 µg/mL of malondialdehyde modified human LDL (oxLDL) (0, 25, and 50 ug protein/mL of
malondialdehyde modified oxLDL) (MyBioSource, Inc., San Diego, CA, USA). We selected these oxLDL
concentrations based on previous studies [20,21]. After 24 h of incubation with oxLDL, adipocytes
were harvested and frozen in QIAzol Lysis Reagent (Qiagen, GmbH, Germany) at −80 ◦C until analysis.
The culture medium was also collected, centrifuged at 300 g for 10 min, and frozen at −80 ◦C until
analysis. Each treatment was performed in triplicate. The SVF used for differentiation into adipocytes
were from individual subjects, not pooled.
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oxLDL or negative control) and with 50 μg/mL oxLDL for 4 h. 

3.2. Esterified Cholesterol within Visceral In Vitro Differentiated Adipocytes Increases with OxLDL 

To corroborate whether oxLDL is uptaken by adipocytes, we measured the level of total 
cholesterol, FC and EC in human visceral in vitro differentiated adipocytes from non-obese (n = 4) 
and morbidly obese subjects (n = 3) incubated with 0, 25 and 50 μg/mL oxLDL for 24 h. The incubation 
with oxLDL led to a significant increase of total cholesterol and EC in adipocytes in a dose-dependent 
response with the increasing concentrations of oxLDL (p < 0.05) (Figure 2A). However, FC did not 

Figure 1. (A) Oil red-O staining of human mesenchymal stem cells at day 0 of differentiation; (B) Oil
red-O staining and quantification in human visceral in vitro differentiated adipocytes after 15 days
of differentiation; (C) immunofluorescence staining of FABP4 and adiponectin in human visceral
in vitro differentiated adipocytes after 15 days of differentiation; (D) OxLDL uptake by visceral in vitro
differentiated adipocytes. In vitro differentiated adipocytes were incubated without oxLDL (0 µg/mL
oxLDL or negative control) and with 50 µg/mL oxLDL for 4 h.

2.5. Analysis of the Culture Medium

HMSC from non-obese and morbidly obese subjects were differentiated into adipocytes as
described above. Human TNF-α, IL-6, leptin, and adiponectin levels were measured in the culture
medium of the in vitro differentiated adipocytes incubated with 0, 25, and 50 µg/mL of oxLDL for
24h by enzyme-linked immunosorbent assay kits (R&D Systems) according to the manufacturer’s
instructions. Data are expressed as mean ± standard error of the cytokine concentration per 106 cells at
the time of harvest.
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2.6. RNA Extraction and Real-Time Quantitative PCR

Total RNA from mature adipocytes and in vitro differentiated adipocytes were isolated by RNeasy
Lipid Tissue Mini Kit (Qiagen, GmbH, Germany) as previously described [15]. Total RNA was
reverse transcribed using random hexamers as primers and transcriptor reverse transcriptase (Roche,
Mannheim, Germany). The expression of genes was assessed by real-time PCR using an Applied
Biosystems 7500 Fast Real-Time polymerase chain reaction System (Applied Biosystems, Darmstadt,
Germany). Reactions were carried out in duplicate for all genes using specific TaqMan® Gene
Expression Assays: macrophage scavenger receptor 1 (Msr1) (Hs00234007_m1, RefSeq. NM_002445.3,
NM_138715.2, NM_138716.2), chemokine (C-X-C motif) ligand 16 (Cxcl16) (Hs00222859_m1,
RefSeq. NM_001100812.1, NM_022059.2), oxidized low density lipoprotein (lectin-like) receptor
1 (Lox-1) (Hs01552593_m1, RefSeq. NM_001172632.1, NM_001172633.1, NM_002543.3), collectin
sub-family member 12 (Cl-p1) (Hs00560477_m1, RefSeq. NM_130386.2), CD36 (Hs00169627_m1,
RefSeq. NM_000072.3, NM_001001547.2, NM_001001548.2, NM_001127443.1, NM_001127444.1,
NM_001289909.1, NM_001289911.1), B-cell lymphoma 2 (Bcl2) (Hs00153350_m1; RefSeq: NM_000633.2),
caspase 3 (Casp3) (Hs00234387_m1; RefSeq: NM_004346.3, NM_032991.2), autophagy related 3
(Atg3) (Hs00223937_m1; RefSeq:NM_001278712.1, NM_022488.4), BCL2 interacting protein 3 (Bnip3)
(Hs00969291_m1; RefSeq: NM_004052.3), nuclear factor, erythroid 2 like 2 (Nrf2) (Hs00975961_g1;
RefSeq: NM_001145412.3, NM_001145413.3, NM_001313900.1, NM_001313901.1, NM_001313902.1,
NM_001313903.1, NM_001313904.1, NM_006164.4), nuclear factor kappa B subunit 1 (Nf-κB)
(Hs00765730_m1; RefSeq: NM_001165412.1, NM_001319226.1, NM_003998.3), nuclear receptor
subfamily 1 group H member 3 (NR1H3 or Lxrα) (Hs00172885_m1; RefSeq: NM_001130101.2,
NM_001130102.2, NM_001251934.1, NM_001251935.1 and NM_005693.3), ATP binding cassette
subfamily A member 1 (Abca1) (Hs01059137_m1; RefSeq: NM_005502.3), interleukin-6 (IL-6)
(Hs00174131_m1; RefSeq: NM_000600.3), tumor necrosis factor-alpha (Tnfα) (Hs00174128_m1; RefSeq:
NM_000594.3), C–C motif chemokine ligand 2 (Ccl2 or Mcp1) (Hs00234140_m1; RefSeq: NM_002982.3)
and insulin receptor (Insr) (Hs00961557_m1; RefSeq: NM_000208.3, NM_001079817.2). The threshold
cycle (Ct) value for each sample was normalized with the expression of cyclophilin A (4326316E, RefSeq.
NM_021130.3). SDS software 2.3 and RQ Manager 1.2 (Applied Biosystems, Foster City, CA, USA)
were used to analyze the results with the comparative Ct method (2−∆Ct). In differentiated adipocyte
cultures, results are shown as a percentage with regard to non-obese group without oxLDL (100%).

