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Abstract: The available treatments for patients affected by Alzheimer’s disease (AD) are not curative.
Numerous clinical trials have failed during the past decades. Therefore, scientists need to explore
new avenues to tackle this disease. In the present review, we briefly summarize the pathological
mechanisms of AD known so far, based on which different therapeutic tools have been designed.
Then, we focus on a specific approach that is targeting astrocytes. Indeed, these non-neuronal brain
cells respond to any insult, injury, or disease of the brain, including AD. The study of astrocytes is
complicated by the fact that they exert a plethora of homeostatic functions, and their disease-induced
changes could be context-, time-, and disease specific. However, this complex but fervent area of
research has produced a large amount of data targeting different astrocytic functions using pharma-
cological approaches. Here, we review the most recent literature findings that have been published
in the last five years to stimulate new hypotheses and ideas to work on, highlighting the peculiar
ability of palmitoylethanolamide to modulate astrocytes according to their morpho-functional state,
which ultimately suggests a possible potential disease-modifying therapeutic approach for AD.

Keywords: Alzheimer’s disease; astrocytes; astrogliosis; beta amyloid; neuroinflammation; neuro-
protection; reactive gliosis; palmitoylethanolamide

1. Introduction

Aducanumab, a monoclonal antibody directed against the aggregated form of the beta-
amyloid peptide (Aβ), was the last unfruitful attempt to treat Alzheimer’s disease (AD).
At the beginning of November 2020, experts of the Peripheral and Central Nervous System
Drugs Advisory Committee of the Food and Drug Administration expressed some concerns
about the real efficacy of aducanumab, thus hindering its marketing claiming [1]. The AD
field had high expectations for the aducanumab clinical trials, primarily because this human
IgG1 monoclonal antibody was designed to selectively bind Aβ aggregates, including
soluble oligomers and insoluble fibrils but not monomers [2], suggesting the possibility
to overcome previously failed approaches of other anti-Aβ antibodies. Unfortunately, the
aims were never met, despite they had been well demonstrated at the preclinical level and
in the early stages of the clinical trial. This event reveals once again the limitations of both
basic and medical research anxiously focused on counteracting Aβ in AD [3].

AD is the most common form of dementia in the elderly, affecting about 47 million
people worldwide [4]. Most AD cases are sporadic, affecting people older than 65 years old,
and aging represents the greatest risk factor [5]. As life expectancy increases, it is reasonable
to foresee that the number of AD patients will grow in the next decades. However, other
risk factors have been identified besides old age. Growing epidemiological data support the
existence of a link between metabolic disorders and AD [6–10], and a correlation between
head injury and future risk of dementia has also been suggested. The risk of developing
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AD or vascular dementia is increased in many pathological conditions of the heart and
blood vessels, including heart failure, diabetes, stroke, high blood pressure, and high
cholesterol level [11]. Family history and heredity are the most important risk factors for
the genetic form of this disease, which affects about 1% of individuals with AD, and whose
symptoms appear as early as 35 years old [12]. In contrast to heredity and aging, which
are nonmodifiable factors, other risk factors could be controlled through general lifestyle
improvement and effective management of unhealthy conditions. Indeed, healthy aging,
which includes both physical and mental exercise, a balanced diet, staying socially active,
and avoiding smoking, preserves both body and brain wellness and reduces the risk for
developing dementia [13–15].

At a molecular level, the presence of two peculiar hallmarks characterizes the AD
brain: (I) senile plaques, formed by the deposition of Aβ peptides in the extracellular space,
and (II) neurofibrillary tangles (NFTs), due to the hyperphosphorylation of microtubule-
associated tau proteins. A growing body of evidence indicates, however, that senile
plaques and NFTs alone are not responsible for the cognitive impairments observed in
AD [16]. Neuroinflammation and abnormal astrocytic and microglia responses exert a
pivotal role in AD pathogenesis and progression, thus highlighting the complexity of this
pathology [17–19].

AD can be considered as a continuum that spans decades [20], with brain modifica-
tions that begin 10–20 years before the clinical manifestations and change throughout the
disease progression [21]. Various clinical stages have been classified, such as asymptomatic
preclinical, prodromal, mild, moderate, and severe AD [22,23], also referred to as stage 1
to stage 6 [24,25]. Each stage is characterized by peculiar molecular changes that could
represent possible targets for different therapeutic approaches [26–28].

AD is a neurodegenerative disease that impacts memory and cognition. In addition to
the progressive impairment in mental abilities, other debilitating noncognitive symptoms
usually appear, including sleep disturbances, loss of appetite, and neuropsychiatric condi-
tions, including depression and/or apathy [29,30]. In the latest stages, symptoms worsen
enough to interfere with daily activities such that people suffering from AD need continu-
ous care. As a result, the economic burden of AD is impressive, mainly because currently
approved drugs are not curative. Despite decades of intense research, no treatments are
available to halt, slow, or cure AD, and the therapy still relies on cholinesterase inhibitors
(donepezil, rivastigmine, and galantamine), and the N-methyl-D-aspartate (NMDA) an-
tagonist memantine. Any of these drugs slightly help to manage behavioral symptoms,
preserve mental skills, and slow down the disease progression. However, their effects are
reversible and lessen over time due to the continued progression of the disease [31,32].

A final and confirmed diagnosis of AD can only be made through postmortem iden-
tification of histopathological hallmarks. Whenever a patient is suspected to have AD,
he/she is already in a mild or moderate stage of the pathology, and substantial irreversible
neuronal dysfunction and loss have already occurred. Nowadays, clinicians concur that in-
tervening at the earliest stage of the disease could lead to a better outcome [22,33]. To do so,
it will be necessary to identify biological markers allowing diagnosis in the asymptomatic
(or, at most, prodromal) stage of the disease to recognize asymptomatic at-risk individuals
and refer them to the use of disease-modifying drugs. This approach could be insidious
and difficult to achieve since it falls into the field of preventive care. Despite the preclinical
stage of AD could represent a temporal window in which it may be possible to reduce the
incidence and progression of the disease [34], few preclinical data are available so far at
this stage of the pathology [35]. To develop preventive therapeutic approaches for AD in
the coming years, the key neurobiological mechanisms of AD need to be clarified.

In this review, we discuss the most recent findings on both old and new mecha-
nisms implicated in AD, with a particular reference to the role played by glial cells. The
brain homeostatic functions exerted by glia could represent a novel perspective in AD
management, offering new strategies to treat this disease.
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2. Old and New Pathophysiological Mechanisms in AD
2.1. The Amyloid Cascade Hypothesis

The correlation between Aβ deposition and dementia has extensively been stud-
ied during the past decades, and the amyloidogenic pathway has been widely investi-
gated as a target for drug development [36]. Alois Alzheimer himself described the pres-
ence of plaques during the histological examination of his patient’s—named Augustine—
brain [37,38]. Later after, such plaques were recognized to be protein deposits, mainly
Aβ peptides [39,40]. Several forms of Aβ peptides have been found in AD brains [41,42].
Longitudinal PET studies demonstrated that proteins begin to deposit about two decades
before first symptoms appear [43]; thus, plaque formation is a slow and prolonged process.
Plaques accumulate extensively throughout the cortex, with the occipital and temporal
lobes being the most affected [44].

Aβ peptides are generated by the cleavage of the type I transmembrane amyloid
precursor protein (APP), a protein expressed ubiquitously, which biological functions
remain unclear [45,46]. APP is particularly abundant in the brain, and evidence showed that
it has trophic properties [47]. It plays a role in brain development by promoting neural stem
cells (NSCs) proliferation, cell differentiation, and neuronal maturation [46,48]. APP seems
necessary for synaptogenesis, synapse remodeling, and neurite outgrowth [49,50], as well
as axonal outgrowth after injury in the adult brain [51]. A neuroregenerative role for brain
APP has been hypothesized, even if the molecular mechanisms have not been elucidated yet.
The production of APP increases in some physiological conditions, such as during neuronal
maturation and differentiation, and in some pathological ones, including AD, brain trauma,
and Down syndrome [52]. To complicate the picture, alternative transcriptional splicing
could create 8 to 11 different APP isoforms [53].

The enzymatic processing of APP yields various peptides with distinct functions
through three different proteolytic pathways, among which only one seems to be amy-
loidogenic. This process releases mainly two monomers of Aβ: about 90% is Aβ40, which
is considered nontoxic because it does not self-aggregate much, and the remaining part
is mainly constituted of longer Aβ peptides [54]. Being more hydrophobic and prone to
aggregate than the shorter isoforms, the Aβ42 and Aβ43 could form oligomers and fibrils;
thus, they are considered neurotoxic isoforms [36,55]. In addition to Aβ42 and Aβ43, some
reports consider also the amyloid precursor protein intracellular domain to be involved in
the pathophysiology of AD [52,56,57].

