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Abstract: A side-by-side electrospinning process characterized by a home-made eccentric spinneret
was established to produce the Janus beads-on-a-string products. In this study, ketoprofen (KET) and
methylene blue (MB) were used as model drugs, which loaded in Janus beads-on-a-string products,
in which polyvinylpyrrolidone K90 (PVP K90) and ethyl cellulose (EC) were exploited as the polymer
matrices. From SEM images, distinct nanofibers and microparticles in the Janus beads-on-a-string
structures could be observed clearly. X-ray diffraction demonstrated that all crystalline drugs loaded
in Janus beads-on-a-string products were transferred into the amorphous state. ATR-FTIR revealed
that the components of prepared Janus nanostructures were compatibility. In vitro dissolution tests
showed that Janus beads-on-a-string products could provide typical double drugs controlled-release
profiles, which provided a faster immediate release of MB and a slower sustained release of KET
than the electrospun Janus nanofibers. Drug releases from the Janus beads-on-a-string products were
controlled through a combination of erosion mechanism (linear MB-PVP sides) and a typical Fickian
diffusion mechanism (bead KET-EC sides). This work developed a brand-new approach for the
preparation of the Janus beads-on-a-string nanostructures using side-by-side electrospinning, and
also provided a fresh idea for double drugs controlled release and the potential combined therapy.

Keywords: side-by-side electrospinning; Janus structure; beads-on-a-string; immediate release;
sustained release

1. Introduction

Nanotechnology has been the most widely studied and multidisciplinary technol-
ogy field for the past few years. Nanotechnology can control the structure of materials
at the nanoscale, so as to obtain significant changes in material properties, outstanding
advantages and wide applications. Nanomaterials include nanotubes [1], nanosheets [2],
nanorods [3], nanoparticles and nanofibers [4], etc., among which nanofibers have their
unique properties to get potential applications in a wide variety of fields [5]. The prepa-
ration methods of nanofibers include phase separation, template synthesis, melt spray
technology, self-assembly, electrospinning and so on [5,6]. Compared with other prepa-
ration methods, electrospinning is a “top-down” electrohydrodynamics process (EHDA,
including electrospinning electrospraying and e-jetting) [7,8], with simple operation, better
continuity and adjustable functionality. Electrospinning nanofibers have a number of
advantages, such as large specific surface area, tremendous porosity, low cost and simple
process [9,10].

With the rapid development of preparation and characterization of nanofibers, prob-
able applications of nanofibers have been explored, including biomedicine [11–13], food
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packaging [14–16], energy storage and conversion [17–19] and environmental applica-
tions [20–24]. Nanofibers prepared by electrospinning have been applied in the biomed-
ical field for many attempts, such as drug delivery system [9,25], tissue regeneration of
bone [26,27], heart valves [28,29], muscle [30,31] and skin [32–34], etc. The delivery and
absorption of insoluble drugs is always a key problem in the drug delivery system, and
electrospinning is an effective solution [35–37]. Electrospinning has important applications
in drug delivery systems because of its products with high porosity, high encapsulation
efficiency and large specific surface area [38,39]. In a drug delivery system, release of one
or more drugs can be controlled by transforming the structure of nanomaterials or using
polymer carriers with different hydrophilic properties. In the terms of hydrophilicity of the
matrix materials, the electrospun nanomaterials prepared from hydrophilic materials can
release the drugs with poor water solubility immediately [40]; nanomaterials produced
from hydrophobic materials can release the drugs in a sustained manner [41]; nanocom-
posites created from a combination of both hydrophilic and hydrophobic materials can
release the drugs in a biphasic way [42,43]. Complicated nanostructures can further enrich
the strategies for tailoring the drug controlled release profiles, for example, single-fluid
electrospun or electrosprayed monolithic composites are often utilized for providing the
typical immediate or sustained release profiles [44,45]. Whereas, core-shell [42,46] or
Janus [47] nanostructures are frequently explored to offer biphasic drug release behaviors
and tri-chamber nanostructures are able to provide even complex drug controlled release
profiles such as three-phase pulsatile release [41,48].