2.7. Immunohistochemical Staining

HMSC from non-obese and morbidly obese subjects were differentiated into adipocytes as
described above. In vitro differentiated adipocytes were incubated with 50 µg/mL oxLDL for 4 h.
After this incubation, cells were washed twice with phosphate-buffered saline (PBS). Adipocytes
were fixed with 4% paraformaldehyde solution for 20 min at room temperature and with gentle
agitation, and were washed twice with PBS. Subsequently, cells were blocked with triton in PBS +

bovine serum albumin (BSA) 1%. Afterwards, cells were incubated with a monoclonal antibody to
MDA-LDL (MDA-Apo-B) conjugated with FITC (MBS465035, MyBioSource, Inc., San Diego, CA, USA)
diluted to 1/1000 for 2 h and a rabbit anti-FABP4 polyclonal antibody, Alexa Fluor® 555 conjugated
(bs-4059R-A555) (Bioss Antibodies Inc., Woburn, MA, USA) diluted to 1/500 for 30 min. In addition,
cells were incubated overnight at 4 ◦C with a mouse monoclonal antibody to human adiponectin
(ab22554) (Abcam, Cambridge, UK) diluted 1/200 in PBS containing 1% BSA, and Alexa Fluor™ 488
goat anti-mouse IgG 1/1000 (A11029, Thermo Fisher Scientific Inc., Waltham, MA, USA) as secondary
antibody for 1 h at room temperature. Finally, cell nuclei were counterstained with UltraCruz™
Mounting Medium for fluorescence with DAPI (Santa Cruz Biotechnology, Santa Cruz, CA, USA)
and analyzed with an Olympus BX51 microscope equipped with an Olympus DP70 digital camera
(Olympus, Glostrup, Denmark). Immunohistochemical techniques were performed in the Imaging
platform of the Institute of Biomedical Research in Malaga (IBIMA). Quantification of oxLDL staining
was performed with an ImageJ 1.50i program National Institute of Mental Health, Bethesda, MD, USA).
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2.8. Oil Red-O Staining

HMSC from non-obese and morbidly obese subjects were differentiated into adipocytes as
described above. HMSC and in vitro differentiated adipocytes were washed with PBS, incubated with
oil red-O staining solution for 30 min and analyzed with an Olympus BX51 microscope equipped
with an Olympus DP70 digital camera (Olympus, Glostrup, Denmark) [21]. In addition, stained lipid
droplets from in vitro differentiated adipocytes were quantified as the absorbance at 520 nm after
solubilization with 96% ethanol [22].