The nonamyloidogenic pathway is thought not to generate toxic Aβ and a third
proteolytic pathway has been recently described, involving a η-secretase that cuts the
APP extracellular domain releasing a soluble ectodomain. The biological functions of all
peptides yielded through this newly described pathway are yet to be disclosed.

Although most of the research studies investigated the neurotoxicity of Aβ peptides,
they also exert biological functions. They are not abundantly expressed, even in AD
brains [58], and they execute trophic actions, including cell fate specification and prolifera-
tion. Exogenous application of soluble and fibrillary Aβ peptides (but not oligomeric forms)
stimulates human embryonic stem cells (ESCs) proliferation [59]. Oligomeric Aβ peptides
reduce the proliferative potential of human NSC, promoting their differentiation toward
glial instead of neuronal cells [60]. The Aβ40 seems to preferably enhance neurogenesis,
whereas the Aβ42 seems to promote gliogenesis [61,62]. Some authors have also observed
neurogenesis induced by oligomers of Aβ42, and not Aβ40, in rat hippocampal NSCs [63].
Further studies are warranted since these contradictory results are probably due to the
different forms of Aβ used.

The amyloid cascade hypothesis states that the progressive accumulation and oligomer-
ization of Aβ42 creates diffuse plaques in the brain parenchyma, causing neuroinflamma-
tion and, later, neurofibrillary tangles, ultimately leading to synaptic dysfunction or loss,
and neuronal death [36,64]. This hypothesis has been formulated after having identified the
APP gene on chromosome 21, together with the observation that people affected by Down
syndrome develop AD-like symptoms early in life. Several pathogenic coding mutations
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in the APP gene have been identified and linked to the onset of autosomal dominant
AD [64–66]. This hypothesis is supported by the correlation between autosomal dominant
mutations in both APP and genes coding for parts of the secretase, such as presenilin
(PSEN) 1, PSEN2, with the incidence of AD [36,64,67].

However, reduced clearance of Aβ peptides could also account for their accumu-
lation in the brain. A protein involved both in the clearance of Aβ and in its ability to
aggregate and form fibrils is the apolipoprotein E (apoE) [68,69]. Homozygous carriers
for the isoform ε4 have about a 12-fold higher risk to develop sporadic AD, while carriers
of the less frequent ε2 isoform show a low risk for AD [70,71]. Despite all the findings
that strongly support the amyloid cascade hypothesis, other data suggest instead that
the accumulation of senile plaques in the brain does not correlate with cognitive impair-
ment. Indeed, massive cerebral accumulation of Aβ plaques has also been observed in
individuals without any cognitive impairment. Additionally, the reduction of Aβ load by
immunotherapy does not improve cognition in AD patients [72]. Furthermore, all clinical
trials carried out so far targeting either the production or the accumulation of Aβ have
failed. The debate is fervent in the literature and undoubtfully more studies are needed to
clarify the precise mechanism(s) by which Aβ deposits lead to tangle formation, and thus
neurodegeneration [3].

2.2. Neurofibrillary Tangles

Neurofibrillary tangles are considered essential for the neuropathological diagnosis
of AD [26]. They are intraneuronal bundles of filaments made of hyperphosphorylated
microtubule-associated tau proteins [73]. Their accumulation causes a loss of cytoskeletal
microtubules and tubulin-associated proteins, resulting in morphological modifications in
neuronal dendrites and axons [74].

Since NFTs appearance in the brain seems to follow a pattern, in a seminal paper, Braak
and Braak proposed to classify AD in six stages based on neuropathological findings [44,75].

At physiological conditions, the protein tau is mainly localized in the axon, and it is
essential for the stabilization of microtubules [76]. Its phosphorylation is highly probable
because tau has 85 potential sites of phosphorylation that are easily accessible because of
the unfolded structure of the protein [77]. Tau has been found mislocalized (missorted)
into the somatodendritic compartment at the early stages of AD. Since NFTs load correlates
with cognitive decline and synapse loss [74], a role for tau missorting has been proposed in
AD [78], which serves as diagnostic criteria and for the staging of disease progression [79].
Interestingly, abnormal phosphorylation of tau is detectable even before NFTs formation. In
agreement, the reduction of tau has beneficial effects in preclinical AD models, whereas tau
mislocalization from axons to dendrites has detrimental effects [80,81]. In general, the major
modifications of tau found in AD are hyperphosphorylation, missorting, aggregation to
oligomers and filaments forming paired helical filaments, dissociation from microtubules,
and other post-translational modifications [78].

Mutations in genes encoding for tau have not been linked to AD. However, tau
knockout mice show very mild neurite outgrowth changes and no microtubule-related
defects [82,83]. Human findings showed that microtubule density is decreased in AD
patients, but this reduction is surprisingly unrelated to tau abnormalities [84]. Consistent
with the above, a simple loss of function of tau is not enough to explain the loss of
microtubules observed in AD, and other mechanisms are probably involved.

Several tau-targeting therapies for AD have been proposed. These approaches are
based mainly on (i) inhibition of kinases (responsible for aberrant tau phosphorylation),
(ii) inhibition of tau aggregation, and (iii) stabilization of microtubules. Immunotherapies
targeting tau in clinical trials have shown high toxicity and/or lack of efficacy and have
been discontinued [85].
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2.3. Unfolded Protein Response and Defective Proteostasis

AD is a neurological disease characterized by the ubiquitous association of misfolded
and aggregated proteins, whose role in the pathogenesis and progression of the disease
is still unclear. However, it is reasonable to hypothesize that a significant dysfunction in
protein homeostasis (proteostasis) occurs. Proteostasis is complex since it requires proteins
to be in a specific localization, aggregation, concentration, and conformation. Multiple
events occurring in AD have been suggested to act as proteostasis perturbators, including
NFTs [86], neuroinflammation [87], altered calcium signaling [88], mitochondrial energy
imbalance [89], and oxidative stress [90]. Most of these have been linked to endoplasmic
reticulum (ER) stress [91]. The ER is an essential organelle in eukaryotes responsible for
the synthesis and folding of all secretory and membrane proteins [92]. Under physiological
conditions, when aberrant proteins are synthesized, the ER exports them to the cytosol,
where they are directed to the ubiquitin–proteasome system for degradation [93]. In AD,
the massive accumulation of aberrant misfolded proteins at the ER engages the unfolded
protein response (UPR), a complex signaling system stress response that orchestrates
protein folding and initiates apoptosis, or autophagy, in irreversibly damaged cells [94].
Growing evidence indicates that ER stress responses may also affect metabolic pathways
that generate Aβ, suggesting its direct role in AD etiology. For instance, it has been demon-
strated that UPR signaling events increase BACE1 levels, causing Aβ overproduction and
promoting the transcription of the PSEN gene [95].

2.4. Complement Cascade and Neuroinflammation

Inflammation has been recognized as a key component of AD pathology [96], likely
contributing even to the progression of the disease [97,98]. Several transcription factors
involved in the inflammatory responses have been found involved in AD. For example, the
CCAAT/enhancer-binding protein (c/EBP) family of transcription factors is elevated in
brains from AD patients, compared to healthy controls [99], and it was found to promote
microglial neuroinflammatory response [100]. Another example is the NF-kB pathway
that controls cytokine production and cell survival, which is strongly associated with AD
neuroinflammation [101].

Both the classical and alternative complement pathways are induced in vitro by fibril-
lar Aβ [102] and NFTs [103]. Senile plaques colocalize with microglia and many proteins
of the complement cascade in animal models of the disease and human AD [62,104–106].
Moreover, human AD brains show signs of activation of the complement in the same areas
presenting senile plaques and NFTs [107]. Complement factors have been shown to be
elevated during AD progression, likely as a general reaction to abnormal protein deposition
and other cerebral injuries that occur in the AD brain [108–110]. This is not surprising,
since the complement cascade is a fundamental effector of the innate immune system that
favors the rapid clearance of pathogens, apoptotic cells, and their debris, as well as the
extent and termination of the inflammatory immune response [111]. Some components
of the complement cascade play a key role in synapse pruning. This process is active
and fundamental during the development of the nervous system. However, it is scarcely
seen in the adult brain when its occurrence is thought to be detrimental, as in AD brains.
Indeed, evidence of excessive complement-mediated synapse pruning has been reported
in AD and animal models of aging [112–114]. Regardless, some human evidence shows
inconsistency between blood and cerebrospinal fluid (CSF) concentration of complement
proteins [110], highlighting the heterogenicity of the pathology, which complicates the path
to use complement proteins as diagnostic biomarkers. However, components of the com-
plement could be also potential novel therapeutic targets [111,115]. In preclinical models of
neurodegenerative disorders, the inhibition of specific complement proteins had beneficial
effects [116,117]. Unfortunately, the blood–brain barrier (BBB) is not accessible to current
complement-targeted therapeutics, making drug design challenging [117]. Additionally,
the molecular mechanisms underlying the inflammatory process observed in AD have not
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been fully clarified yet. This could explain the failure of the clinical trials conducted so far
using conventional anti-inflammatory drugs [118–122].

