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Abstract: The industrial processing amazon fruits, like tucuma, generates a large amount of co-
products with large nutritional potential. Thus, this work obtained the oily extract of the tucuma
almonds coproducts by green extraction using palm oil by the ultrasound method and then mi-
croencapsulated by atomization and verification of its antioxidant activity. Thermogravimetric
techniques, infrared spectroscopy, scanning electron microscopy, moisture content, water activity
were applied to characterize the microparticles. Total carotenoids were determined by UV spec-
troscopy and antioxidant activity was measured by 2,2′-azino-di-(3-ethylbenzthiazoline sulfonic
acid and co-oxidation in the system β-carotene/linoleic acid. The oily extract and microparticle had
total carotenoid contents of 3.305 mg/100 g ± 0.01 and 2.559 mg/100 g ± 0.01, respectively. The
antioxidant activity assessed through the 2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid value was
584.75 µM/trolox ± 0.01 (oily extract) and 537.12 µM/trolox ± 0.01 (microparticle) were determined.
In the system β-carotene/linoleic acid showed oxidation of 49.9% ± 1.8 lipophilic extract and 43.3%
± 2.3 microparticle. The results showed that the oily extract of the tucuma almond coproduct can
be used as a carotenoid-rich source and microencapsuled with possible application for functional
foods production.

Keywords: ultrasound extraction; agroindustrial coproduct; tucuma; microencapsulation; spray drying

1. Introduction

The tucuma (Astrocaryum vulgare Mart.) is a palm tree belonging to the Arecaceae
family and has as its fruit a drupe with the mesocarp and epicarp of color ranging from
yellow to dark orange related to the presence of carotenoids [1]. The food industry uses the
fruit pulp in the preparation of creams and ice creams; the oil industry uses the almond
and the pulp of tucuma for extracted fat and vegetable oils, these processes generate a large
amount of coproducts that are discarded in the environment without any prior treatment.
However, there are several studies in the literature [2,3] in which residues or by-products
of plant origin are used as substrates because they still contain active principles. In this
sense, the residues or by-product that would be discarded become util and can be reusing
in the production chain [4–7].

The coproduct tucuma and fruit are very high sources of carotenoids (as β-carotene, all-
trans- β-carotene, 13-cis- β-carotene, all-trans-α-carotene, and all-trans- β-cryptoxanthin).
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From this perspective, they can be widely used by the pharmacutical, cosmetics and food in-
dustries because they contain secondary metabolites with high levels of antioxidants. [8–10].
Carotenoids have several functions in human nutrition and health, but humans cannot syn-
thesize them, thus they should be obtained from the diet or via supplementation. Among
so many benefits to human health, they are extremely important for their antioxidant
capacity and for being a precursor of vitamin A [11].

The carotenoids are naturally lipophilic, so they are easily extracted by organic solvents
such as acetone, alcohol, chloroform, ethyl ether, petroleum ether and hexane. However,
these organic solvents are toxic both to humans and animals, so, the use of these solvents is
not well accepted in the food, pharmaceutical and cosmetic industries [12,13]. The green
extraction can be a good alternative. The green extraction is based on experimentation and
design of extraction processes that reduce energy consumption, allow the use of alternative
solvents and renewable/innovative vegetable sources for example vegetable oils (palm,
canola, soy, sunflower, among others) in order to eliminate toxic solvents and ensure safety
and high quality of the extracted product [13–16].

This manner, the use of vegetable oils is a promising alternative in the extraction of
carotenoids, due to the low polarity and solubility of these substances allowing them to be
attracted by the vegetable oil during the extraction process [13,15,17–19]. The use of these
oils as a solvent has demonstrated benefits, because they reduce the risks to health because
they are not toxic, preserve the organoleptic characteristics of the extracted product, do
not harm the environment and so can be viewed as a beneficial alternative in a sustainable
world [13,20]. Moreover, the oil performs a barrier role against oxygen and consequently
delays the oxidation time and the degradation rate of carotenoid extract [16].