2.9. Cellular Cholesterol Quantification

HMSC from non-obese subjects were differentiated into adipocytes as described above. In vitro
differentiated adipocytes were incubated with 0, 25, and 50 µg/mL of oxLDL for 24h. Afterwards, cells
were washed twice with PBS, dissociated with trypsin from the well in which they were cultured, and
centrifuged to pellet cells. Lipids were extracted by the addition of 1 mL chloroform/methanol (2:1) to
the cell pellet after sample homogenization. The organic phase was withdrawn and evaporated under
a current of nitrogen. The extracts were re-suspended in isopropanol, and the concentration of free (FC)
and total cholesterol was determined by using commercial kits (FUJIFILM Wako Chemicals Europe
GmbH, Neuss, Germany). Esterified cholesterol (EC) was calculated as total cholesterol—FC [23].
The concentration of total and FC per well was normalized by total cell protein concentration determined
according to the bicinchoninic acid method (Thermo Fisher Scientific Inc. Rockford, IL, USA). Each
treatment was performed in triplicate.

2.10. Glucose Uptake

HMSC from non-obese and morbidly obese subjects were differentiated into adipocytes as
described above. Glucose uptake was determined in the in vitro differentiated adipocytes incubated
with 0, 25, and 50 µg/mL of oxLDL for 24h using the 2-deoxyglucose method with the Glucose Uptake
Colorimetric Assay Kit (ab136955, Abcam, Cambridge, MA, USA) according to the manufacturer’s
instructions. Each treatment was performed in triplicate.

2.11. Statistical Analysis

All analyses were performed using R statistical software, version 2.8.1 (Department of Statistics,
University of Auckland, Auckland, New Zealand; http://www.r-project.org/). All the experiments were
performed with a male/female ratio as close as 1/2 as possible, with no significant differences according
to sex. Differences between two groups were compared by the Mann–Whitney test. Differences
between two related variables were analyzed by the Wilcoxon test. Differences between the effects of
MDA-LDL doses were made with a repeated-measure ANOVA. Values were statistically significant
when p ≤ 0.05. The results are represented as the mean ± standard deviation (SD) in tables and as the
mean ± standard error in figures.

3. Results

3.1. OxLDL Uptake by Visceral In Vitro Differentiated Adipocytes

Initially, after 15 days of differentiation, no significant differences were found in Oil Red-O staining
between non-obese and morbidly obese subjects (Figure 1B). To establish whether oxLDL is uptaken
by human visceral adipocytes, in vitro differentiated adipocytes from non-obese subjects (n = 4) and
morbidly obese subjects (n = 4) were incubated with 50 µg/mL oxLDL. After 4 h of incubation at
37 ◦C, the oxLDL uptake by differentiated adipocytes was confirmed by immunofluorescence staining
(Figure 1D). No significant differences were found in oxLDL staining (100% vs. 97 ± 6%, p = 0.526),
cell shape or size of in vitro differentiated adipocytes between non-obese and morbidly obese subjects.

http://www.r-project.org/
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3.2. Esterified Cholesterol within Visceral In Vitro Differentiated Adipocytes Increases with OxLDL

To corroborate whether oxLDL is uptaken by adipocytes, we measured the level of total cholesterol,
FC and EC in human visceral in vitro differentiated adipocytes from non-obese (n = 4) and morbidly
obese subjects (n = 3) incubated with 0, 25 and 50 µg/mL oxLDL for 24 h. The incubation with oxLDL
led to a significant increase of total cholesterol and EC in adipocytes in a dose-dependent response with
the increasing concentrations of oxLDL (p < 0.05) (Figure 2A). However, FC did not change significantly
(Figure 2A). No significant differences were found in total cholesterol, FC, and EC between non-obese
and morbidly obese subjects.
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Figure 2. (A) Total cholesterol, esterified cholesterol and free cholesterol levels in human visceral
in vitro differentiated adipocytes from non-obese (n = 4) and morbidly obese subjects (n = 3) incubated
with different doses of oxLDL (0, 25, and 50 µg/mL oxLDL). a p < 0.05: significant differences with
regard to 0 µg/mL oxLDL. (B) levels of mRNA expression of Lxrα and Abca1 in human visceral in vitro
differentiated adipocytes obtained from HMSC from non-obese (n = 6) and morbidly obese subjects (n
= 6) incubated with 0, 25, and 50 µg/mL of oxLDL. a p < 0.05: significant differences with regard to 0
µg/mL oxLDL within non-obese subjects. b p < 0.05: significant differences with regard to 0 µg/mL
oxLDL within morbidly obese subjects. * p < 0.05: significant differences for each dose between
non-obese and morbidly obese subjects.
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Since the incubation with oxLDL produces an increase of oxLDL uptake by visceral in vitro
differentiated adipocytes and an increase of total cholesterol and EC, we wanted to check if there
is a stimulation of the LXR pathway, which is stimulated by the presence of oxysterols. OxLDL
increased Lxrα and Abca1 expression in non-obese and in morbidly obese subjects (p < 0.05) (Figure 2B).
In addition, we found a lower level of Lxrα in morbidly obese subjects than in non-obese subjects
(Figure 2B). However, we did not find significant differences in Abca1 expression between non-obese
and morbidly obese subjects.