Neuroinflammation is a complex defensive process crucial for the preservation of
brain homeostasis that becomes detrimental under certain circumstances, which is not
fully understood. It is now accepted that any cerebral insult triggers the activation of
glial cells in a defensive, preservative process aimed at restoring the lost homeostasis.
Both morphological and functional modifications of mainly, but not exclusively, microglia
and astrocytes occur accompanied by a pro-inflammatory environment [19]. Microglia
cells, being the immune sentinels of the central nervous system (CNS), are the first cells
responding with a potent inflammatory response, consequently leading to the activation
of other glial cell types, including astrocytes [123,124]. If the stimuli that activate glial
cells are very intense, and/or long lasting, and/or not counterbalanced by an interruption
signal, reactive gliosis could be established and the normal brain functioning could be
altered, leading even to neuronal death [125]. However, the exact timing and mechanisms
that turn neuroinflammation from a physiological to a pathological process are still under
study [126,127]. Therefore, the clarification of the underlying molecular and cellular
mechanisms could allow scientists to develop and test new, and hopefully efficacious,
pharmacological treatments. For example, a recent study identified a negative regulator of
the transcription factor c/EBPb, responsible for microglia-mediated neuroinflammation,
which could represent a novel AD therapeutic target [100]. Of note, c/EBPb is expressed
also by astrocytes. Thus, additional studies should address the possibilities of targeting it
in different cell types involved in the neuroinflammatory process.

2.5. The Neuroenergetic Hypothesis

Glucose is the main brain energy fuel, which crosses the BBB through GLUT1, a
membrane-bound glucose transporter. Both aging and AD are associated with a reduction
of GLUT1 [128,129]. Additionally, transgenic mouse models show a correlation between
the decreased density of GLUT1 and Aβ peptide accumulation [129,130]. In aged humans,
an association between glucose hypometabolism and apoE genotype has been made [131].
The main signaling that mediates the uptake of glucose inside cells is the interaction of
the pancreatic hormone insulin with its receptor. AD demented patients show a high level
of plasma insulin, while low levels of both CSF insulin and brain insulin receptors. In
accordance, insulin resistance has been correlated with dementia, and patients with type-2
diabetes have a much higher risk to develop AD [132]. Indeed, glucose acts as a memory
enhancer since the neuronal activity is tightly coupled to glucose utilization [133]. Using
5xFAD mice as an AD model, Andersen et al. showed that neuronal GABA synthesis in the
brain is directly affected by glucose hypometabolism in astrocytes [134]. Under normal con-
ditions, astrocytes produce ATP and lactate that are released to feed neighboring neurons,
in a process known as the astrocyte–neuron lactate shuttle, that energetically supports neu-
rons given their high-energy requirements, such as action potential firing [135–137]. This
shuttle is necessary for long-term potentiation [135]. Berchtold et al. reported that many
genes involved in mitochondrial bioenergetics were upregulated in aged individuals with
mild cognitive impairment (MCI), relative to age-matched controls, but downregulated in
full-blown AD patients [138]. All this evidence contributed to the so-called neuroenergetic
hypothesis, which posits that the chronic progressing starving of brain cells could produce
energy-deficiency stress. This reduces neuronal firing and induces a shift from pathways
associated with physiological APP metabolism to pathological ones, related to Aβ/tau
production [139], ultimately leading to AD.

3. Astrocytes as Targets for AD Therapeutics

In the beginning, the interest in glial cells in AD arose mainly from the role played by
the microglia cells in the immune response [140]. Afterward, it became clear that all types
of glial cells were probably involved in both the etiology and progression of the disease,
as actors in the context of the immune response and key regulating elements involved
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in the molecular and cellular processes altered in AD [141]. Indeed, cell-type-specific
transcriptomic changes in human AD brains have been associated with distinct molecular
pathways [142].

Glial cells are a heterogeneous cell population exerting a plethora of different actions
necessary for the correct functioning of the brain [143]. Glial cells are usually classified
into microglia and macroglia. The latter have a neural origin and include astrocytes,
oligodendrocytes, and NG-2 glia, also known as synantocytes [144].

Microglia are the main immunocompetent cells of the nervous system with a non-
neural origin. Being macrophages, they fulfill primarily defensive functions [145]. These
cells regularly scan the surrounding environment with their processes and adapt their
morphology and functions depending on what they sense. Upon activation, microglia
exert chemotactic and phagocytic properties, moving where needed and clearing waste
products, cellular debris, and pathogens [146]. In addition to these crucial defensive
functions, microglia exert many other key actions related to synapse formation, pruning,
and functioning [147–149]. Microglia cells show various activation states and expression
profiles in both human AD brains and murine AD models [150]. The pathway analysis of
single-nucleus transcriptomic experiments revealed that microglial genes mostly related to
the immune response were differentially expressed between human AD brains and control
subjects [142]. Additionally, the mutation in TREM2, a cell surface protein selectively and
highly expressed by microglia in the brain, has been associated with a three-fold higher
risk to develop AD [151].

Oligodendrocytes originate from precursor cells (OPCs) mainly localized in the ventric-
ular zones of the brain, from which they migrate during development, through which they
become mature oligodendrocytes. This process starts during the third trimester of gestation
and continues throughout life [152]. Oligodendrocyte’s main function is the creation of the
myelin sheath, crucial for effective neuronal transmission of action potentials [153]. Under
the myelin sheath, in the internodal periaxonal space, oligodendrocytes establish direct
connections with axons via cytoplasmic-rich myelinic channels, in which a bidirectional
movement of macromolecules occurs between the two cells [152,154,155]. Impairments
in myelin formation and functions have implications in several neurodevelopmental and
neuropsychiatric disorders [156–160], and the maturation of OPCs into oligodendrocytes is
accelerated by the loss of myelin due to injuries, aging, or diseases, including AD [157].

Astrocytes maintain CNS homeostasis at molecular, cellular, organ, and system levels
of organization [161]. Several morphologically distinct subtypes of astrocytes have been
identified that likely correspond to specific functions [162]. Indeed, they are present
both in the white and grey matter. Astrocytes are key components of the BBB, thus
regulating the communication between the CNS and the periphery [163]. They control
the CNS microenvironment in several ways, including by buffering extracellular ions and
the pH, regulating blood flow through the release of vasoactive molecules, and clearing
reactive oxygen species (ROS) [164]. Astrocytes are components of the so-called gliocrine
system, releasing around 200 molecules, mainly neurotrophic factors, and energy substrates,
fundamental for the maintenance of CNS homeostatic functions [165]. Astrocytes exert
primary roles in synaptic transmission and information processing by neural circuits. It has
been demonstrated the ability of a single astrocyte to be in contact with several neurons
and to modulate synaptic transmission by tuning neurotransmitter levels in the synaptic
cleft [162,163].

Originally classified as OPCs, synantocytes are stellate cells, with large process ar-
borizations that specifically express a new type of chondroitin sulfate proteoglycan [166].
They are found both in white and grey matter and interact with other glial cell types and
neurons. Synantocytes extend processes along myelin sheaths to contact also the paranodes
and nodes of Ranvier. Moreover, they were found to take part in the synaptic cradle, but
their specific function at synapses has not been clarified yet [167,168].

Given the essential and pleiotropic functions driven by glial cells, the interest in the
involvement of these cells in the pathophysiology of several neurological and neuropsy-
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chiatric disorders has grown exponentially in the last years [169]. Additionally, different
glial cell types can communicate and influence each other’s phenotype and functions.
However, the mechanisms and implications of those cross-talks are only beginning to be
elucidated [124,170,171]. Below we focus on the evidence supporting a role for impaired
astrocyte functioning in AD, and the potential therapeutic benefit that approaches aimed
at restoring them could have.

The role of astrocytes in AD is difficult to decipher, mainly for two reasons: firstly,
astrocytes exert a huge plethora of different functions in the CNS that are not easy to tease
apart, and secondly, astrocytes respond to any perturbation of CNS homeostasis, caused
by either injuries or diseases, with a variety of changes at structural, transcriptional, and
functional levels. Additionally, the alterations are specific to the astrocyte localization and
the CNS insult, and even to the different stages of the disease [125,172–174]. Regarding
AD, the evidence available so far suggests the presence of both glial reactivity and atrophy
since the initial stages of AD [97]. Additionally, astrocytes close to amyloid plaques
show greater transcriptional changes than those far from plaques [175]. To complicate
the picture, recent human studies showed that postmortem AD brains contain a reduced
proportion of neuroprotective astrocytes, which are associated with glutamate recycling
and synaptic signaling, compared to controls [142]. Moreover, the notion that astrocytes are
asthenic in the final stages of AD is gaining ground. Regardless, both reactive and asthenic
astrocytes operate in an erratic manner, thus contributing differently to the worsening
of the disease through neuronal impairment and death [176]. Therefore, the difficulty to
develop a pharmacological approach targeting astrocytes increases, since a drug directed
to hypertrophic astrocytes in a specific AD stage could be detrimental in another stage
at which astrocytes are atrophic, and vice versa. Moreover, modulating astrocytes could
affect the functioning of other glial cell types, besides neurons [177,178], altering the
normal communication among brain cells. Another important challenge to overcome when
designing a therapy directed to the brain is the necessity for it to cross the BBB. It has
been reported that only 5% of about 7000 drugs screened in the Comprehensive Medical
Chemistry database are actually able to enter the CNS passing the BBB [179,180].