According to their chemical composition and function, nanostructures prepared by
electrospinning can be designed into two independent parts, which have raised wide
concern over the years [43,49,50]. There are two different two-chamber structures as
known: the one possesses the inside and outside (core-sheath structure) [27,48,49], and the
other has the neighbor relation (side-by-side structure, known as Janus) [42,43,50].

Janus is the ancient Roman “double faced God”, also known as the double-sided parti-
cle. Double-sided particles refer to a class of anisotropic particles with different physical or
chemical properties in two different directions, and these two parts are separated in space
that each part can be designed, respectively, [51,52]. Moreover, the two parts are closely
connected at the interface, which will produce an interface effect and bring new functions
to the materials [52]. The name of Janus particles was first proposed by De Gennes at the
Nobel Prize awarding conference in 1991, when he named a particle with a polar side and
a non-polar side [53]. In the last decades, Janus technology has developed rapidly and
many synthesis methods have been explored and proposed, and diversified Janus materials
have been reported [51,52,54,55]. Side-by-side electrospinning process is a remarkably
used method in the preparation of Janus nanofibers. In this process, hydrodynamics,
electrodynamics and rheology were involved in those complicated interactions. In the
side-by-side electrospinning process, a significant is controlling the movement of two fluids
synchronously under electrostatic field, which start from spinneret and end with the collec-
tor. At present, one study demonstrates the feasibility in producing Janus nanocomposites
with a home-made eccentric spinneret. In addition, a new hydrophilic Janus structural
nanocomposite, which is successfully prepared, designed for transmembrane penetration
and speedy dissolution of the poorly water-soluble herbal helicid [56].

Janus particles and Janus nanofibers have been widely reported, but the study of
Janus beads-on-a-string nanostructures (also known as “beaded nanofibers”) is still largely
ignored. It is generally considered that beads-on-a-string are undesirable “by-products”
that must be removed to collect smooth nanofibers and uniform particles [57]. Therefore,
the beads-on-a-string structures are always being avoided by optimizing the experimental
conditions and parameters of the electrospinning process. In recent years, with the increas-
ing advantages of micro-nano structures, some researchers have noticed unique features
of beads-on-a-string and discovered that drug release could be adjusted by controlling
the size of particles [58,59]. According to the research findings, beads-on-a-string can be
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prepared by uniaxial and coaxial electrospinning [60–66], and particle diameter can be
adjusted through changing polymer solution concentration and drug-loaded [59].

In this work, Janus beads-on-a-string was prepared by a side-by-side electrospinning
process with a home-made eccentric spinneret. One side of the Janus beads-on-a-string
used a hydrophilic polymer (polyvinylpyrrolidone K90, PVP K90) as the nanofiber forming
polymer and loaded methylene blue (MB)as a model drug, while the other side used
a hydrophobic polymer (ethyl cellulose, EC) as particle forming polymer and carries
ketoprofen (KET) as a model drug. Two drug release behaviors were different, because
the different polymer matrices and structures in Janus nanocomposite. In addition, the
relationship between structures and properties of material could be established, which
would instruct to control the release of double drugs.

2. Experimental
2.1. Materials

Ethyl cellulose (EC, 6 mPa·s to 9 mPa·s) was bought from Shanghai Aladdin Chemistry
Ltd. (Shanghai, China). Polyvinylpyrrolidone K90 (PVP K90, MW = 1,300,000) was supplied
from Shanghai Sigma-Aldrich Corp. (Shanghai, China). Ketoprofen (KET) was provided
from Wuhan Fortuna Chemical Ltd. (Wuhan, China). Methylene blue (MB), analytical
grade dichloromethane (DCM), N, N-dimethylformamide (DMF) and methanol were
supplied by Shanghai Sinopharm Chemical Reagent Ltd. (Shanghai, China).

2.2. Electrospinning

The working solutions, consisting of 0.4/0.5/0.6/0.8 g PVP K90 and 50 mg MB in
10 mL methanol, were prepared for the round side of side-by-side electrospinning. The
other solutions were composed of 0.7 g EC and 0.2 g KET in a mixed solvent with a volume
ratio of DMF and DCM (1:1), which were used for the crescent side of electrospinning.