3.3. OxLDL Produces an Increase in Insulin Resistance of Visceral In Vitro Differentiated Adipocytes

Furthermore, we wanted to analyze the involvement of oxLDL in the development of insulin
resistance in adipocytes. First, we found that insulin-induced glucose uptake was significantly
decreased with 50 µg/mL oxLDL with regard to 0 and 25 µg/mL oxLDL in both non-obese (n = 4) and
morbidly obese subjects (n = 4) (Figure 3A). Second, morbidly obese subjects had lower glucose uptake
than non-obese subjects both with or without insulin (p < 0.05). Third, the insulin-stimulated glucose
uptake was significantly increased with regard to its control (non-insulin treated) in both non-obese
and morbidly obese subjects (p < 0.05) (Figure 3A). Moreover, INSR expression shows a similar profile
in both non-obese and morbidly obese subjects, without significant differences between them, and with
a significant decrease with 25 and 50 µg/mL oxLDL (Figure 3B).
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Figure 3. (A) Glucose uptake in human visceral in vitro differentiated adipocytes obtained from HMSC
from non-obese (n = 4) and morbidly obese subjects (n = 4) incubated with 0, 25, and 50 µg/mL of oxLDL
for 24 h. a p < 0.05: significant differences between 50 µg/mL with 0 and 25 µg/mL oxLDL. 1 p < 0.05:
significant differences with regard to its control (non-insulin treated). * p < 0.05: significant differences
for each dose between non-obese and morbidly obese subjects; (B) levels of mRNA expression of
insulin receptor (Insr) in human visceral in vitro differentiated adipocytes obtained from HMSC from
non-obese (n = 6) and morbidly obese subjects (n = 6) incubated with 0, 25, and 50 µg/mL of oxLDL
for 24h. a p < 0.05: significant differences between 50 µg/mL with 0 and 25 µg/mL oxLDL. b p < 0.05:
significant differences between 0 and 25 µg/mL oxLDL.

3.4. OxLDL Modifies the Secretion of Adipocytokines

On the other hand, we wanted to check whether oxLDL could modify the levels of adipocytokines
secreted by adipocytes. In addition, we wanted to determine whether the secretion of adipocytokines
by adipocytes could be affected depending on the type of subjects (non-obese (n = 6) and morbidly
obese subjects (n = 6)). As shown in Figure 4, human visceral in vitro differentiated adipocytes showed
a significant increase of TNF-α secretion only with 50 µg/mL oxLDL, both in non-obese and morbidly
obese subjects (p < 0.05). TNF-α secretion is also higher in differentiated adipocytes from morbidly
obese subjects than from non-obese subjects (p < 0.05). With regard to IL-6 secretion, there was a
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significant increase only with 50 µg/mL oxLDL in differentiated adipocytes from morbidly obese
subjects (p < 0.05). IL-6 secretion is also higher in differentiated adipocytes from morbidly obese
subjects than from non-obese subjects (p < 0.05). With regard to leptin secretion, there was a significant
decrease only with 50 µg/mL oxLDL, both in differentiated adipocytes from non-obese and morbidly
obese subjects (p < 0.05). Leptin secretion is also higher in differentiated adipocytes from morbidly
obese subjects than from non-obese subjects (p < 0.05). With regard to adiponectin secretion, there was
a significant increase only with 50 µg/mL oxLDL, both in differentiated adipocytes from non-obese
and morbidly obese subjects (p < 0.05), although much higher in non-obese subjects. Adiponectin
secretion is lower in differentiated adipocytes from morbidly obese subjects than from non-obese
subjects (p < 0.05).
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Figure 4. Levels of adipocitokines in the culture medium of in vitro differentiated adipocytes obtained
from HMSC from non-obese (n = 6) and morbidly obese subjects (n = 6) incubated with 0, 25, and
50 µg/mL of oxLDL for 24h. a p < 0.05: significant differences with regard to 0 µg/mL oxLDL within
non-obese subjects. b p < 0.05: significant differences with regard to 0 µg/mL oxLDL within morbidly
obese subjects. * p < 0.05: significant differences for each dose between non-obese and morbidly
obese subjects.