Razi et al. [15] performed the extraction of astaxanthin from shrimp processing
residues using sunflower oil and sunflower oil methyl ester as two green solvents. Sachin-
dra and Mehendrakar [18] studied the capacity of extracting carotenoids from shrimp
residues in different vegetable oils (sunflower, peanut, ginger, mustard, soy, coconut and
rice flour) and optimized conditions such as the proportion of oil to residues, heating
time and temperature. Handayani et al. [21] investigated the extraction of the astaxanthin
carotenoid present in shrimp residues, using palm oil as an efficient solvent. Li et al. [13]
investigated the extraction of β-carotene from the residues of pomegranate peel with
sunflower seed and soybean oils and concluded the efficiency of the process.

However, despite several studies that show the efficiency of the use of vegetable
oils in extractive processes, the disadvantage is the high viscosity that results in low
diffusivity and, consequently, low extraction performance even at high temperatures.
In this perspective, in recent years, ultrasound-assisted extraction of compounds with
antioxidant activities has been widely applied to alleviate this problem [13,22]. Ultrasound
extraction is considered a clean technology in the food industry because it is an effective
method for the extraction of chemical constituents from plant matrices [23], low cost and
easy operation [24,25]. The increase in ultrasound extraction is attributed to the propagation
of ultrasound pressure waves and resulting cavitation forces, where bubbles can collapse
explosively and generate localized pressure, causing rupture of plant tissue and improving
the release of intracellular substances in the solvent [26]. The use of ultrasound for vegetal
extraction brings benefits such as increased mass transfer, better penetration of the solvent,
less dependence on the solvent used, extraction at lower temperatures, faster extraction
rates and higher product yields [27]. These characteristics make sonication promising for
many extractions including those in large scale [28].

Li et al. [13] developed a method for ultrasonic assisted extraction of carotenoids from
fresh carrots in which sunflower oil was applied as a substitute for organic solvents. Lu-
engo et al. [29] investigated the influence of moderate pressure application on the ultrasonic
extraction of carotenoids from dried tomato pulp. Eh and Teor [30] analyzed the lycopene
yield conditions of tomatoes and minimized degradation and isomerization during the
ultrasonic extraction process. Almahy et al. [31] performed the extraction of carotenoids
as natural colorants of the carrot by the ultrasound method. Zhang and Zelong [32] opti-
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mized and compared lycopene extraction from tomatoes by microwave-assisted extraction
and ultrasound-assisted extraction in order to verify their advantages and disadvantages.
Kumcuoglu and Tavman [33] investigated the lycopene ultrasound extraction of tomato
processing residue and compared the effects of factors such as temperature, time, ultrasonic
intensity and liquid-solid ratio with conventional extraction with organic solvents. Xu and
Pan [34] evaluated the efficiency, productivity and selectivity of all trans-licopene present
in the red grapefruit for ultrasound-assisted extraction.

The sensitivity of carotenoids to light, acidity, pH and pro-antioxidant compounds
makes it necessary to use alternatives that protect these compounds, minimize losses and
conserve bioactive properties [35]. In this perspective, the process of microencapsulation by
spray drying has been successfully used in the food area, aiming to protect substances that
have sensitivity to light, oxygen and storage time, such as carotenoids and due to its ease
of operation and good cost-benefit ratio. Moreover, this process can prevent interactions
with other compounds, promoting a greater stability of the product and consequently,
increasing the useful life of the product [36,37].

In this sense, there are several indispensable factors to obtain dry extracts with better
physicochemical characteristics and increase the operation yield. Thus, it is necessary to
optimize the drying parameters such as inlet and outlet temperature and feed flow rate,
concentration and type of technological adjuvants, and dry residue contents of the fluid
extract to be dried [38]. Thus, the objective of this study was to obtain the oily extract from
the coproduct of the tucuma kernels using the palm oil by the ultrasound technique in order
to perform a new extraction alternative from the principles of green chemistry and then
microencapsulate it by spray drying using maltodextrin and Arabic gum as encapsulant
agents. In the same way evaluate their physical-chemical characteristics, determine the
content of total carotenoids and their antioxidant capacity.

2. Materials and Methods
2.1. Chemicals, Reagents and Encapsulating Agents

2,2-azinobis (3-ethylbenzothiazolin-6)-sulfonic acid) (ABTS), 6-Hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid (Trolox), Linoleic acid, β-carotene, polyoxyethylene
orbitan monopalmitate (Tween 40) were obtained from Sigma-Aldrich (St. Louis, MO,
USA). Potassium bromide (KBr) (potassium bromide 99+% for spectroscopy IV/Shimadzu).
Maltodextrin with dextrose equivalent (DE 10) was acquired Corn Products (São Paulo,
Brazil) and Synth pure acacia gum (São Paulo, Brazil).