In this study, four Janus structures (Janus beads-on-a-string and Janus nanofibers)
were manufactured. The specific parameters of preparing side-by-side electrospun nanos-
tructures are shown in Table 1.

Table 1. Specific parameters for the side-by-side electrospun nanostructures.

No. Process
PVP Side EC Side

Morphology
Flow Rate 1 PVP 2 Flow Rate 1 EC 3

F1
Side-by-side

Electrospinning

1.0 0.4 0.8 0.7 Janus
beads-on-a-stringF2 1.0 0.5 0.8 0.7

F3 1.0 0.6 0.8 0.7
F4 1.0 0.8 0.8 0.7 Janus nanofibers

1 Flow rate: mL·h−1. 2 Concentration: g·10 mL−1; PVP side consists of 50 mg MB in methanol. 3 Concentration: g·10 mL−1; EC side consists
of 0.2 g KET in a mixed solvent with a volume ratio of DMF and DCM (1:1).

Working fluids were poured into 10 mL plastic syringe, and syringes were settled on
two pumps, respectively, and led to connect a home-made eccentric side-by-side spinneret.
Two working fluids were driven simultaneously through KSD100 and KSD200 syringe
pumps (Cole-Parmer, Vernon Hills, IL, USA). The electrostatic power is obtained from a
high-voltage power supply (ZGF 60 kV/2 mA, Wuhan Huatian Corp., Wuhan, China). The
fluid flow rate of the crescent side was 0.8 mL·h−1, and the round side was 1.0 mL·h−1.
For optimization, the applied voltage between the eccentric spinneret and the grounded
collector was fixed at 12.0 kV, and the collection distance was 16 cm. Relative humidity and
Working environmental temperature were 55 ± 5% and 25 ± 5 ◦C, respectively, through all
electrospinning processes.
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2.3. Characterization
2.3.1. Morphology

The prepared Janus nanostructures were covered with gold for 120 s under a nitrogen
atmosphere to give them electrical conductivity. The morphology of Janus nanostructures
was evaluated using scanning electron microscopy (SEM, FEI Quanta 450 FEG, FEI Corpo-
ration, Hillsboro, OR, USA). The sizes of 100 nanofibers and microparticles were measured
from scanning electron microscopy images, and the average diameters of nanofibers and
particles were reckoned employing Image J (NIH, Bethesda, MD, USA).

2.3.2. Physical Status of Components and Compatibility

Using Bruker-AXS diffractometer (Karlsruhu, Germany), XRD analysis of the simple,
including raw KET/PVP/EC/MB powders and Janus nanostructures, were analyzed over
the 2θ angle range of 10◦ to 60◦. The voltage applied was 40 kV and the electric current
was 30 mA.

The raw powders and Janus nanostructures were evaluated by FTIR Spectrometer
(PerkinElmer, Billerica, MA, USA). The spectrum was recorded with a resolution of 2 cm−1

and within the scope of 500 cm−1 to 4000 cm−1.

2.3.3. In Vitro Dissolution Tests

Referring to the Pharmacopoeia of Chinese (2020 Ed.), in vitro drug dissolution tests
were implemented successfully. Here, 44.4 mg Janus nanostructures were immersed in
200 mL phosphate buffer saline (PBS, pH 7.0, 0.1 M) at 37 ± 1 ◦C, and that is a method
using constant temperature shaker device (set the speed to 50 rpm). At predetermined
time points, 4.0 mL aliquot of the samples was taken out of the solution and replaced
with fresh PBS to hold the volume constant. The amounts of KET and MB released were
analyzed at λmax = 260 nm and 664 nm using a UV-vis spectrophotometer (UV-2102PC,
Unico Instrument Co., Ltd., Shanghai, China).

The accumulative percentage of KET and MB released from the Janus nanostructures
was figured according to Equation (1) [42]:

P(%) =
cn × V0 + ∑n−1

i=1 ci × V
Q0

× 100 (1)

where V0 is the volume of medium dissolved (200 mL), Q0 is the total amount of drugs in
the nanostructures (mg), cn is the drug concentration concluded at No. n (mg·L−1), and ci
is the drug concentration determined at No. i (mg·L−1), V is the volume of taken out the
sample (4 mL). The cumulative percentages as average values were plotted as a function of
time (t, h), and the experiments were implemented 6 times.