3.5. OxLDL Increases the Expression of SRs in Visceral In Vitro Differentiated Adipocytes

Since oxLDL binds to human visceral in vitro differentiated adipocytes, first we wanted to
check whether oxLDL produced an increase of their receptors. In addition, 25 and 50 µg/mL oxLDL
significantly decreased Cl-p1 (p < 0.05) and Cxcl16 mRNA expression (p < 0.05) in non-obese (n = 6)
and morbidly obese subjects (n = 6) (Figure 5). Furthermore, 50 µg/mL oxLDL significantly increased
Lox-1 (p < 0.05) and CD36 mRNA expression in non-obese and morbidly obese subjects (Figure 5).
In addition, Cxcl16 (p < 0.05), Cl-p1 (p < 0.05), and Lox-1 (p < 0.05) had higher levels in adipocytes from
morbidly obese subjects than from non-obese subjects.
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Figure 5. Levels of mRNA expression of scavenger receptors in the in vitro differentiated adipocytes
obtained from HMSC from non-obese (n = 6) and morbidly obese subjects (n = 6) incubated with 0,
25 and 50 µg/mL of oxLDL for 24h. a p < 0.05: significant differences with regard to 0 µg/mL oxLDL
within non-obese subjects. b p < 0.05: significant differences with regard to 0 µg/mL oxLDL within
morbidly obese subjects. * p < 0.05: significant differences for each dose between non-obese and
morbidly obese subjects.

We also analyzed the expression of the same genes in visceral mature adipocytes from non-obese
(n = 10) and morbidly obese subjects (n = 10) (Figure 6). We found an increase of Cxcl16 (p < 0.05),
Msr1 (p < 0.05), Lox-1 (p < 0.05), and CD36 (p < 0.05) in morbidly obese subjects (Figure 6), which is a
tendency also found in the in vitro differentiated adipocytes (Figure 5).
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3.6. Oxldl Modifies the Expression of Apoptosis, Necrosis, and Autophagy Markers in Visceral In Vitro
Differentiated Adipocytes

Bcl2 mRNA expression, an anti-apoptotic protein, significantly decreased with the exposure to
50 µg/mL oxLDL in non-obese subjects (p < 0.05) (n = 6), and with the exposure to 25 and 50 µg/mL in
morbidly obese subjects (p < 0.05) (n = 6) (Figure 7A). Bnip3 mRNA expression, a protein involved
in necrosis and apoptosis, significantly increased with 25 and 50 µg/mL of oxLDL in both non-obese
(p < 0.05) and morbidly obese subjects (p < 0.05) (Figure 7A). Atg3 mRNA expression, a protein involved
in autophagocytosis, significantly decreased with the exposure to 50 µg/mL oxLDL in non-obese
subjects (p = 0.002) (Figure 7A). Casp3 mRNA expression, a pro-apoptotic protein, did not change
significantly (Figure 7A). In addition, Bcl2 (p < 0.05) had higher levels in adipocytes from morbidly
obese subjects than from non-obese subjects.
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and with 50 μg/mL of oxLDL in morbidly obese subjects (p < 0.05) (Figure 8A). We also analyzed the 
expression of three NF-κB-target genes, such as Tnfα, Il6, and Mcp1 (Figure 8B). We found that the 
expression of these three genes was increased similarly to the expression of Nf-κB.  

In visceral mature adipocytes (Figure 8C), we found an increase of Nf-κB (p < 0.05) and Nrf2 (p < 
0.05) in morbidly obese subjects. 

 

Figure 7. (A) Levels of mRNA expression of Bcl2, Casp3, Atg3 and Bnip3 in the in vitro differentiated
adipocytes obtained from HMSC from non-obese (n = 6) and morbidly obese subjects (n = 6) incubated
with 0, 25, and 50 µg/mL of oxLDL for 24h. a p < 0.05: significant differences with regard to 0 µg/mL
oxLDL within non-obese subjects. b p < 0.05: significant differences with regard to 0 µg/mL oxLDL
within morbidly obese subjects. * p < 0.05: significant differences for each dose between non-obese and
morbidly obese subjects; (B) levels of mRNA expression Bcl2, Casp3, Atg3 and Bnip3 in visceral mature
adipocytes obtained from visceral adipose tissue of non-obese (n = 10) and morbidly obese subjects
(n = 10). a p < 0.05: significant differences with regard to non-obese subjects.

We also analyzed the expression of the same genes in visceral mature adipocytes from non-obese
(n = 10) and morbidly obese subjects (n = 10) (Figure 7B). We found a decrease of Bcl2 (p < 0.05) and
Atg3 (p < 0.05) and a slight increase, but not significant, of Casp3 and Bnip3 in morbidly obese subjects.