2.2. Sample Preparation

Tucuma (Astrocaryum vulgare Mart.) seeds were undergone a baking process at 65 ◦C
for 45 min, after which they were pressed to remove the oil to be industrially exploited.
The resulting coproduct, designated as tucuma seed coproduct provided by the Amazon
Oil Industry (Ananindeua, Brazil). After receiving it, the coproduct was packed and stored
in a freezer (−18 ◦C). The material was dried for seven days in an oven with circulation
and renewal of Air (SL-102 SOLAB, Piracicaba, São Paulo, Brazil) at a temperature of 40 ◦C
± 2 ◦C. During the whole period that the material was submitted to the oven and followed
until the constant weight was obtained, in order to then, detterminate the end of the drying
period. After dehydration, the dried material was weighed and ground in a knife mill and
the powder of the dry coproduct of the tucuma almonds was obtained and stored in a
freezer (−18 ◦C) until the moment of use.

2.3. Extraction of Carotenoids from the Coproduct

To obtain the oily extract for the extraction of carotenoids, the coproduct was placed in
contact with the palm oil ceded by the Laboratory of products of animal origin (LAPOA) of
the Federal University of Pará and submitted to ultrasound, in a Unique ultrasonic device
(USC-2800, São Paulo, Brazil). The frequency 40 KHz and power US:154W with controlled
temperature of 35 ◦C. The process was carried out by dispersing 10 g of the powder in
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100 mL of refined palm oil in the proportion of 1:10 (w/v). The sample was then extracted
in 30 min cycles for 4 h. The erlenmeyer was covered with aluminum foil to avoid exposure
of the extract to ambient light [39].

2.4. Microparticle Preparation (MP)

The microparticles were obtained in two steps. The maltodextrin (MD) and Arabic
gum (GA) were the encapsulating agents. The first step was the homogenization of the
aqueous phase with the oily extract. The aqueous phase was composed by MD (5%) and
GA (10%) both solubilized in distilled water at the final volume (200 mL), which was
then added to the oily extract (5%) under magnetic stirring for 30 min [40]. Then, it was
dispersed to the ultra turrax (IKA, T 125, São Paulo, Brazil) at 5000 rpm for 20 min for
complete homogenization. The next step was the atomization of the emulsion obtained
using a spray dryer (LM-MSDi 1.0 Labmaq do Brasil–LTDA, São Paulo, Brazil), according
to the parameters: temperature of 100 ◦C; flow rate of 7.5 mL/min; and pressure of 6 bar.
During the whole process the emulsion was kept under agitation to ensure homogeneity.

2.5. Encapsulation Efficiency (EE)

The EE of the carotenoids was calculated as the content of the carotenoids contained
in the microparticle in relation to the content of carotenoids contained in the oily extract
before drying [41]

%EE = (content of carotenoids in the microparticle)/(content of carotenoids in the extract before drying) × 100 (1)

The total carotenoid content was extracted from the microparticles (0.4 g) with the
addition of 2 mL of a methanol/water solution (50:50 v/v). The vortex dispersion was
homogenized for 1 min and placed in ultrasonic bath (Cleaner Kondentech, São Paulo,
Brazil) for 20 min. It was centrifuged for 15 min at 7500 rpm. The supernatant was filtered
in membranes with a pore diameter of 0.45 µm (Millipore, Bedford, MA, USA) [42] for
subsequent determination of the carotenoid content in a 470 nm UV-VIS (Shimadzu® UV
1800, Kyoto, Japan) [43].

