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Abstract: A growing number of studies have shown that aberrant microRNA (miRNA) expression is
closely associated with the evolution and development of various complex human diseases. These
key biomarkers’ identification and observation are significant for gaining a deeper understanding
of disease pathogenesis and therapeutic mechanisms. Consequently, pinpointing potential miRNA–
disease associations (MDA) has become a prominent bioinformatics subject, encouraging several
new computational methods given the advances in graph neural networks (GNN). Nevertheless,
these existing methods commonly fail to exploit the network nodes’ global feature information,
leaving the generation of high-quality embedding representations using graph properties as a critical
unsolved issue. Addressing these challenges, we introduce the DAEMDA, a computational method
designed to optimize the current models’ efficacy. First, we construct similarity and heterogeneous
networks involving miRNAs and diseases, relying on experimentally corroborated miRNA–disease
association data and analogous information. Then, a newly-fashioned parallel dual-channel feature
encoder, designed to better comprehend the global information within the heterogeneous network
and generate varying embedding representations, follows this. Ultimately, employing a neural
network classifier, we merge the dual-channel embedding representations and undertake association
predictions between miRNA and disease nodes. The experimental results of five-fold cross-validation
and case studies of major diseases based on the HMDD v3.2 database show that this method can
generate high-quality embedded representations and effectively improve the accuracy of MDA
prediction.

Keywords: miRNA–disease association prediction; transformer; graph encoding; graph attention
network

1. Introduction

MicroRNAs (miRNAs) are a class of small, naturally occurring, non-coding RNA
molecules, approximately 21–25 nucleotides in length. Since the end of the last century,
when scientist Frank Slack discovered that abnormal miRNA expression in nematodes
could lead to problems in tumor biology [1], an increasing number of researchers have
focused on the relationship between human miRNA molecules and complex diseases. For
example, ectopic expression of miR-196b has been found to increase the spread of leukemia
and cause a more rapid onset of leukemia in secondary grafts [2]. Additionally, significant
changes in miRNA expression have been observed in patients with major diseases such as
breast, gastric, and lung cancers [3–5]. As miRNAs continue to prove their importance as
biomarkers, they are expected to play an irreplaceable role in cutting-edge medical therapies
and become a cornerstone of precision medicine. Therefore, accurately identifying the
associations between miRNAs and diseases is of great biological significance.

In recent years, there has been a proliferation of computational-based methods aimed
at alleviating the burden on traditional biological experimental researchers and expediting
the verification of causal relationships between miRNAs and diseases. These computational
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methods generally fall into two main categories: feature selection-based methods [6–10]
and machine learning-based methods [11–18]. Although both approaches have achieved
considerable results in the field of miRNA–disease association prediction, as more MDAs
are proven and MDA networks expand, association prediction problems on multidimen-
sional data structures become increasingly complex. Traditional machine learning-based
approaches struggle to handle underlying, deep relational networks and uncertain data.

In response to these challenges, researchers have begun to explore the use of deep
learning algorithms, such as graph neural networks, which specialize in processing graph
data. For example, Ding et al. [19] constructed a variational graph autoencoder to make
full use of the known associative graph information based on the representation of het-
erogeneous networks. Zhang et al. [20] developed a model with a node-level attentional
autoencoder, considering the varying importance of different neighboring child nodes
to the information of the parent node. Lou et al. [21] proposed the MINIMDA model to
improve existing graph convolutional neural networks by displaying aggregated informa-
tion from higher-order neighborhoods. Tang et al. [22] introduced the MMGCN model,
which integrates a multi-source similarity network based on a GCN encoder and a CNN
combined decoder to adaptively learn different feature views.

However, existing methods utilize either similar network information or heteroge-
neous network information. When dealing with similarity features, only local shallow
messages are aggregated, ignoring the global node feature information hidden in the net-
work. When utilizing heterogeneous network information, only the association properties
of node pairs are considered, neglecting the graph properties embedded in different nodes
when encoding the heterogeneous network as a graph. Most importantly, the perfor-
mance of the model heavily depends on the extent to which the node features are mined
and exploited.

In other research domains, researchers [23–25] have increasingly shifted their focus
towards architectures based on the transformer model to overcome the limitations of graph
models when it comes to effectively exploring and learning global information. For in-
stance, Zhang et al. [23] proposed a multi-level transformer-based DTI prediction method
to accelerate the screening of effective new drug candidates and enhance the model’s ability
to capture complex relationships among multiple types of nodes in complex topologies.
Li et al. [24] designed a causal relationship between diseases and genes based on the
transformer architecture, which makes better use of multi-source heterogeneous informa-
tion, and automatically and comprehensively captures the potential multiple interactions
between diseases and genes.