3.7. OxLDL Modifies the Expression of Nrf2 and NF-kB in Visceral In Vitro Differentiated Adipocytes

Nrf2 and Nf-κB mRNA expressions, two transcription factors activated by oxLDL which are
involved in the inflammatory gene expression and in cell cycle regulation, were also analyzed. Nf-κB
significantly increased with 25 and 50 µg/mL of oxLDL in non-obese subjects (p < 0.05) (Figure 8A).
Nrf2 significantly increased with the exposure to 25 and 50 µg/mL oxLDL in non-subjects (p < 0.05)
and with 50 µg/mL of oxLDL in morbidly obese subjects (p < 0.05) (Figure 8A). We also analyzed the
expression of three NF-κB-target genes, such as Tnfα, Il6, and Mcp1 (Figure 8B). We found that the
expression of these three genes was increased similarly to the expression of Nf-κB.
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Figure 8. (A) Levels of mRNA expression of Nf-kB and Nrf2 and (B) NF-κB-target genes (Tnfα, Il6 and
Mcp1) in the in vitro differentiated adipocytes obtained from HMSC from non-obese (n = 6) and
morbidly obese subjects (n = 6) incubated with 0, 25 and 50 µg/mL of oxLDL for 24h. a p < 0.05:
significant differences with regard to 0 µg/mL oxLDL within non-obese subjects. b p < 0.05: significant
differences with regard to 25 µg/mL oxLDL within non-obese subjects. c p < 0.05: significant differences
with regard to 0 µg/mL oxLDL within morbidly obese subjects. d p < 0.05: significant differences with
regard to 25 µg/mL oxLDL within morbidly obese subjects. * p < 0.05: significant differences for each
dose between non-obese and morbidly obese subjects; (C) levels of mRNA expression of Nf-kB and
Nrf2 in visceral mature adipocytes obtained from visceral adipose tissue of non-obese (n = 10) and
morbidly obese subjects (n = 10). 1 p < 0.05: significant differences with regard to non-obese subjects.

In visceral mature adipocytes (Figure 8C), we found an increase of Nf-κB (p < 0.05) and Nrf2
(p < 0.05) in morbidly obese subjects.

4. Discussion

In this study, we showed that oxLDL is uptaken by visceral in vitro differentiated adipocytes
increasing the esterified cholesterol levels and decreasing insulin-induced glucose uptake. The exposure
of visceral in vitro differentiated adipocytes to high oxLDL concentrations (50 µg/mL) produced a
change in SR expression (Lox-1, Cl-p1 and Cxcl16) and in adipocytokine secretion (TNF-α, IL-6, leptin,
and adiponectin), both in non-obese and in morbidly obese subjects. In addition, oxLDL produced a
change in apoptosis and autophagy markers (Bcl2, Atg3 and Bnip3).
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4.1. Effects of oxLDL on Intracellular Cholesterol and Insulin Resistance

The relation between oxLDL with obesity and insulin resistance has been analyzed in different
studies with contradictory results [24–27]. To clarify this relation, we performed different in vitro
experiments. We found that high oxLDL levels produced changes in the metabolism of visceral
adipocytes, which are very involved in the regulation of obesity and insulin resistance. First, in this
study, we found that human adipocytes may uptake oxLDL and increase their EC levels in a
dose-dependent manner, as is also found in 3T3-L1 adipocytes [2] or in animal adipocytes [28,29].
This increase of intracellular cholesterol would be reflected mainly in the levels of EC because LDL is
the lipoprotein with more content in EC [30]. However, we do not know the cause of the significant
increase found in EC and not in FC. Part of FC from oxLDL could be transformed into EC by a
mechanism not considered in this study [29]. In addition, the increase of Abca1 expression may be
partly involved. The excess of FC could be effluxed to apoA-I via ABCA1, forming nascent HDL
particles [31,32]. This increase of intracellular cholesterol overload may be a mechanism for the increase
of endoplasmic-reticulum stress by oxLDL. On the other hand, oxLDL is a source of oxysterols, which
stimulates LXRα. As expected, we have found that oxLDL produced a stimulation of Lxrα and the
subsequent induction of LXR-target genes such as Abca1. ABCA1 has been reported to be a key
regulator of adipocyte lipogenesis and lipid accretion [10]. Second, a high dose of oxLDL decreased
the insulin-induced glucose uptake together with a decrease in Insr expression in both non-obese
and morbidly obese subjects. Although the non-obese group could have a slight insulin resistance,
the non-obese and morbidly obese subjects from whom the samples came had no significant differences
in HOMA-IR, and the effects of oxLDL were similar in Insr expression. In the regulation of insulin
resistance, NF-κB and Nrf2 could be involved [33–36]. However, our results do not fully explain the
regulation of insulin resistance by oxLDL through NF-κB and Nrf2. In agreement with our findings,
Scazzicchio et al. provided findings that oxLDL induced insulin resistance by impairing insulin signals
at multiple levels in 3T3-L1 adipocytes [33]. However, most of these studies were performed on animal
models or cell lines, not in human adipocytes as in our study.