2.6. Quantification of Total Carotenoids by Spectrophotometry

The determination of the total carotenoids in the microparticles was performed by
the UV/Vis spectrophotometric method (Shimadzu UV 1800, Kyoto, Japan). 3 g of the
microparticle powder were weighed and dissolved in hexane to a final volume of 10 mL.
The reading was performed at a wavelength of 470 nm using the specific coefficient for
β-carotene (Eo = 2592). The analysis was also performed on the extract before drying.
The results were performed in triplicate and expressed in mg carotenoids/100 g [43]. The
results were calculated using the Equation (2):

C = (Absorbance × solution volume × 106)/(100 × 2592 × sample weight) (2)

2.7. ABTS Assay

The antioxidant activity by the free radical capture ABTS was performed in a spec-
trophotometer (Shimadzu® UV 1800, Kyoto, Japan). 30 µL the solution obtained from the
extraction of carotenoid content from the microparticles were mixed with 3000 µL of ABTS
solution and incubated in the dark for 6 min followed by measurement of absorbance
at 734 nm. The antioxidant activity was calculated based on a Trolox standard curve
(100 µM–2000 µM) and the results were expressed in µM Trolox equivalent /g dry weight
(TE) [44]. The analysis was also performed on the oily extract before drying in the same
way that was performed on the microparticles.

2.8. β-Carotene/Linoleic Acid System Assay

The antioxidant activity in the β-carotene/Linoleic Acid System in a spectropho-
tometer (Shimadzu® UV 1800, Kyoto, Japan). The β-carotene/Linoleic acid solution was
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prepared from a mixture of 40 µL of linoleic acid, 530 µL of Tween 40, and 50 µL of the
β-carotene solution at a concentration of 2 mg/mL in chloroform and 500 µL in a conical
flask. The mixture was subjected to complete evaporation of the chloroform under nitrogen.
Then, the oxygen-treated water was added until an absorbance between 0.6 nm and 0.7 nm
was obtained at a wavelength of 470 nm. The system solution is yellow-orange in color
and must always be protected from light and readily used. Three different dilutions of the
extract and microparticle were prepared in test tubes in triplicate. 0.4 mL of each dilution
of the extract and microparticles was mixed with 5 mL of the system solution. 0.4 mL of
the Trolox solution at a concentration of 200 mg/mL was used as a control with 5 mL of
the β-carotene/linoleic acid system solution; the test tubes were homogenized, shaken,
and kept in a water bath at 40 ◦C. The first reading was performed at 470 nm after 2 min
of mixing and then at intervals of fifteen min to 120 min. The spectrophotometer was
calibrated with water. The results were expressed as a percentage of oxidation inhibition.
The reduction in the absorbance of the system without an antioxidant was considered as
100% oxidation. The decrease in the absorbance reading of the samples is correlated with
the system and establishes the oxidation percentage, subtracting the oxidation percentage
of each sample from 100 [45]. The analysis was also performed on the oily extract before
drying in the same way that it was performed on the microparticle.

2.9. Physicochemical Characterization of the Microparticle
2.9.1. Infrared Analysis (FTIR)

The FTIR spectrum was obtained by spectrophotometer (IR Prestige-21 Shimadzu®

Kyoto, Japan) performed by mixing the powder sample with potassium bromide (KBr) and
pressing it at high pressure, forming a tablet. The absorption spectrum was analyzed in
the range of 4000 to 600 cm−1, with 32 scans and a resolution of 4 cm−1 [40]. The samples
submitted to FTIR analysis were the oily extract, the binary mixture (maltodextrin and
Arabic gum and oily extract), and the microparticles. The binary mixture was prepared
as follows: the adjuvants maltodextrin and Arabic gum (BM) and oily extract in the
proportion of 1:2:1 (w/w) in gral and pistil. The spectrum was obtained using the Origin
Pro2019 software.

2.9.2. Thermogravimetry Analysis (TG)

The TG curves of the oily extract, binary mixture, and microparticles were obtained
in a TGA-50 thermal analyzer (Shimadzu®, Kyoto, Japan) using a platinum crucible with
approximately 9.0 mg of sample, under a nitrogen atmosphere (N2) and flow 50 mL/min.
The experiment was carried out from room temperature to 600 ◦C and a heating rate of
10 ◦C/min. The data obtained were analyzed using the TA-50W Shimadzu® software [46].

2.9.3. Differential Scanning Calorimetry (DSC)

The DSC curves of the oily extract, binary mixture and microparticles was performed
on DSC-60 plus equipment (Shimadzu®, Kyoto, Japan). Approximately 3 mg of the
samples were deposited in an aluminum crucible. The analyzes were performed in a
nitrogen atmosphere (50 mL/min) with and a heating rate of 10 ◦C/min and temperature
of 300 ◦C [46]. The analysis was also performed on the oily extract and in the binary
mixture.2.9.4. Moisture content.