There is a growing number of reports looking at the role of astrocytes in AD, and
several approaches targeting astrocytes have been proposed (Figure 1). The following
sections review both in vitro and in vivo evidence that has been published in the last five
years targeting astrocytes pharmacologically in models of AD (Table 1).
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Figure 1. Schematic representation summarizing different molecular mechanisms of astrocytes to be manipulated in AD. 
The figure shows the main astrocytic pharmacological targets for the treatment of AD: (1) astrocyte senescence; (2) gluta-
mate transporters; (3) astrocytic metabolic system; (4) upregulation of neurotrophins and growth factors; (5) astrocytic 
amyloid clearance and phagocytosis; (6) astrocytic reactivity; (7) astrocytic oxidative stress; (8) astrocytic channels and 
receptors; (9) astrocytic complement cascade. A2AR, adenosine 2A receptor; Aβ, amyloid β; ADP, adenosine diphosphate; 
APOE4, apolipoprotein E4; ATP, adenosine triphosphate; AQP4, aquaporin 4; BDNF, brain-derived neurotrophic factor; 
CCL3, C-C motif chemokine ligand 3; Clu, clusterin; CNTF, ciliary neurotrophic factor; COX-2, cyclooxygenase-2; FGF2, 
fibroblast growth factor 2; GDNF, glial-derived neurotrophic factor; GFAP, glial fibrillary acidic protein; GLAST, gluta-
mate aspartate transporter; Glc, glucose; Gln, glutamine; GLT-1, glutamate transporter-1; Glu, glutamate; GS, glutamine 
synthetase; H2AX, histone family member X; IL-1β, interleukin 1β; IL-6, interleukin 6; iNOS, inducible nitric oxide syn-
thase; JAK2, janus kinase 2; KCa3.1, calcium-activated potassium channel 3.1; Lcn2, Lipocalin 2; MMP-1, matrix metallo-
proteinase-1; NEP, neprilysin; NF-kB, nuclear factor-kB; NOX, NADPH oxidase; PPARα, peroxisome proliferator-acti-
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Figure 1. Schematic representation summarizing different molecular mechanisms of astrocytes to be manipulated in AD.
The figure shows the main astrocytic pharmacological targets for the treatment of AD: (1) astrocyte senescence; (2) glutamate
transporters; (3) astrocytic metabolic system; (4) upregulation of neurotrophins and growth factors; (5) astrocytic amyloid
clearance and phagocytosis; (6) astrocytic reactivity; (7) astrocytic oxidative stress; (8) astrocytic channels and receptors;
(9) astrocytic complement cascade. A2AR, adenosine 2A receptor; Aβ, amyloid β; ADP, adenosine diphosphate; APOE4,
apolipoprotein E4; ATP, adenosine triphosphate; AQP4, aquaporin 4; BDNF, brain-derived neurotrophic factor; CCL3, C-C
motif chemokine ligand 3; Clu, clusterin; CNTF, ciliary neurotrophic factor; COX-2, cyclooxygenase-2; FGF2, fibroblast
growth factor 2; GDNF, glial-derived neurotrophic factor; GFAP, glial fibrillary acidic protein; GLAST, glutamate aspartate
transporter; Glc, glucose; Gln, glutamine; GLT-1, glutamate transporter-1; Glu, glutamate; GS, glutamine synthetase;
H2AX, histone family member X; IL-1β, interleukin 1β; IL-6, interleukin 6; iNOS, inducible nitric oxide synthase; JAK2,
janus kinase 2; KCa3.1, calcium-activated potassium channel 3.1; Lcn2, Lipocalin 2; MMP-1, matrix metalloproteinase-1;
NEP, neprilysin; NF-kB, nuclear factor-kB; NOX, NADPH oxidase; PPARα, peroxisome proliferator-activated receptor α;
PPARβ/δ, peroxisome proliferator-activated receptor β/δ; P2X7, purinergic receptor; P2Y1R, P2Y1 purinergic receptor;
ROS, reactive oxygen species; RXR, retinoid X receptor; SASP, senescence-associated secretory phenotype; S100B, S100
calcium-binding protein B; SN1, N glutamine transporter 1; STAT3, signal transducer and activator of transcription 3;
TNF-α, tumor necrosis factor α.

Table 1. In vitro and in vivo approaches targeting astrocytes in Alzheimer’s disease.

Astrocytic Target Experimental Strategy Results References

Senescence
Removal of senescent cells in vivo by

radiation treatment or by genetic
ablation

Reduction in astrogliosis, tau
hyperphosphorylation, neuronal

degeneration; preservation of cognition
[181,182]

In vivo administration of the senolytic
drug ABT263 (navitoclax)

Prevention from the upregulation of
senescence-associated genes attenuated tau
phosphorylation; cognitive improvements

[181,182]

Overexpression of ∆133p53 in
radiation-induced senescent

astrocytes
Repression of the irradiation-induced SASP [183]

Ginsenoside F1 in vitro treatment SASP suppression by downregulation of
p38MAPK-dependent NF-κB pathway [184]



Biomolecules 2021, 11, 600 10 of 32

Table 1. Cont.

Astrocytic Target Experimental Strategy Results References

Glutamate transporters Ceftriaxone administration in
APP/PS1 mice

Raise in GLT1, GS and SN1 protein
expression and cognitive performance

improvements
[185]

Chronic oral administration of
riluzole in 5xFAD mice

Prevention of senescent associated gene
expression changes; reduction of Aβ

oligomers and plaques
[186]

Metabolism PPARβ/δ agonist treatment of
human AD astrocytes (PSEN1∆E9)

Enhancement of AD-reduced fatty acid
oxidation [187]

Pantethine in vitro treatment of
astrocytes obtained from 5xFAD mice

Reversal of the altered activity of several
metabolic enzymes and of the induced

IL-1β expression
[188]

Hydroxytyrosol treatment of glioma
cell cultures challenged with Aβ

(25–35)

Proper glucose metabolism restoration by
Akt activation [189]

GLP-1 in vitro treatment of
Aβ-exposed astrocytes

Reversal of the Aβ-altered glycolysis by
activation of the PI3K/Akt pathway [190]

Metformin in vitro treatment of
astrocytes exposed to high glucose

concentration

Inhibition of both the ER stress and
inflammation induced by high glucose [191]

Neurotrophins and growth
factors

HMF treatment of primary astrocytes
and C6 glioma cell line

Raise in BDNF expression induced by both
the activation of cAMP/ERK/CREB

signaling and the inhibition of PDE4B
and PDE4D

[192]

Primary neurons exposed to Aβ
(25–35) incubated with

quetiapine-treated astrocyte
conditioned medium

High BDNF release by astrocytes treated
with quetiapine promoted viability of

primary neurons
[193]

Overexpression of BDNF specifically
in GFAP-positive astrocytes by
genetic crossing in 5xFAD mice

The raise in BDNF levels that are reduced
in 5xFAD mice improved synaptic

plasticity and cognition
[194]

In situ stem cell transplant in
intrahippocampal Aβ42 infused mice

Reversal of the Aβ42-induced cognitive
impairment by BDNF-TrKB

pathway activation
[195]

FGF2 treatment of primary astrocytes
challenged with Aβ42

Promotion of astrocyte proliferation
through enhanced expression of c-Myc,

Cyclin D1, Cyclin E
[196]

Aβ clearance
HDL mimetic peptide in vitro

treatment of primary human and
murine astrocytes

Raise in apoE4 lipidation lowers its
detrimental cellular accumulation [197]

In vivo overexpression or
downregulation of Clu specifically in

GFAP-positive astrocytes in
APP/PS1 mice

Clu overexpression is associated with a
reduction in Aβ burden.

The opposite phenomenon was found with
Clu downregulation

[198]

In vivo overexpression of Clu
specifically in GFAP-positive

astrocytes in 5xFAD mice

Reduction in plaques number and sizes.
Improvement in synaptic function [199]

EGCG treatment of Aβ40 challenged
medium from cultured astrocytes

Elevation of the expression of NEP, an
enzyme that degrades Aβ [200]

PUFAs oral administration in fat-1
transgenic mice and AQP4

knockout mice

PUFAs promoted Aβ clearance in fat-1
transgenic mice, but not in AQP4 knockout
mice. PUFAs protected from Aβ-induced

AQP4 polarization

[201]

Complement cascade Genetic ablation of C3 gene in
APP/PS1 mice Reduction of glia at plaques [202]
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Table 1. Cont.