4.2. Effects of OxLDL on Adipocytokine Secretion

To analyze the possible effect of oxLDL on adipocytokines, we performed an in vitro incubation
with oxLDL. We found that high doses of oxLDL produced a decrease in leptin, as a previous
study also shows in 3T3-L1 adipocytes [37], and an increase in adiponectin secretion. This effect
on adiponectin could probably be mediated by peroxisome proliferator activated receptor gamma
(PPARγ). This transcription factor, which is expressed mainly in adipose tissue, is stimulated by
oxLDL [38] and is a positive regulator of adiponectin gene expression and secretion [39]. These
results could be relevant since leptin and adiponectin have emerged as modulators of the immune
system [40]. The change in its secretion could be counteracting the increase of the proinflammatory
cytokine secretion produced by oxLDL. Leptin has proinflammatory effects, increasing neutrophil
recruitment, macrophages and NK cell activation, lymphocytes chemotaxis, and T cell activation,
and decreasing Treg recruitment [41]. Meanwhile, adiponectin has a role as an anti-inflammatory
molecule reducing T cell responsiveness, B cell lymphopoiesis, monocyte adhesion, toll like receptor 4
(TLR4) activation, and proinflammatory mediators such as TNF-α while increasing the production of
IL-10 [42]. In spite of these in vitro effects, the in vivo situation is different, with serum oxLDL showing
a positive correlation with leptin and negative with adiponectin [42,43].

OxLDL is associated with atherosclerosis, insulin resistance, and metabolic syndrome [3–5].
In these pathologies, there is a chronic low-grade inflammation in which adipocytes may be involved
through different adipocytokines. We found that high oxLDL levels increased the secretion of
proinflammatory adipocytokines (TNF-α and IL6), as in a previous study performed on macrophages [44].
This increase could be partially mediated by the increase found in Nf-κB expression, since they are
specific NF-κB target genes [45]. These results may help to explain the link between oxLDL and systemic
inflammation. However, other studies performed in macrophages show different results [46,47]. These
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different findings could be due to the different function and metabolic regulation of these cells.
The regulation of adipocytokine secretion by oxLDL follows the same trend in non-obese as in morbidly
obese subjects. However, adipocytokine secretion is strongly influenced by obesity, with higher TNF-α,
IL-6 and leptin and lower adiponectin levels in adipocytes from morbidly obese subjects than from
non-obese subjects.

4.3. Effects of OxLDL on Scavenger Receptors

OxLDL may be also involved in the regulation of SR expression. In a previous study carried
out by our group, we found SR expression in human visceral in vitro differentiated adipocytes [48].
As previous studies in other types of cells [9,49], our results show that oxLDL can upregulate their
own receptors (Lox-1 and CD36) in a concentration dependent fashion. This could have important
repercussions, since LOX-1 and CD36 are involved in proinflammatory signaling and atherogenesis in
other types of cells [50]. This increase of LOX-1 could sensitize the adipocytes to uptake more oxLDL
and, in this way, increase the proinflammatory potential of adipocytes and contribute to the low-grade
inflammation present in obesity. These results may help understand the link between oxLDL and
systemic inflammation. However, oxLDL produced a significant decrease in Cxcl16, another type of
SR. This may have different implications. CXCL16 effects depend on cell type and on whether CXCL16
is soluble or membrane-bound [51]. Membrane-bound CXCL16 may be a receptor for oxidized LDL
or an adhesion protein for CXCR6-expressing cells. Additionally, soluble CXCL16 functions as a
classical chemo-attractant for cells expressing CXCR6, and may be involved in proinflammatory gene
transcription, matrix metalloproteinase activity, increased cell-cell adhesion, etc. [51]. In the regulation
of SR levels, proprotein convertase subtilisin/kexin type 9 (PCSK9) may also be of interest for its
involvement in the degradation of certain SRs [52,53].

4.4. Effects of OxLDL on Apoptosis, Necrosis, and Autophagy Markers

On the other hand, oxLDL induces apoptosis [13]. In our study, we found that Casp3 expression
did not change, although Bcl2 expression decreased. In agreement with our findings, there are studies
that have shown that oxLDL reduces the expression of the antiapoptotic proteins BCL2 through a LOX-1
receptor mediated pathway promoting susceptibility to apoptosis [54,55]. Downregulation of BCL2
promotes apoptotic cell death [54]. This decrease of Bcl2 expression could also promote autophagy and
aggravate the injury of adipocytes [56]. This effect occurs via the overexpression of Lox-1, which is also
found in our study, and the subsequent decrease of protective autophagic response [57]. This scenario,
a higher Lox-1 and a lower Bcl2 expression, is also found in mature adipocytes, as shown in a previous
study in human adipose tissue [58].