The determination of the moisture content was evaluated by the gravimetric method
on a scale for moisture analysis with a halogen lamp (GEHAKA, São Paulo, Brazil). Ap-
proximately 2 g of the microparticle powder was placed on a scale for moisture analysis
with a halogen lamp at a temperature of 105 ◦C for a time of 15 min (in triplicate). The
balance determined the exact value of the percentage of moisture loss [47].
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2.9.4. Water Activity

The water activity was determined using electronic equipment (Aqua Lab Dew Point
4TEV, São Paulo, Brazil) at a temperature of 25.03 ◦C. The operation was performed in
triplicate [48,49].

2.9.5. Particle Morphology and Particle Size

The morphological analysis and particle size (evaluated in triplicate) of the micropar-
ticle were performed using the Scanning Electron Microscope (Zeiss, EVO-MA-10, Jena,
Germany). The microparticles were deposited on a sample holder with the aid of carbon
adhesive tape and coated with a layer of gold (Au) 15 nm thick for 1.5 min and observed in
secondary electrons and magnification 1000×, 5000×, 10,000×, and 12,000× [50].

2.10. Statistical Analysis

The results obtained from EE, antioxidant activity, total carotenoids, water activity,
moisture content were analyzed and expressed as mean ± standard deviation, using
Office 365 Excel. Analysis of variance (ANOVA) was used to compare the samples of
carotenoid content and antioxidant activity and the differences between means were
detected posteriorly by the Tukey test considering (p < 0.01) in the BioEstat 5.0 program
(Brazil, Tefé, AM). All samples were analyzed in triplicate.

3. Results and Discussion
3.1. Quantification of Total Carotenoids, Encapsulation Efficiency and Antioxidant Activity

Carotenoids are nutrients generally reported in yellow to red fruits and vegetables,
such as papaya, acerola, pupunha, carrot, and tucuma [8,51]. They are related to important
physiological functions and actions, with pro-vitamin A being the best known. Besides, a
positive correlation was observed between the intake of vegetables and fruits containing
carotenoids and the prevention of several chronic-degenerative diseases, such as cancer,
inflammation, cardiovascular diseases, cataracts, and age-related macular degeneration,
among others [51]. Prudent levels of daily carotenoid intake recommended by Institute
of Medicine [52] are 3000 to 6000 µg for β-carotene, 5200 to 6000 µg for pro-vitamin A
carotenoids, and 9000 to 18,000 µg for total carotenoids [52,53].

Table 1 shows the total carotenoids value for oily extract and microparticle. The
differences in total carotenoids content of the samples are statistically significant different
(p < 0.01), oily extract tucuma coproduct (3.305 mg/g) showed a total of 0.746 mg more
than the total carotenoids contained in the microparticles (2.559 mg/g) (Table 1). This
difference is may be associated to a small loss by carotenoid degradation during the drying
process [54]. In view of the encapsulation efficiency have been around 78%. For the first
time, the carotenoid content was extraction by ultrasound of the co-product of the tucuma
almonds (Astrocaryum vulgare Mart.) using a vegetable oil as an extractor liquid. Therefore,
there are no data in the literature to be compared with the results found in this study. In
this sense, the importance of the data obtained is emphasized. Considering that in this
work we used the waste of the tucuma, we can infer that the carotenoid content found in
our samples is promising.

Table 1. Total carotenoids, encapsulation efficiency and antioxidant activity in the oil extract (OE)
and microparticle (MP).

Sample Total Carotenoids
(mg/g)

Encapsulation
Efficiency (%)

ABTS+ (µM
trolox)

β-Carotene/
Linoleic Acid (%)

OE 3.305 ± 0.01 a 584.75 ± 0.00 a 49.9 ± 1.8 a

MP 2.559 ± 0.01 b 77.42 ± 5.44 537.12 ± 0.01 b 43.3 ± 2.3 b

Values mean ± standard deviation (n = 3); Different letters in the same column indicate significant difference
(p < 0.01) OE = oily extract; MP = microparticle.
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Spray drying has been highlighted when it comes to procedures involving the mi-
croencapsulation of bioactive compounds because of their ease of operation and cost-
effectiveness. By removing water from products, ensures microbiological stability, pH,
prevents degradation and oxidation reactions, protects from moisture, reduces the cost of
storage and transport, in addition to obtaining a product with specific properties, such as
instant solubility [55,56]. After performing the spray dryer microencapsulation process,
parameters such as microencapsulation efficiency are important to be evaluated to verify
the efficiency of the process. There is an optimum concentration of the material to be
encapsulated as way to guarantee greater yield [57].