Astrocytic Target Experimental Strategy Results References

Phagocytosis Fingolimod oral administration in
APP/PS1 mice infected by B. pertussis

Increase in astrocyte phagocytosis of Aβ;
reduction of GFAP immunoreactivity [203]

In vitro and in vivo downregulation
of the Aβ-induced inflammasome,
respectively in astrocytes and in

5xFAD mice

In vitro Aβ phagocytosis increase due to
the release of the chemokine CCL3 and

improved memory in vivo
[204]

Cell reactivity
Iron chelators deferoxamine and

deferiprone treatment in
Aβ-challenged astrocytes

Inhibition of Aβ-induced Lcn2 [205]

Glu-DAPPD chronic administration
in APP/PS1 mice

Reduction of Aβ aggregates as well as
GFAP and Iba1 immunostaining. Cognitive

functions improvement
[206]

Downregulation of the JAK2-STAT3
pathway in hippocampal astrocytes

of transgenic APP mice

Reduction of Aβ deposits; mice spatial
learning improvement; control of

pro-inflammatory genes
[207]

Downregulation of the JAK2-STAT3
pathway in hippocampal astrocytes

of transgenic 3xTg-AD mice

Full reversal of early synaptic and LTP
alterations; short-term memory and

reduced anxiety behavior improvements
[176,207]

In vitro treatment with PEA of
Aβ42-challenged primary astrocytes

and mixed astrocytes-neurons
cultures

Prevention of Aβ-induced neuronal loss
and reduction of neuronal viability [208]

In vitro treatment with PEA of
Aβ42-challenged mixed

astrocytes-neurons cultures isolated
from 3xTg-AD mice

Prevention of Aβ-induced neuronal loss
and reduction of neuronal viability [209]

In vitro treatment with PEA of
primary cortical astrocytes and mixed
astrocytes-neurons cultures isolated

from 3xTg-AD mice

Reduction of astrogliosis and improvement
of neuronal viability [210]

Um-PEA treatment in glioma and
neuroblastoma cells challenged by
lipopolisaccaride and interferon γ

Improvement of cell viability; reduction of
protein expression of both iNOS and

COX-2
[211]

Co-ultra PEALut administration for
14 days starting from the day that rats

received a single intrahippocampal
Aβ42 infusion

Prevention of Aβ-induced astrocyte
hypertrophy, neuroinflammation; and

BDNF and GDNF mRNA downregulation
[35]

Oxidative stress
Electromagnetic fields exposure of
human and rat primary astrocytes

challenged with Aβ or H2O2

Reduction of both ROS production and
NADPH oxidase activity [212]

In vivo pelargonidin administration
in rats subjected to an

intrahippocampal injection of
Aβ(25–35)

Raise in acetylcholinesterase and catalase
activities. Improvement in cognitive

performance
[213]

In vivo treatment of C. elegans with
monascin

Reduction of Aβ-toxicity and activation of
the expression of several anti-oxidative

genes
[214]

Channels and receptors In vivo genetic ablation of the
Ca2+-activated K+-channel KCa3.1

Improvements in memory performance
and insulin signaling.Reduction of glial

hypertrophy and tau
hyperphosphorylation

[215]

Chronic intracerebroventricular
infusion of P2Y1R inhibitors in

APP/PS1 mice

Reversal of structural and functional
markers of astrocyte activation.

Memory performance improvement
[216]
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Table 1. Cont.

Astrocytic Target Experimental Strategy Results References

Inhibition of adenosine recycle by J4
hippocampal infusion in APP/PS1

mice
Improvement of memory deficits [217]

Oral administration of istradefylline,
an A2A antagonist, to transgenic APP

mice
Memory improvements [218]

Astrocyte modulation Chronic um-PEA administration to
6-month-old 3xTg-AD mice

Reduction of cortical astrocyte hypertrophy
and reactivity.

Reduction in both cortical and
hippocampal inflammation

[210,219]

Chronic um-PEA administration to
12-month-old 3xTg-AD mice Support for asthenic/atrophic astrocytes [219]

3.1. Targeting Astrocyte Senescence

Aging is considered one of the main risk factors for the development of neurodegener-
ative diseases, including AD [220]. Studies on cellular aging are attracting much attention
as a fervent area of research [221,222], and recent evidence demonstrates that astrocytes
senescence has a critical role in the pathogenesis of AD. As time goes by, astrocytes show
peculiar cellular and molecular changes assuming the so-called senescence-associated
secretory phenotype (SASP) [223]. This is accompanied by upregulation and release of
proinflammatory cytokines, including interleukin(IL)-1β and IL-6, chemokines, and pro-
teinases [175,184,224]. Overexpression of intermediate filament proteins glial fibrillary
acidic protein (GFAP) and vimentin occurs, whereas neurotrophic growth factors result
downregulated. The chromatin undergoes several modifications, and there is upregulation
of p53, p21WAF1, and p16INK4A, leading to a permanent cell cycle arrest [225,226]. These fea-
tures may not be specific senescence markers for astrocytes since they are postmitotic cells
that do not usually divide in healthy tissues [126]. Regardless, one of the most common
features of aging is the accumulation of senescent cells. Bussian et al. demonstrated that the
presence of senescent astrocytes and microglia in a mouse model of aggressive tauopathy
(the PS19 mice) promotes the formation of hyperphosphorylated tau aggregates. Removing
p16INK4A-expressing senescent cells through a genetic approach prevented astrogliosis,
hyperphosphorylation of tau, degeneration of cortical and hippocampal neurons, and
it preserved transgenic mouse cognitive functions [182]. Comparable effects have been
obtained by testing a senolytic agent, the orally active anticancer drug ABT263 (navito-
clax), that acts as inhibiting Bcl-2. By this mechanism, this compound is able to induce
apoptosis specifically in senescent cells [227]. The clearance of accumulated senescent
astrocytes also rescued in vivo the radiation-induced impaired astrocytic neurovascular
coupling and mice cognitive performance [181]. Another report showed that the over-
expression of an inhibitory isoform of p53, the ∆133p53, which is downregulated in AD,
repressed the SASP after its induction in astrocytes by exposure to radiation. ∆133p53
overexpression promoted also DNA repair and inhibited irradiated astrocyte-mediated
neuroinflammation and neurotoxicity [183]. The antiprotozoal drug pentamidine upregu-
lates p53 and increases the ratio BAX/Bcl2, ultimately promoting apoptosis in cultured
astroglioma cells [228], and it exerts anti-inflammatory effects in mice receiving human
Aβ42 into the hippocampus [229]. Finally, from the field of phytotherapy, an in vitro study
showed that Ginsenoside F1 suppresses the SASP in astrocytes by downregulating the
p38MAPK-dependent NF-κB activity [184], a pathway upregulated in AD.

3.2. Targeting Astrocyte Glutamate Transporters

Glutamate represents the major excitatory neurotransmitter of the CNS, whose neu-
rotransmission is finely regulated by both neurons and glial cells [230]. Astrocytes, in
particular, are responsible for glutamate reuptake from the synaptic cleft through excitatory
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amino acid transporters (EAATs). There are five subtypes of EAATs (EAAT1–EAAT5), but
EAAT2 (glutamate transporter-1/GLT1) is responsible for more than 90% of glutamate
reuptake [231]. Once inside the astrocyte, glutamate is converted mainly into glutamine by
the glutamine synthetase (GS) and then shuttled back to the presynaptic neuron, which
uses it to synthesize glutamate again. A portion of glutamate is converted to gamma-
aminobutyric acid (GABA), which is usually catabolized. The glutamate–glutamine shut-
tle is crucial for glutamate homeostasis, and thereby for learning and memory. If the
shuttle is dysfunctional, an abnormal glutamate stimulation could occur, which is neuro-
toxic [232]. Glutamate excitotoxicity has been observed in AD and correlated with cognitive
decline [232,233]. In parallel, both accumulation of GABA, whose concentration is low in
astrocytes under physiological circumstances [234], and its release from reactive astrocytes
have been observed in transgenic animal models of AD (5xFAD and APP/PS1 mice), re-
sulting in memory deficits [235,236]. However, astrocytic GABA content seems to follow a
bell-shaped curve along aging and not relate to Aβ [237]. Human postmortem AD brains
showed altered expression of several GABA transporters in cortical and hippocampal
regions [238]. Therefore, counteracting dysfunctions in the content of neurotransmitters
and the expression of their transporters could likely be beneficial in AD. Research target-
ing the modulation of astrocytic GABA is still not fully explored, and further studies are
warranted. Instead, the enhancement of glutamate transporter function and expression
has been tested using various activators in several neurological diseases [239]; however,
few studies were carried out in AD models. β-lactam antibiotics are drugs that upregulate
GLT1 gene transcription, in addition to having antibacterial effects [240,241]. Among them,
ceftriaxone was found to ameliorate AD pathology by improving spatial learning and mem-
ory in APP/PS1 mice, upregulating the expression of both GS and the system N glutamine
transporter 1 (SN1) [185]. Another drug already approved for human use is riluzole, which
has been shown to improve memory performance in aged rats and in 5xFAD mice [186,242].
Riluzole is a neuroprotective agent able to increase Na+-dependent glutamate uptake in
synaptosomes in a dose-dependent manner [243]. Riluzole chronic oral administration
prevents age-related gene expression changes in rats’ hippocampi [244] and reduces the
levels of Aβ42 and Aβ40 oligomers and neuritic plaques in 5xFAD mice [186]. Despite
being so promising, these results have not been translated into the clinic yet.