However, other studies also show that oxLDL causes cell death by mechanisms other than
apoptosis [59]. We found that oxLDL produces an increase of Bnip3, independent of oxLDL dose
and type of subject. BNIP3 has proapoptotic functions [60], and has also been implicated in necrosis,
autophagic cell death, and mitophagy [61]. BNIP3 regulates mitochondrial metabolism by removing
damaged mitochondria via autophagy/mitophagy, and protects cells from death [62]. However, its role
in visceral adipocytes, a mitochondria-poor cell, has been hardly evaluated. Our results suggest that
BNIP3 could play a role in the regulation of adipocyte survival.

4.5. Effects of OxLDL on Transcription Factors

Many biological effects of oxLDL are mediated through different transcription factors, such as
NF-kB and Nrf2 [38], being interrelated between them [63]. We found that oxLDL increased Nf-kB
and three of the most highly induced NF-κB-dependent genes [45,64], such as Tnfα, Il6, and Mcp1. We
found that oxLDL increased Nf-κB expression in non-obese subjects, since, in morbidly obese subjects,
it was increased in any experimental condition, independently of the oxLDL dose. This agrees with
the increase found in visceral mature adipocytes in morbidly obese subjects with regard to non-obese
subjects. Regarding Nrf2, oxLDL produced an increase of Nrf2 in human visceral in vitro differentiated
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adipocytes, as in other studies [9,65,66]. Our results also agree, although in the opposite direction, with
the increased expression of Cxcl16 found in mice Nrf2-/- peritoneal macrophages [67]. Although in this
study, MSR1 and LOX-1 were also increased [67], our results did not show this association, suggesting
that the expression of Msr1, Lox-1 and Cl-p1 in adipocytes could be regulated by oxLDL through other
factors different to Nrf2. We also found an increase of Nrf2 in visceral mature adipocytes from morbidly
obese subjects. This increase could be compensating for the increase in oxidative stress present in these
subjects [68], since Nrf2 is a regulator of the antioxidant reactions and plays an important role against
inflammation as well as oxidative stress [69].

This model of human mesenchymal stem cell-derived adipocytes is interesting. In general,
the effects of increased an oxLDL dose follow the same trend, both in non-obese and morbidly obese
subjects. However, our results agree with a previous study in subcutaneous adipocytes showing
that obesity determines the phenotypic profile and functional characteristics of human HMSC from
adipose tissue [18], although there are slight differences in the type of cells and the culture media
used. The results of that study and those shown here suggest that in vitro differentiated human
visceral adipocytes from morbidly obese subjects may be retaining certain characteristics of the HMSC
from which they come. Morbidly obese subjects have increased levels of leptin and inflammatory
markers [70,71], decreased levels of adiponectin [72], an increase of insulin resistance [71], and an
increased level of SR expression in mature adipocytes. Some of these findings are also found in
differentiated human visceral adipocytes from morbidly obese subjects: an increase of adipocytokine
secretion (or decrease for adiponectin), a slight increase of SR expression, a similar profile of transcription
factors, and a lower glucose uptake. We also found that the expression of some genes is not consistent
between in vitro differentiated human visceral and mature adipocytes. This could be the consequence
of the different conditions in which these cells have developed, i.e., the state of low-grade chronic
inflammation associated with obesity or the different hormone levels between in vitro and in vivo
conditions. However, our study has some limitations. Due to the low mRNA expression of some
receptors, analyses of protein levels, phosphorylated AKT protein levels, as an indicator of insulin
resistance, and cleaved-caspase-3 could not be performed as the adipocytes were used for mRNA
isolation, and not for protein isolation.

5. Conclusions

In conclusion, oxLDL could sensitize adipocytes to a lower insulin-induced glucose uptake and a
more proinflammatory phenotype, which could be involved in the chronic low-grade inflammation
present in pathologies in which oxLDL is increased. Moreover, oxLDL can also modify the expression
of their receptors, mainly in LOX-1, which could lead to a possible amplification of proinflammatory
and proapoptotic signaling of oxLDL. This alteration of adipocyte metabolism could be closely linked
to the development of T2DM and atherosclerosis. However, more studies are needed to analyze in
detail different pathways not analyzed in this study, by overexpression or inhibition of certain SRs or
other transcription factors involved in the response to oxLDL. In addition, we have been able to show
how cells can retain part of the characteristics of the subjects they come from.
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