Table 1 shows an encapsulation efficiency value of the microencapsulated extract of
77.42%, according to the EE analysis, the value shows that the carotenoids remained in
more than 70% in the microparticles after the drying process. This means, that of the total
of 2.559 mg/g total carotenoids, 1.981 mg/g are inside the microparticle or adsorbed on
its wall. This value is higher than those reported by Álvarez-Henao [58] who obtained EE
values for lutein microcapsules between 9.90% and 32.9% and astaxanthin, which were
between 33.4% and 70.10% [59]. Arabic gum, because of its structural characteristics, has
an amphiphilic character, which allows its absorption on lipophilic surfaces, acting as a
protective colloid and, therefore, a good film-forming agent. In addition, it presents low
viscosity and Newtonian behavior in concentrations below 35% and thus is one of the most
effective film-forming materials for encapsulation [60]. Due to the encapsulation efficiency,
Arabic gum has been normally used to encapsulate lipids [61].

Carotenoids are one of nature’s main antioxidant pigments, found in many fruits.
Reactive oxygen species (ROS) are highly reactive molecules and the body controls its
degradation through two integrated antioxidant systems: an endogenous enzyme system
and exogenous control by the entry of non-enzymatic antioxidant molecules derived from
the diet or produced by the body [62]. Thereby, the antioxidant properties of carotenoids
are based on the structure of these compounds, mainly in the system of double conjugated
bonds, also responsible for the color of these pigments, making possible the sequestration
of free radicals, the modulation of the carcinoma metabolism, inhibition of cell proliferation,
increased cell differentiation via retinoids, stimulation of communication between cells,
immune strengthening, reduced risk of cataracts and skin protection caused by damage
from UV radiation [63].

From this perspective, the evaluation of antioxidant activity by ABTS and β-carotene/
linoleic acid in oily extract (584.75 µM/Trolox; 49.9%) and microparticles (537.12 µM/Trolox;
43.3%), respectively (Table 1) demonstrated that both showed good activity. The data ob-
tained for both methods showed a statistically significant difference (p < 0.01).

Thus, the results showed that the carotenoid content after drying was preserved in the
microparticles, which was confirmed in the EE. It is worth mentioning that the presence of
oil has a great influence on the formation of particles, on the encapsulation efficiency, and
provides protection to bioactive compounds. As well, the antioxidant activity by the two
tested methods also corroborated to certify that the properties of interest were preserved.

3.2. Infrared Analysis

Spectroscopy is a technique that aims to identify (or even determine) functional
groups (characteristic) of the organic compounds analyzed, providing a preliminary study
of their chemical structure of isolated substances and complex samples [64]. It has been
a technique used to provide important information on drug-excipient compatibility and
possible reactions among the chemical species involved during or after any physical
process [65].

The FTIR spectra of the oily extract, binary mixture, and microparticle are shown in
Figure 1. The spectra obtained from the oily extract and binary mixture showed bands in
2909 cm−1 and 2918 cm−1 for the CH stretch. Bands at 1743 cm−1 and 1734 cm−1 related
to vibrations of the C=O stretch, at 1447 cm−1 and 1444 cm−1 referring to the CH3 group
folding vibration and at 1140 cm−1 and 1162 cm−1 are characteristic of CO stretching
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vibrations (Figure 1). However, the spectrum obtained for microparticles showed a band at
3047 cm−1 characteristic of OH stretch vibration and 2918 cm−1 referring CH, at 1743 cm−1

related to C=O stretch vibrations, at 1606 cm−1 related to C=C stretch vibrations and in
1034 cm−1 referring to C-C stretching vibrations [40]. The binary mixture was produced in
the same proportions of adjuvants maltodextrin and Arabic gum and oily extract (1:2:1)
used in the formation of the microparticle.