After the dissolution tests, the residues of F2 in the bulk dissolution media were
separated through a TL-5.0W Table Centrifuge at 5000× g (Shanghai Centrifugal Machinery
Research Institute Co., Ltd., Shanghai, China), and then were dried in a DHG-101-OA
Electric Oven (60 ◦C with blowing, Zhengzhou Ansheng Scientific Instrument Co., Ltd.,
Zhengzhou, China) to constant weight for SEM assessments.

3. Results and Discussion
3.1. Side-By-Side Electrospinning

A diagram of the side-by-side electrospinning process are exhibited in Figure 1b, this
set includes two syringe pumps, a high-voltage power supply, a collector and a home-made
eccentric spinneret. Similar to a coaxial electrospinning system, side-by-side electrospin-
ning treats two working fluids synchronously for manufacturing Janus beads-on-a-string
structures, which are composed of nanofibers and microparticles. Janus beads-on-a-string
make two diverse sides bound together and directly contact with the surroundings [67].
According to the latest reports, beads-on-a-string fibers were manufactured by single-fluid
electrospinning and coaxial electrospinning [68,69]. In addition, the fabrication of Janus
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beads-on-a-string by using a parallel spinneret are rarely seen. Thus, a home-made ec-
centric needle was fabricated, and side-by-side electrospinning process was carried out
to prepare the Janus beads-on-a-string nanostructures. A digital image of the home-made
eccentric spinneret, presented in Figure 1a, nested one metallic capillary into the other
one and deflected on one side. The advantage of the eccentric spinneret is that it does not
separate the two working fluids under the function of high-voltage electrostatic.
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Figure 1. The implementation process of side-by-side electrospinning: (a) an image of a home-made
eccentric spinneret; (b) schematic drawing of the home-made electrospinning system.

A digital image of the home-made side-by-side electrospinning system appeares
in Figure 2a. Two syringe pumps were used for driving two different working fluids
independently. The syringe containing the PVP-MB solution fixed to the pump was directly
linked to the round side of the spinneret through a silicone tube. The other side of EC-KET
solution loaded into another syringe pump was connected to the crescent side. High-
voltage electrostatic can be transmitted into all fluids utilizing an alligator clip. Figure 2b
shows the process of connecting the spinneret with fluids and the high-voltage.

Under the pre-optimized working parameters (voltage of 12 kV, the flow rate of 0.8/
1.0 mL·h−1 for EC/PVP side), all fluids could work continuously and stably in side-by-side
electrospinning. A typical Taylor cone was shown in Figure 2c. Additionally, Figure 2d
depicts that two working fluids were concurrently ejected from the Taylor cone and moved
through the straight jet, followed by bending and whipping. The solvent of working
solutions evaporated, and the polymers solidified and dried on the collector to form fiber
mats. The typical phenomenon indicated that two sides had better compatibility and
not separate under the high-voltage electrostatic field. By the way, solvent selection is a
key issue for implementing a successful single-fluid electrospinning process in terms of
solubilities of the solutes, spinnability of the blending solution and also the exhaustion in
the solid nanofibers for applications such as drug delivery and tissue engineering [70–74].
For the double-fluid side-by-side process, the selections of solvents for both sides should
be paid more attention to ensure the two working fluids have good compatibility.
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3.2. Morphology

The SEM images of surface morphology of Janus nanostructures (F1~F4) and their
average diameters and size distributions are displayed in Figure 3. Few distinct drug
crystal particles occurred on the surface of the Janus nanostructures, demonstrating that
the polymers had better compatibility with MB and KET. F1~F3 are Janus beads-on-a-string
and F4 is Janus nanofibers. As a general phenomenon, the beads-on-a-string nanofibers
have continually appeared in electrospinning.