These studies demonstrate the feasibility of using transformer-based architectures in
their respective domains and show that such models can significantly enhance the feature
encoders’ perceptual field. However, none of their studies considered graph properties
such as degree centrality and the graph’s shortest path, which are carried by heterogeneous
graphs themselves. Inspired by the study of Ying et al. [26], we introduced miRNA–
disease heterogeneous network graph properties for the first time in a self-attention-based
encoder, aiming to obtain more information-intensive feature embeddings. Based on this,
we proposed DAEMDA, a method with a two-channel graph attention mechanism for
predicting miRNA–disease associations.

Specifically, we first constructed miRNA and disease similarity networks and miRNA–
disease heterogeneous networks under multi-feature graphs. Second, we used graph
attention and self-attention-based feature encoders to learn feature information between
neighboring nodes and similarity information of the whole graph in parallel, and finally,
mature node embedding encodings were obtained. In the end, the node embedding en-
coding from the dual-channel output is fused using maximum pooling and the association
scores between miRNAs and diseases are predicted using a multi-layer perceptron (MLP).
To evaluate the performance of our model, we conducted five-fold cross-validation ex-
periments comparing a variety of models with good performance in recent years under
mainstream databases and performed ablation experiments and a case study on the model.
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The results show that our model has an average area under the ROC curve (AUC) of
0.9439 and an area under the precision-recall curve (AUPR) of 0.9429 under the HMDD
v3.2 database, which are better than the comparison methods. Our main contributions are
as follows:

• The encoder based on the transformer architecture is used to deeply and comprehen-
sively explore the latent node features by fully exploiting the graph properties in the
heterogeneous network constructed from multi-feature information so that the node
feature embedding is obtained with richer semantic information.

• DAEMDA organically combines node embedding encoding obtained based on graph
attention and self-attention encoders to obtain high-quality feature embedding combi-
nations.

• DAEMDA can predict MDA end-to-end, outperforming baseline methods in multiple
experiments on publicly available datasets and achieving excellent performance in
case studies with more stringent validation criteria.

2. Materials and Methods
2.1. Experimental Data
2.1.1. Human miRNA–Disease Associations

The Human MicroRNA Disease Database, HMDD (http://www.cuilab.cn/static/
hmdd3/data/alldata.xlsx (accessed on 3 August 2023)) [27], provides valuable information
regarding the relationships between microRNAs and human diseases, along with relevant
references. This information primarily stems from laboratory research findings, encompass-
ing literature-based data mining and human clinical studies. As of now, the database has
amassed a total of 35,547 microRNA–disease associations (MDAs) that have been confirmed
through experimental papers. In our experiment, to ensure a fair comparison with other
models, we opted to work with a benchmark dataset based on the HMDD v3.2 database.
This dataset comprises 12,446 associations, involving 853 miRNAs and 591 diseases, all
of which we have considered as positive samples. Given the sparsity of positive samples
within the entire association graph, we undertook measures to balance the positive and
negative samples. We randomly selected an equal number of association data points from
samples with known absence of association and those with unknown association status,
designating them as negative samples. The combination of these positive and negative
samples formed the complete dataset for our experiment. Table 1 presents essential details
regarding the dataset employed in this study.

Table 1. Basic characteristics of the HMDD v3.2 dataset. # nodes denotes the number of nodes;
# edges denotes the number of edges; # density denotes the density of the graph; # degree denotes
the average degree; # Ave_cen denotes the point degree centrality.

Property Full Data miRNA Disease

# nodes 1444 853 591
# edges 12,446 - -

# density 0.0247 - -
# degree 17.238 14.591 21.059

# Ave_cen 0.0119 0.0101 0.0146

2.1.2. Disease Semantic Similarity

We describe relationships between diseases as directed acyclic graphs (DAGs), rep-
resented as DAG(di) = (N (di), E(di)), based on MeSH descriptors obtained from the
U.S. National Library of Medicine (https://www.ncbi.nlm.nih.gov/ (accessed on 3 August
2023)). In this representation, N (di) denotes the set of nodes that includes di itself and has
a graph relationship with di, while E(di) denotes the set of edges with an ‘is-a’ relationship
between those points. Subsequently, we employ the computational method proposed by
Wang et al. [28] to calculate the semantic value of each disease. Based on these semantic

http://www.cuilab.cn/static/hmdd3/data/alldata.xlsx
http://www.cuilab.cn/static/hmdd3/data/alldata.xlsx
https://www.ncbi.nlm.nih.gov/
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values, we construct a semantic similarity network for diseases. The disease semantic
similarity, denoted as DSS