Figure 1. FTIR spectra of the binary mixture of adjuvants, microparticles and oil extract in the
absorption range of 4000 to 600 cm−1, with 32 scans and 4 cm−1 resolution.

The spectra obtained in this work, presented an aggregate of absorption bands related
to stretches C-H, C=O, C-O, C=C, CH3, OH, C-C that may be related to important functional
groups such as alcohols, phenols, alkanes, alkenes, methyl, aromatic compounds and
anhydroglucose ring, corresponding to maltodextrin [5]. The analysis of characteristic
bands of certain functional groups of a molecule provides, through a simple examination
of the spectrum and consultation of tables and data a set of information on the structure
of the molecule [64]. Thus, it was possible through the FTIR spectra to obtain structural
information of the molecules and detect significant changes in the shape and position
of the absorption bands of the different functional groups of the microparticle or free
molecules [66]. Overall, in the spectra of the binary mixture and from the oily extract
there is almost no difference. The oily extract, binary mixture presented similar bands in
2918 cm−1 and band between 1734 cm−1 and 1743 cm−1 but in the microparticle with less
intensity which may be related to the encapsulation of the oily extract [67,68]. The spectra
obtained showed that the changes occurred did not interfere in the profile of the extracts by
ensuring the permanence of the bands attributed to them. In this sense, FTIR contributes
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as a structural characterization technique in order to confirm the presence of important
functional groups oily extract and in the microparticles.

3.3. Thermogravimetry Analysis (TG/DTG)

Figure 2 shows the TG/DTG curves of the oily extract, binary mixture and micropar-
ticle. The oily extract showed only one mass loss event that occurred in the temperature
range of 402.78 ◦C–453 ◦C with 97.825% of mass loss (Figure 2). The thermal profile of the
particles showed three mass loss events, the first occurred in the range of 48.23 ◦C−83.92 ◦C
with 4.5% loss of mass; the second took place in the range of 251.54 ◦C–286.76 ◦C with
14.29% loss of mass; and the third event occurred in the temperature range of 329.94 ◦C–
309.01 ◦C, with a loss of mass of 59.080% (Figure 2). The binary mixture revealed only
two events: the first event with a loss of mass of 10,357% that occurred in the range of
38.78 ◦C–78.74 ◦C and the second occurred in the range of 299.86 ◦C–351.56 ◦C and loss of
mass of 64.595% (Figure 2).

Figure 2. TG/DTG curve of binary mixture of adjuvants, the oily extract and microparticle. Condi-
tions: nitrogen atmosphere (N2), the flow of 50 mL/min, and a heating rate of 10 ◦C/min.

Among the three samples, the oily extract showed the lowest percentage of residue,
only 2.175%, and the greatest loss of mass, which indicates its lower thermal stability.
Meanwhile, the microparticle and binary mixture showed a residue percentage of 23.13%
and 24.048% the bigger quantity of the residue for this samples probably is because Arabic
gum and maltodextrine were not present in oil extract.

There was an event before 100 ◦C for the microparticle (48.23 ◦C) and binary mixture
(38.78 ◦C) that is probably due to the release of water and/or volatile substances [40]. This
difference of 10 ◦C may be related to the barrier against the release of assets that the wall
material offers to the microparticle, delaying the exit of components of the oil extract of
the tucuma. Since the mixture was lost in this first event, 10.357% of the mass, while the
microparticle lost 4.5% of the mass and thus corroborates the hypothesis that the particle
can protect the oil extract.

3.4. Differential Scanning Calorimetry (DSC)

The DSC curves of the oil extract, binary mixture and microparticle are shown in
Figure 3. The DSC curve of the oil extract occurred in only one endothermic event in the
range of 38–45 ◦C, with ∆H = 111.64 J/g (Figure 3). The DSC curve of the microparticle
showed three endothermic events: the first in the range of 29–102 ◦C, with ∆H = 113.68 J/g
and 65.47 ◦C Tg (Figure 3); second in the range of 200.75–237.04 ◦C, with ∆H = 8.70 J/g,
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with the peak temperature at 220.39 ◦C related to polymer melting; and the third event in
the 243–282 ◦C range, with ∆H = 13.78 J/g, related to material degradation (Figure 3).