As expected, the SEM images of the Janus nanostructures (includes beads-on-a-string
and nanofibers) were obtained by changing PVP concentration. When PVP concentration
was 4% (w/v), the nanostructures have distinct beads that include spindle-shaped and
concave-shaped beads (Figure 3a). When PVP concentration was 5% or 6% (w/v), the
nanostructures have been mostly concave beads and the latter has fewer microparticles
than the former (Figure 3b,c). However, Janus beads-on-a-string was no longer produced
and Janus nanofibers were formed as the PVP concentration reached 8% (w/v) (Figure 3d).
From Figure 3a to Figure 3d, with the augment of polymer concentration, we can be pre-
liminarily found that the numbers of microparticles have reduced in Janus nanostructures.
Compared with the single electrospinning of PVP concentration of 4% (w/v), the 5% (w/v)
concentration of nanofibers performs well linear morphology clear of spindles or beads
phenomenon. As a result, the minimum spinnable PVP concentration (5% (w/v)) can be
combined with EC solution to prepare Janus beads-on-a-string, and most of the microparti-
cles are EC particles. When the concentration of PVP increased to 8% (w/v), the spinnable
PVP can drive the unspinnable EC solution to form Janus nanofibers.
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The Janus nanocomposites F1, F2, F3 (beads-on-a-string) and F4 (nanofibers) prepared
through side-by-side electrospinning have average nanofiber diameters of 0.12 ± 0.004 µm
(Figure 3e), 0.17 ± 0.002 µm (Figure 3f), 0.24 ± 0.01 µm (Figure 3g) and 0.56 ± 0.03 µm
(Figure 3h), respectively. Three kinds of Janus beads-on-s-string F1-F3 have severally
average microparticle diameters of 1.39 ± 0.37 µm (Figure 3a), 1.59 ± 0.46 (Figure 3b) µm
and 2.16 ± 0.44 (Figure 3c) µm. Based on the foregoing information, the following result
can be drawn: with the increase of polymer concentration on one side, the number of
microparticle is decreased and the average diameters of nanofiber and microparticle are
increased (except for 8% (w/v) PVP concentration). By comparison to the smooth surfaces of
Janus nanofibers F4 (or core/sheath nanofibers), beads-on-a-string has ultrafine nanofibers
to release drugs rapidly. Moreover, it also has larger microparticles as a storehouse to
conduct sustained release.

3.3. Physical Form of Components and Compatibility

The XRD patterns of raw powders (PVP, EC, KET, MB) and the Janus nanostructures
(F1, F2, F3, F4) are shown in Figure 4. The sharp peaks at around 26.8◦ of MB powders
showed their crystalline characteristic. Many sharp reflections of raw KET powders were
found in the XRD pattern, proving that the raw drug was a crystalline material. On the
contrary, the XRD patterns of PVP/EC had two weak and wide diffraction peaks, indicating
that they are an amorphous state. In the XRD patterns of F1, F2, F3 and F4, the distinctive
reflections of MB and KET were not discovered. Four Janus nanostructures prepared by
side-by-side electrospinning process had similar patterns with the patterns of PVP and
EC, which present wide diffraction speaks and there were no sharp peaks (crystalline
characteristic). Under the action of the high-voltage electrostatic field, the crystalline
drugs (KET and MB) were dispersed in the matrix materials (PVP and EC) in the form of
small molecules and existed in the electrospun Janus nanostructures with the amorphous
state. The observation indicated that MB and KET as crystalline materials were completely
transformed into an amorphous state by the process. The results of XRD confirmed that the
Janus beads-on-a-string and Janus nanofibers were amorphous solid dispersions, which
could be utilized to figure out the dissolution of the problem with poor water-solubility
drugs [35].
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The compatibility between the drugs and polymers was investigated by FTIR analysis,
which is necessary for preparing steady and high-quality Janus nanostructures. The sec-
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ondary interactions, such as hydrophobic interaction, electrostatic attraction and hydrogen
bonding enhanced the compatibility among the components [68]. The ATR-FTIR spectrum
of raw powders and Janus nanostructures are shown in Figure 5a. The spectrum of PVP
showed a typical broad water absorption peak at 3520 cm−1. Then, the characteristic
peak at 1668 cm−1 was aroused by C=O stretching vibration and the peak at 1424 cm−1