3.3. Targeting the Astrocytic Metabolic System

As we mentioned before, failure of astrocytes in supporting neuronal energy needs
could facilitate the progression from physiological to pathological brain aging. For instance,
the metabolic products of fatty acid oxidation decrease during AD [245], making lipid
metabolism a potential target for AD treatment. Recently, an in vitro study found that
activation of the peroxisome proliferator-activated receptor proliferator-activated receptor
(PPAR) beta/delta (PPARβ/δ) increases fatty acid oxidation [187]. Indeed, a rate-limiting
enzyme of the fatty acid oxidation is the carnitine palmitoyltransferase 1A (CPT1A), which
catalyzes the transfer of fatty acids into the mitochondria, where the β-oxidation occurs.
Konttinen et al. tested the effects of GW0742, a synthetic PPARβ/δ agonist, in human
astrocytes obtained from pluripotent stem cells (iPSCs) of AD patients carrying an amy-
loidogenic mutation of PSEN1 (PSEN1∆E9). GW0742 enhanced the expression of CPT1a,
increasing astrocyte fatty acid oxidation [187]. In primary astrocytes obtained by 5xFAD
mice, which show an altered metabolic profile, administration of the vitamin B5 precursor
pantethine reversed several metabolic alterations induced by Aβ challenge, including (i)
altered activity of the glucose-6-phosphate dehydrogenase, the α-ketoglutarate dehydro-
genase complex, and the succinate dehydrogenase; (ii) decreased ATP production; and
(iii) altered expression of the hypoxia-inducible factor-1 alpha, known to protect against
Aβ toxicity. Pantethine treatment showed some anti-inflammatory actions by downreg-
ulating IL-1β expression [188]. Similarly, treatment of the astroglioma cell line C6 with
hydroxytyrosol, the major polyphenol contained in olives, ameliorated the metabolism
of glucose, previously altered by Aβ(25–35) challenge, through activation of Akt [189].
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Evidence demonstrates the ability of glucagon-like peptide-1 (GLP-1) to improve cognitive
deficits in AD [246]. Zheng et al. just published that this effect is related to GLP-1 ability
to restore in vitro the Aβ-induced glycolysis impairment in astrocytes, by activating the
PI3K/Akt pathway [190]. A recent study by Wang et al. demonstrated that metformin, a
hypoglycemic drug of clinical use, exerts anti-inflammatory and antioxidant effects in rat
primary astrocytes treated with high glucose concentration [191], strengthening the link
between altered metabolism and induction of inflammatory process.

3.4. Upregulation of Astrocytic Neurotrophins and Growth Factors

Neurotrophic factors imbalance and dysregulation are associated with neurodegen-
erative diseases, including AD [247]. The brain-derived neurotrophic factor (BDNF) is
involved in cognition and memory formation, given its role in modulating synaptic plastic-
ity. Astrocytes can release neurotrophic growth factors, including BDNF, exerting protective
effects on neurons [248]. Thus, the increase in astrocyte neurotrophic factor expression
and release could be a therapeutic approach for AD [249]. Sawamoto et al. found that
the citrus flavonoid 3,5,6,7,8,30,40-heptamethoxyflavone (HMF) exerts neuroprotective
effects by increasing the expression of BDNF in astrocytes within the hippocampus of
mice and in the C6 glioma cell line. The BDNF increase was induced by the activation of
cAMP/ERK/CREB signaling and inhibition of phosphodiesterase 4B and 4D [192]. An-
other molecule found to be able to upregulate BDNF expression in cultured astrocytes is
quetiapine, a widely used atypical antipsychotic drug [193]. Recently, a paper in which
transgene delivery in astrocytes was used to obtain the upregulation of BDNF in 5xFAD
mice was published [194]. Specifically, 5xFAD mice were crossed with transgenic pGFAP-
BDNF mice, expressing BDNF under the GFAP promoter. The resulting transgenic mice
showed restored levels of BDNF, compared to 5xFAD mice, which have reduced levels
of this neurotrophin compared to their wild-type counterparts. BDNF restoration also
resulted in improvements in cognitive tasks and ameliorated synaptic plasticity [194].

Some studies have also explored the potential beneficial effects of neural stem cell
transplantation in models of AD. An Indian group studied the lineage negative stem
cells (Lin-ve) derived from human umbilical cord blood (hUCB) in an animal model
of Aβ42-induced injury. They found that intrahippocampal transplant of these cells at
specific dosage and timing shows potential to reverse hippocampal Aβ42-induced mouse
cognitive impairment, measured by Morris water maze and passive avoidance, through a
neuroprotective mechanism likely mediated by BDNF upregulation [195,250]. Blockade
of the BDNF-TrkB pathway by systemic administration of a TrkB inhibitor nullified the
benefit of Lin-ve cell transplant. Aβ42-challenged mice showed decreased BDNF and
GFAP protein and gene expression, which were both reversed by Lin-ve cell transplant.
Some less clear effects were detected also in the expression levels of both the glial-derived
neurotrophic factor (GDNF) and the ciliary neurotrophic factor (CNTF), which deserve
further studies [195].

AD pathogenesis is also affected by altered production of growth factors [251,252],
including the fibroblast growth factor (FGF) 2 [247]. In particular, FGF2 is increased in
reactive astrocytes around senile plaques [253]. Last year, Chen et al. demonstrated that
FGF2 has protective effects against Aβ42-induced cytotoxicity in primary cultured cortical
astrocytes. In their experiments, primary astrocytes challenged with Aβ42 were treated
with either high or low molecular weight forms of FGF2. The low molecular isoform of
FGF2 promoted astrocyte proliferation, enhancing the expression of c-Myc, Cyclin D1,
Cyclin E [196].

3.5. Targeting Astrocytes-Driven Amyloid Aggregation and Clearance

Accumulation of Aβ could be the result of its increased synthesis or reduced clearance
or a combination of both. Looking for AD treatment, an important area of investigation
targets Aβ clearance, which depends, at least in part, on astrocytes. Indeed, astrocytes can
take up Aβ and digest it in their lysosomes. However, the astrocytic degrading machine
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could get engulfed, leading to detrimental consequences [254]. Lysosome functions and
gene expression for proteins involved in both autophagy and proteolysis were found
altered in aging and AD [255,256]. Two of the apolipoproteins associated with high risk for
developing sporadic AD are secreted by astrocytes and are involved in Aβ aggregation
and clearance, the apoE4 and the apoJ (also known as clusterin) [69,257]. The apoE4,
once secreted by astrocytes, binds to high-density lipoprotein (HDL)-like particles, and
the level of its lipidation influences Aβ aggregation and clearance [258]. Chernick et al.
demonstrated the ability of an HDL mimetic peptide, the 4F, to increase apoE4 lipidation
in primary human and murine astrocytes. That counteracts the Aβ-induced accumulation
of intracellular apoE4, mitigating Aβ detrimental effects on proper cellular trafficking and
functionality of apoE [197]. Clusterin (Clu) is a ubiquitous protein whose functions are still
not clear, but studies have shown its involvement in Aβ aggregation, toxicity, and clearance.
Conflicting results have been published reporting both neuroprotective and detrimental
properties of Clu [259,260]. Novel in vitro findings demonstrated a role for astrocytic Clu
in promoting synapse formation and glutamatergic synaptic activity [199]. Wojtas et al.
overexpressed Clu (>about 30%) selectively in GFAP-positive astrocytes of APP/PS1mice
and noticed a reduction in Aβ accumulation and formation of fibrillary deposits in both
cortex and hippocampus compared to control animals. In the same brain areas, the authors
found that Clu overexpression was associated with a reduction of the number of cortical
and hippocampal dystrophic neurites [198]. In accordance, the reduction (<about 50%) in
Clu expression in GFAP-positive astrocytes of APP/PS1 mice leads to a worsening of the
AD-like outcomes [198]. Novel in vivo findings demonstrated that Clu overexpression in
astrocytes enhances excitatory neurotransmission and rescues the synaptic deficit in Clu
knockout mice. Clu overexpression in GFAP-positive astrocytes of 5xFAD mice reduced
plaque numbers and plaque size and rescued presynaptic dysfunction [199].