Figure 3. DSC curve of the oily extract, binary mixture of adjuvants and microparticle. Conditions:
nitrogen atmosphere (N2), the flow of 50 mL/min, the heating rate of 10 ◦C/min and a temperature
of 300 ◦C.

However, for the binary mixture, two events were recorded, an endothermic event
in the range of 26–80 ◦C with ∆H = 114.22 J/g, and Tg of 53.70 ◦C and the other in the
range of 210–273 ◦C, with ∆H = 103.36 J/g peak temperature at 210.75 ◦C related to the
melting point of the polymers (Figure 3). The first event that occurred for the three samples
is related to water evaporation. The energy expenditure that occurred during the water
evaporation process in the microparticle and binary mixture was higher when compared
to the oily extract. This increase in energy expenditure, probably, may be related to the
connection of water with the adjuvants forming a matrix and, thus, hindering the water
evaporation process. Indeed, the wall material, in addition to protecting sensitive food
compounds during drying, can promote an increase in Tg and reduce the hygroscopicity
of powders [69]. The Tg value must be greater than 40 ◦C to obtain long-term stability [70].
The microparticle Tg showed a value of 65.47 ◦C, that is, the adjuvants fulfilled their role
of protecting the sensitive compounds and guaranteeing the stability of the product and,
thus, showing the efficiency of the encapsulation process.

3.5. Moisture Content and Water Activity

The moisture content and water activity influence the efficiency of the drying process
and affect the quality of the dry powder and the shelf life of food products [67,71]. In food
products, the water activity value close to 0.3 indicates stability against non-enzymatic
browning, microorganism development, and enzymatic activity during adequate food
storage [72]. The moisture content can also change in particle size and morphological
differences [73]. Foods that have a moisture content of more than 20% and a higher water
activity of 0.60 are subject to deterioration processes caused by molds and yeasts [74]. The
values found for the moisture content of 6.6% ± 0.06 and water activity 0.25 ± 0.007 were
low and indicate a good drying process [75]. These values were similar to the study of
microencapsulation of lutein (water activity that varied between 0.12 and 0.33 and moisture
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content varied between 4.21% and 9.01%) [58] and astaxanthin (water activity between 0.27
and 0.35 and moisture content varied) between 8.21% and 11.17%) [59].

3.6. Particle Morphology and Particle Size

A morphological analysis was carried out to evaluate the characteristics of the mi-
croparticles such as shape, surface, as well as their size distribution (Figure 4). Micropho-
tographs generally showed spherical particles of heterogeneous sizes and without agglom-
eration, which supposes that there is a repulsion due to negative charges. One can also
see in Figure 4 that there are microparticles with a smooth surface and others that have a
wrinkled surface.

Figure 4. Microparticle photomicrographs: (A) (1000-× magnitude), (B) (5000-× magnitude), (C)
(10,000-×magnitude) and (D) (12,000-×magnitude).

The wrinkling can be attributed to the drying and cooling process of the particles
in the spray dryer [76]. This roughness is probably influenced by the drying speed and
the viscoelastic properties of the wall material [77]. The particles showed heterogeneity
and were polydispersed and, therefore, suggests a greater variation in their properties,
mainly in the solubility of the particles in a food matrix [78]. In this sense, the particle size
is related to the amount of adjuvant, and formulations with a lower proportion of wall
material showed a small decrease in the average diameter [61]. The value of the particle
size found was 15.89 µm ± 33.47 considered adequate because it is a microparticle. This
size make the product highly soluble, while, on the other hand, it also makes them more
susceptible to oxidation.

4. Conclusions

The oily extract obtained from the tucuma almonds coproduct followed the principles
of green chemistry without the need to use organic solvents. At the time, Palm oil was
used as a new alternative for extracting lipophilic substances. The oily extract and the
microparticle showed significant levels of carotenoids and good antioxidant activity by
the tested methods. The microparticle showed spherical and heterogeneous structures,
good encapsulation efficiency from the spray drying process using malt dextrin and gum
Arabic as a wall material. The microparticle also had low humidity and water activity, an
indication of good stability and conservation. Thus, it is suggested that the extraction and
drying process were efficient and kept the antioxidant activity preserved, generating a
product rich in carotenoids with possible application in the food area a functional food.
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