was produced by -CH bending vibration, and the peak at 1292 cm−1 was raised by C-N
stretching vibration. With regards to EC, the characteristic peaks at 1378 cm−1 for -CH
bending, 3486 cm−1 for -OH stretching vibration and 1056 cm−1 for C-O stretching are
shown in its spectrum. In the spectrum of KET, 1698 cm−1 and 1655 cm−1 for stretching
vibrations of the carbonyl group and ketone group were observed. The typical peak at
1592 cm−1 for benzene ring skeletal stretching vibration, 1322 cm−1 and 1136 cm−1 for C-N
and C-S stretching vibrations were shown in the spectrum of MB. The peaks at 2955 cm−1,
2978 cm−1, 2979 cm−1, 2925 cm−1 were the stretching vibrations of C-H in the spectrum of
PVP, EC, KET and MB, respectively. Whereas, the peak at 1698 cm−1 of KET was vanished
in the spectrum of F2 and F4, proving that hydrogen bonds were formed between the
proton donor of EC and the receptors of KET. As was known to all, methylene blue had
strong adsorption for polymers and no concern about their compatibility. The results of
ATR-FTIR demonstrated that the components had well compatibility and stability.
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3.4. In Vitro Drug Release Profiles

KET and MB have maximum UV absorbance peaks at 260 nm and 664 nm, respectively.
According to the predetermined calibration curve A1 = 0.0508C1 + 0.0757(R1 = 0.9996)
and A2 = 0.0696C2 + 0.04219(R2 = 0.9953), where C1 and C2 are the concentration of KET
and MB (µg·mL−1) and A1 and A2 are the sample absorbance at 260 nm and 664 nm, the
sum release of KET and MB from the Janus beads-on-a-string can be determined by UV-vis.

The in vitro drug controlled release profiles of the Janus beads-on-a-string F2 and
Janus nanofibers F4 are concluded and compared in Table 2 and Figure 6. Consistent
with the concept design, F2 and F4 released near 80% of the loaded MB within 30 min
(Figure 6a,b), suggesting an immediate release of MB from the PVP sides in the Janus
structures. Many reports demonstrated that PVP nanofibers loaded with the drugs dissolve
immediately in several seconds and release the drugs of nanofibers completely [48,56,75,76].
Slightly different from those studies, the other side of Janus nanostructures is hydrophobic
polymeric beads of EC. Additionally, the sectional encapsulation of the linear PVP sides
in the EC sides should slow down the fast release of MB. After the in vitro dissolution
tests, the residues from F2 were observed using SEM, whose images are given in Figure 6c.
The beads with lines in them (indicated by arrows) give a hint that (1) the linear sides in
the original beads-on-a-string structures were the water soluble polymer PVP and MB; (2)
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the bead sides were the insoluble EC and the loaded KET; and (3) linear PVP sides were
sectionally encapsulated by EC beads before dissolution and created lines on the EC beads
in the SEM images.

Table 2. A comparison of the drug release behaviors from F2 and F4.

Tested Samples
MB

Released (%)
KET

Released (%)
Time for KET
Release (h) a

0.5 h 24 h 0.5 h 2 4 h 30% 80%

F2 Janus
Beads-on-a-string 79.10 ± 12.78 94.72 ± 3.48 53.37 ± 14.72 96.34 ± 3.82 0.17 3.00

F4 Janus nanofibers 75.57 ± 18.75 93.78 ± 4.73 64.16 ± 7.28 95.34 ± 2.40 0.13 1.50
a The value indicates that the time needed for reaching a certain accumulative release of KET and is achieved by Interpolation method.
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Meanwhile, as shown in the inset of Figure 6a and Table 2, MB release from Janus
beads-on-a-string F2 was faster than Janus nanofibers F4 slightly. The reason for this
phenomenon can be concluded that the nanofiber sides of Janus beads-on-a-string products
have smaller diameter than Janus nanofibers. The release of MB did not reach 100%
quickly because it was a dye that could be absorbed to water-insoluble EC particles easily.
No matter Janus beads-on-a-string products F2 or Janus nanofibers F4, the MB release
mechanism is the erosion mechanism, in which the drug is released by the dissolution of
polymer carrier [40], as indicated in Figure 6d.