Another molecule that seems to promote Aβ clearance is the epigallocatechin gallate
(EGCG), a member of the catechin family. In cultured astrocytes, ECGC elevates neprilysin
(NEP) expression, one of the most important Aβ-degrading enzymes in the brain, involving
also the activation of ERK and phosphoinositide 3-kinase [200].

Moreover, oral administration of fish oil, containing n-3 polyunsaturated fatty acids
(PUFAs), was found effective in clearing Aβ from the brain of fat-1 transgenic mice [201],
but not of aquaporin (AQP) 4 knockout mice, suggesting the involvement of AQP4 protein,
expressed selectively in astrocytes, in Aβ clearance. Additionally, PUFAs administration
protected from AQP4 polarization occurring after Aβ injection [201], a sign of astrocytic
dysfunction [261].

3.6. Targeting Astrocytic Reactivity, Complement Cascade, Neuroinflammation, and Oxidative Stress

Neuroinflammation plays a pivotal role in the development and progression of AD.
Indeed, Aβ plaques are surrounded by activated glial cells, and Aβ itself leads to the
activation of astrocytes and microglia, together with the release of proinflammatory fac-
tors [97,262–264]. Brains of different transgenic mouse models of AD show activated
astrocytes, even before the appearance of plaques and NFTs [265,266]. When astrogliosis
occurs, reactive astrocytes produce inflammatory markers, such as tumor necrosis factor
(TNF)-α, IL-1β, and IL-6, and calcineurin, a protein phosphatase that mediates inflamma-
tory responses. This is associated with a wide number of cellular events, including the
aforementioned activation of the complement cascade, the release of nitric oxide, and ROS.
This phenomenon is normally engaged with the intent of defending the brain by removing
injurious stimuli (e.g., Aβ fibrils phagocytosis). However, if prolonged beyond physio-
logical limits, it would have detrimental effects. Therefore, targeting astrocyte reactivity
and, consequently, the related activation of the complement cascade, the oxidative stress
and the inflammatory response could represent an effective therapeutic strategy in AD.
A compound that has shown such properties is cannabidiol, the main nonpsychoactive
component of Cannabis Sativa [267]. Studies demonstrated cannabidiol effects in reduc-
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ing both GFAP and S100B mRNA and protein expression, as well as neuroinflammatory
parameters in different models of AD [268–270].

The complement component C3 is increased in human AD brains, and it is expressed
by reactive astrocytes. Its increased expression is required for neurodegeneration to oc-
cur [271]; thus, its targeting could be beneficial. Indeed, Shi et al. compared aged plaque-
rich transgenic APP/PS1 mice knockout (KO) for the C3 to transgenic APP/PS1 mice to
evaluate Aβ plaque pathology, glial responses to plaques, and neuronal dysfunction in
the brains. They found that C3 KO mice had less activation of glial cells at the center of
Aβ plaques compared to control mice, suggesting that the downregulation of C3 controls
astrocyte activation and neuroinflammation in AD [202].

Mc Manus et al. tested the effect of infection by Bordetella Pertussis in APP/PS1
mice and the potential benefit of fingolimod (FTY720) administration, an FDA-approved
immunomodulatory drug for treating multiple sclerosis. Fingolimod reduced signs of
infection-induced BBB increased permeability, GFAP immunoreactivity, and Aβ deposits,
compared to control mice. Results of additional in vitro experiments in primary astrocytes
suggested that the decreased Aβ accumulation was driven by the fingolimod-induced
increase in the phagocytic capacity of astrocytes [203].

Since Aβ activates the astrocytic inflammasome promoting the release of IL-1β, Cou-
turier et al. demonstrated that the downregulation of this Aβ-induced inflammatory
process increases Aβ phagocytosis in astrocytes in vitro. That is due to the release of the
chemokine CCL3, ultimately improving in vivo the memory deficits of 5xFAD mice [204].
Therefore, that phlogistic event represents a druggable therapeutic target, which still needs
to be thoroughly investigated. Several molecules have been tested during the last years for
their ability to dampen astrocyte reactivity in AD [269,270,272,273], but none have been
translated to the clinic yet. Patients with MCI and vascular dementia show increased levels
of Lipocalin 2 (Lcn2) in the CSF. In AD cases (stages V and VI), Lcn2 immunoreactivity
increased in reactive astrocytes localized around plaques and in reactive microglia [274].
Astrocytes are the major producers of Lcn2 in the brain [275]. This protein is involved in
several processes including inflammation, iron metabolism, cell death, and cell survival,
modulating the cellular response to Aβ [275]. Staurenghi et al. demonstrated that increased
levels of oxysterols observed in mild or severe AD brains, accompanied by increased lev-
els of Lcn2, determine a clear morphological change in mouse primary astrocytes [276].
A recent study found that the iron chelators deferoxamine and deferiprone reduce Aβ-
induced iron accumulation in astrocytes and inhibit Aβ-induced Lcn2, suggesting these
molecules as promising therapeutic strategies against AD [205]. A novel synthesized
compound, Glu-DAPPD, containing a glucose group linked to an anti-neuroinflammatory
agent, the N,N′-diacetyl-p-phenylenediamine, showed in vivo to reduce Aβ aggregates
and immunostaining for astrocytes and microglia, and to improve cognitive function in
transgenic APP/PS1 mice being administered chronically for two months [206].

Recent studies identified the Janus kinase 2-signal transducer and activator of tran-
scription 3 (JAK2-STAT3) pathway as a key pathway for the induction and maintenance of
astrocyte reactivity. Using adenoviral delivery techniques, authors either downregulated or
upregulated the JAK2-STAT3 pathway specifically in hippocampal astrocytes. They found
that the JAK2-STAT3 pathway is necessary and sufficient to trigger astrocyte reactivity in
the hippocampus of transgenic APP mice, controlling also for gene expression of a variety
of genes, of which many involve the inflammatory process. The downregulation of this
pathway reduced also Aβ deposits and improved mice spatial learning but not memory
retrieval. On the other hand, the upregulation of the JAK2-STAT3 pathway resulted in
opposite and deleterious results [207].

Astrocytes are involved in both the production and clearance of ROS, concurring to
the oxidative stress found in AD, whose reduction has been tested as a potential therapeutic
target. Interestingly, mobile phone radiofrequency electromagnetic fields (EMF) have been
shown to reduce both Aβ and H2O2-induced ROS production in human and rat primary
astrocytes, as well as the co-localization between the cytosolic (p47-phox) and membrane
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(gp91-phox) subunits of NADPH oxidase, indicating the suppression of its activity [212].
Other antioxidant anthocyanin compounds have recently been investigated [277]. Among
them, pelargonidin, which acts as an estrogen receptor agonist, has been tested in rats
that received an intrahippocampal injection of Aβ(25–35). Pelargonidin treatment resulted
in improved Morris water maze test performance. Higher hippocampal catalase and
acetylcholinesterase activities have been detected, accompanied by lower GFAP protein
expression, but no change in inducible nitric oxide synthase (iNOS), compared to control
animals [213].

Recently, the compound monascin has been found to activate the expression of sev-
eral antioxidative genes such as SOD-1, SOD-2, SOD-3, and HSP16.2 and reduce Aβ-
toxicity in C. elegans strain [214], suggesting its antioxidant potential. In addition, resvera-
trol [278], tocotrienol [279], epicatechins [280], H-1,2-dithiole-3-thione [281], curcumin, and
epigallocatechin-3-gallate [282] have shown in vitro and in vivo anti/oxidant properties in
several models of Aβ-mediated toxicity and AD.

As fundamental regulators of brain homeostasis, astrocytes also regulate the intracellu-
lar Ca2+ concentration through an intermediate conductance calcium-activated potassium
channel, KCa3.1. This channel is actively involved in the phenotypic change of astrocytes
during astrogliosis observed in AD. By using KCa3.1 knockout mice, memory deficits,
neuronal loss, glial activation, tau phosphorylation, and insulin signaling deficits were
ameliorated compared with control animals, making this channel an interesting phar-
macological target in AD [215]. During the neuroinflammatory process, ATP and ADP
are released around plaques, leading to the activation of the metabotropic P2Y1 puri-
noreceptors (P2Y1Rs) expressed by astrocytes, which increases the rate of spontaneous
calcium events [283]. Chronic intracerebroventricular infusion of P2Y1R inhibitors resulted
in structural and functional restoration of astrocytes and the preservation of memory
deficits [216].

Since AD patients show increased levels of the Gs-coupled adenosine receptor A2A in
astrocytes, Orr et al. studied in vivo the ablation of astrocytic A2A receptors demonstrat-
ing that it enhances long-term memory [284]. The adenosine tone on the astrocytic A2A
receptors has also been modulated through a new BBB-permeable equilibrative nucleoside
transporter (ENT) inhibitor, J4, tested in APP/PS1 mice. In particular, J4 inhibited the
recycling of adenosine from the extracellular space performed by ENTs, resulting in the
prevention of the decline in spatial memory, a common feature in AD patients [217]. Addi-
tionally, istradefylline, a selective antagonist of A2A receptors, enhanced the performance
in behavioral tests in transgenic APP mice [218].