In contrast, KET release from the EC sides is controlled by the typical diffusion
mechanism because of the insolubility of EC and the homogeneous distribution of KET
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molecules in the EC matrices. Shown in Figure 6b and Table 2, F2 provided a better
sustained release profile than F4 distinctly (an estimated 3.00 and 1.50 h was needed for F2
and F4 to release 80% of the loaded KET, Table 2). The reason is that the microparticles of
Janus beads-on-a-string structures formed by EC can be regarded as a “drug repository”.
Those microparticles of F2 have larger diameters than the linear EC sides of F4, and thus
provide a longer diffusion distance for the penetration of water and KET molecules, by
which a slower drug sustained release could be ensured.

The KET release profiles from Janus beads-on-a-string F2 and Janus nanofibers F4
were analyzed employing the Peppas Equations (2) and (3) [69]:

Q =
Mt

M∞
= ktn (2)

log
Mt

M∞
= nlog(t) + log(k) (3)

where n is the release index that figures the drug release mechanism, k is the kinetic
parameter, Mt is the sum of drug released at time t, t is the release time, M∞ is the sum of
the drug released and Q is the percentage of the drug released.

The equation of regression for F2 are QMB1 = 64.5t0.24(R = 0.7436) and QKET1 = 44.2t0.40

(R = 0.8436); the regressed equation for F4 are QMB2 = 63.8t0.22(R = 0.7551) and
QKET2 = 52.8t0.33(R = 0.8146). These results show that the release index n is smaller
than the critical value of 0.45, which indicates that drugs controlled release from side-by-
side electrospinning products can be controlled through a typical mechanism of Fickian
diffusion regardless of Janus nanofibers or Janus beads-on-a-string products. These re-
sults suggested that the structure of the product had no significant effect on the drugs
diffusion mechanism.

The above study demonstrated that drug release could be controlled through adjusted
the polymer concentration, and alter the nanomaterials structure. The Janus beads-on-a-
string F2, prepared by the process, is more advantageous than the Janus nanofibers F4 in the
aspects of controlled release profiles of double drugs and the potential combined therapy.
The ultrafine hydrophilic nanofibers of the Janus beads-on-a-string released the first drug
(MB) more rapidly than Janus nanofibers, while the larger hydrophobic microparticles
of the Janus beads-on-a-string released the second drug (KET) more slowly than Janus
nanofibers. Compared with Janus nanofibers, it provided more accurate control over the
release of double drugs.

A schematic diagram of drugs release mechanisms is given in Figure 6d. When
dissolved in the phosphate buffer saline, the PVP side nanofibers of the Janus beads-on-a-
string structures will dissolve at a high rate of speed and release all the drugs that were
contained through a typical erosion mechanism. The rest of EC particles side provides
the sustained release loaded drugs through a typical diffusion mechanism. Due to EC is
insoluble in water, there are still some residual drugs within the microparticles that cannot
be completely released after the testing time of 24 h. The Janus structure is tunable and
can be adjusted by changing the polymer composition on both sides of the structure to
manipulate the release behaviors of drugs.

4. Summary

Janus beads-on-a-string composite structures composed of PVP-MB//EC-KET were
successfully achieved by a side-by-side electrospinning process. SEM images showed the
fibers and particles of the Janus beads-on-a-string clearly. Through changing the polymer
concentration, Janus beads-on-a-string with different particle distribution and diameter
could be obtained. XRD patterns proved that all the components were present in the Janus
nanostructures with amorphous states. ATR-FTIR spectrum testified that the compatibility
and stability of the components were very well due to hydrogen bonding. In vitro drug
dissolution tests demonstrated that the Janus beads-on-a-string could provide typical
double drugs controlled release profiles, which had the faster immediate release and slower
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sustained release than Janus nanofibers. The drugs released from the Janus beads-on-
a-string were controlled through a representative mechanism of Fickian diffusion. The
current work showed a new preparation method of the Janus beads-on-a-string structures
using side-by-side electrospinning, which also provided a fresh idea for double drugs
controlled release and the combined medication.
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