3.7. Modulation of Astrocytes According to Their Morphofunctional State: The Case
of Palmitoylethanolamide

In AD, as in other neurodegenerative disorders, astrocytes undergo morphological,
biochemical, metabolic, and transcriptional changes, as well as physiological remodeling.
All these rearrangements could lead to either a gain or loss of one or more functions [126].
Thus, pathological changes of astrocytes should not just refer to hypertrophy. Indeed,
also morphological atrophy could contribute to AD early synaptic failures and cognitive
deficits [126,285]. For these reasons, molecules able to modulate astrocyte morphology
and functions according to their reactive or atrophic status could be potentially valuable
therapeutics. To the best of our knowledge, the only molecule that has so far shown some
indications to exert such effects is palmitoylethanolamide (PEA).

PEA is a naturally occurring amide of ethanolamide and palmitic acid, firstly isolated
from soy lecithin, egg yolk, and peanut meal. It acts as a lipid messenger that mimics
several endocannabinoid-driven actions, even though it does not bind to cannabinoid
receptors [286]. We and other groups have shown that PEA exerts anti-inflammatory
and neuroprotective properties in several preclinical models of Aβ-induced toxicity and
AD [287]. PEA in vitro attenuates Aβ-induced astrocyte expression of GFAP and S100B
and the release of pro-inflammatory molecules [273,288]. In a surgical model of Aβ-
neurotoxicity PEA treatment reduced astrocyte hypertrophy and markers of inflammation,
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including iNOS, cyclooxygenase (COX)-2, IL-1β, and TNF-α [289]. PEA also demonstrated
the ability to protect Aβ-induced neuronal reduced viability and loss in vitro, ex vivo,
and in vivo [208,209,286,289,290]. These results have been confirmed also in primary
astrocytes derived from the prefrontal cortex of 3xTg-AD mice, in which PEA promoted
neuronal viability [210]. All these reports concurred to demonstrate that PEA exerted
these effects through the PPARα by the use of selective antagonists, corroborated by
experiments in models where the receptor was genetically ablated [291–293]. However,
studies showed that PEA effects could involve also the orphan G-protein coupled receptor
55 [294], and the transient receptor potential vanilloid type 1 channel [295]. Moreover, PEA
is able to exert an indirect activation of cannabinoid receptors, via the so-called entourage
effect [296], working as a false substrate for fatty acid amide hydrolase, an enzyme involved
in the metabolism of the endocannabinoid anandamide (AEA) [297]. Indeed, due to the
reduction of its catabolism, AEA levels rise. Thus, in turn, AEA could bind to cannabinoid
receptors. One additional peculiar feature of PEA is its ability to act as an autacoid local
injury antagonist, thus dampening mast cells that are now considered critical effectors
during AD progression [298]. In this way, PEA contributes to protecting neurons from
excitotoxicity [297]. Interestingly, the modulation of the cross talk between mast cells
and glial cells is emerging as a valuable approach to treat several neuroinflammatory
brain pathologies, including AD [299]. Some articles present an extensive review of PEA
biological functions in the CNS [296,297,300].

Different formulations of PEA have been synthesized to improve its bioavailability
and efficacy, including the ultramicronized (um-PEA) and PEA-oxazoline forms as well as
the combination of PEA with luteolin (Lut), an antioxidant compound, ultramicronized to-
gether (co-ultra PEA/Lut). Pretreatment with um-PEA of rat hippocampal slices challenged
acutely with Aβ42 significantly reduced iNOS and GFAP expression [301]. It also restored
cell viability of glioma and neuroblastoma impaired by lipopolisaccaride and interferon-
gamma treatment, reducing protein expression of both iNOS and COX-2 [211]. Um-PEA
demonstrated oral bioavailability and its chronic administration reduced neuroinflamma-
tory markers and showed neuroprotective effects in 3xTg-AD mice [210,219,302,303]. When
comparing hippocampi of 6-month-old with 12-month-old 3xTg-AD mice, the younger
animals did not show astrocyte hypertrophy (measured as an increase in GFAP immunore-
activity) but exhibited an ongoing intense neuroinflammatory process with high levels
of iNOS, TNF-α, chemokines, and interleukins, whereas older mice showed significant
astrocyte atrophy without elevation in neuroinflammatory markers. Chronic subcutaneous
pretreatment with um-PEA for 3 months prevented the establishment of the phlogistic
process in hippocampi of 6-month-old 3xTg-AD mice, compared to vehicle-treated ones.
Um-PEA also prevented the altered performance in cognitive tasks and reduced Aβ forma-
tion and phosphorylation of tau protein in the hippocampus [219]. Astrocyte hypertrophy
was detected in the cortices of vehicle-treated 6-month-old mice, and um-PEA chronic
treatment decreased both GFAP mRNA and protein expression [210]. Interestingly, 3xTg-
AD mice that received um-PEA subcutaneous administration for 3 months, before being
tested at 12 months of age, showed restored astrocyte GFAP immunoreactivity to the level
of non-Tg controls, also improving their outcome in behavioral assessment of short-term
memory [219]. Collectively these reports show that um-PEA acted preventing either as-
trocyte hypertrophy either atrophy. This indicates that PEA behaved as a modulator of
astrocyte morphology and cell reactivity state. This is in accordance with the current
view seeing astrocyte reactivity as an evolving and reversible process caused by extrinsic
triggers [126,304].

Another formulation that combines the aforementioned PEA effects with the antioxi-
dant actions of Lut has been tested in preclinical AD models. Co-ultra PEA/Lut showed
anti-inflammatory and antiapoptotic effects in Aβ42-challenged rat hippocampal slices
and neuroblastoma cells [301]. In vivo, co-ultra PEA/Lut administration for two weeks in
rats that received a single intrahippocampal infusion of Aβ42 prevented the Aβ-induced
astrocyte hypertrophy, as well as the upregulation in gene expression of pro-inflammatory
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cytokines and enzymes found in rats treated with vehicle. Moreover, co-ultra PEA/Lut
prevented the Aβ-mediated decrease in gene expression of both glial-derived and brain-
derived neurotrophins [35]. Despite having these promising features, no studies have
yet elucidated the synergic mechanisms of actions of the association of PEA with Lut.
Regardless, since co-ultra PEA/Lut administration started the same day of the surgical
infusion, to model the very first phase of Aβ42 accumulation as in the prodromal stage of
AD, the above-reported study mimicked a potential therapeutic intervention at the earliest
stage of the disease. The results support the thesis that targeting astrocytes at the beginning
of the pathology could have a positive impact. Other very recent studies endorse this view.
Reports from Dr. Escartin’s group modulated the activation of astrocytes in 9-month-old
3xTg-AD mice. The downregulation of the JAK2-STAT3 pathway fully restored mice early
synaptic and long-term potentiation alterations [207], improved short-term memory, and
reduced anxiety behavior [176], thus supporting the hypothesis that targeting astrocytes at
the very early stages of AD could be beneficial.

The potential translational value of ultramicronized or co-micronized PEA as a pre-
ventive therapeutic strategy in AD is corroborated by its safety and tolerability, as it is
already in the human and veterinary market as food for special medical purposes and com-
plementary feed, respectively. Some single or few-cases human studies have been carried
out showing favorable results in improving MCI and frontotemporal dementia [305,306],
in recovering from stroke [307], and in managing neuropathic pain associated with neu-
roinflammation [308].

4. Conclusions

Despite the spasmodic basic and medical research and the existence of approved
therapies, there is a huge unmet clinical need for effective therapies for AD, especially
treatments that are intended to address the biological basis of the pathology to favorably
modifying its long-term course. Currently approved drugs do not target the underlying
pathology of AD since they only provide modest beneficial effects to a small subset of
patients. Moreover, no treatments are available to counteract AD at its earliest stage, which
could represent the best timepoint to start therapy. Indeed, Aβ deposition into amyloid
plaques, followed by markers of neurodegeneration, tau pathology, and reduction of brain
volume, initiates decades before the onset of observable clinical signs. Dysfunctions of as-
trocytes have been linked to the molecular alterations observed in AD, thus representing a
promising target for disease management. However, morphofunctional changes occurring
in astrocytes vary depending on the stage of the pathology. Therefore, molecules capable of
correcting dysfunctions of astrocytes could represent a promising pharmacological strategy.
Reviewing the literature findings, the only compound so far that seems to exert this effect
is PEA. Our previous study indeed showed the ability of PEA to normalize the astrocyte al-
terations observed in an experimental model of AD, the 3xTg-AD mice, endowed with face,
construct, and predictive validities, bringing them back to a homeostatic condition. That
and other possibilities of new therapeutic approaches represent an important springboard
for the development of therapies for a still incurable disease, such as AD.
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