(
di, dj

)
, between any two diseases, ‘di’ and ‘dj’, is computed

as follows:

DSS
(
di, dj

)
=

∑dk∈N(di)∩N(dj)

(
D(di, dk) + D

(
dj, dk

))
SD(di) + SD

(
dj
) , (1)

where D(di, dk) denotes the semantic score of disease di, and SD(di) denotes the semantic
value of disease di. The semantic score and semantic value are calculated using Equations (2)
and (3), respectively:

D(di, dt) =

{
1, if di = dt
max{0.5 ∗ D(di, d′t) | d′t ∈ children o f di}, if di 6= dt,

(2)

SD(di) = ∑dt∈N(di)
D(di, dt). (3)

2.1.3. MiRNA Functional Similarity

According to Wang et al. [28], miRNAs with similar functions are often linked to
similar diseases. To facilitate our research, we utilized the MISIM database (http://www.
cuilab.cn/files/images/cuilab/misim.zip (accessed on 3 August 2023)), which was de-
veloped based on their findings. Our approach involved calculating pairwise miRNA
functional similarity matrices, using both the query information from the MISIM database
and complementary data from the HMDD v3.2 dataset. This comprehensive data allowed
us to construct a miRNA functional similarity matrix, denoted as MFS

(
mi, mj

)
, where ‘mi’

and ‘mj’ represent any two miRNAs. The formula for calculating the miRNA functional
similarity, MFS

(
mi, mj

)
, is as follows:

MFS
(
mi, mj

)
=

∑d∈D(mi)
DSS

(
d, d∗j

)
+ ∑d∈D(mj)

DSS
(
d, d∗i

)
|D(mi)|+

∣∣D(mj
)∣∣ , (4)

where D(mi) denotes the existence of at least one set of diseases related to mi, |D(mi)| is
the number of elements in the set D(mi), and d∗j denotes the disease in D(mi) that has the
greatest semantic similarity to d. Equation (9) is used for calculation:

d∗j = argmax
dj∈D(mj)

DSS
(
d, dj

)
. (5)

2.1.4. Gaussian Interaction Profile Kernel Similarity for miRNAs and Diseases

As per the findings of Van Laarhoven et al. [29], our approach is grounded in the
miRNA–disease association network. In this network, any disease node can be leveraged to
create a similarity network using the GIP kernel similarity. The strength of the GIP kernel
similarity between different miRNAs correlates with the similarity of the diseases they
are associated with. To facilitate this, we introduce two binary vectors, IP(di) and IP

(
dj
)
,

which characterize the interaction profiles of diseases di and dj. The GIP kernel similarity,
denoted as DGS

(
di, dj

)
, between diseases di and dj is calculated as follows:

DGS
(
di, dj

)
= exp

(
−θd‖IP(di)− IP

(
dj
)
‖2
)

, (6)

the parameter θd is employed to regulate the kernel bandwidth, and its definition is
presented in Equation (7):

θd = 1/
(

1
Nd

∑Nd
k=1 ‖IP(dk)‖2

)
, (7)

http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
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the parameter Nd signifies the number of diseases within the miRNA–disease association
network. Likewise, we can obtain the GIP kernel similarity MGS

(
mi, mj

)
of miRNAs by a

similar calculation:

MGS
(
mi, mj

)
= exp

(
−θm‖IP(mi)− IP

(
mj
)
‖2
)

, (8)

where the parameter θm is defined as shown in Equation (9), and Nm denotes the number
of miRNAs in the miRNA–disease association network:

θm = 1/
(

1
Nm

∑Nm
k=1 ‖IP(mk)‖2

)
. (9)

2.1.5. Aggregating Similarity Features and Constructing Complex Networks

To better aggregate the neighbor information of miRNA and disease nodes with
each other, we constructed miRNA–miRNA homogeneity networks and disease–disease
homogeneity networks using known similarity information. Specifically, we first treated
the miRNA functional similarity network as an undirected graph and created an M×M
binary adjacency matrix, GM, based on the number of miRNAs, M. If there is a functional
similarity relationship between miRNA mi and mj, then the value of row i and column
j of this binary matrix will be marked as 1. Then, we aggregated the miRNA functional
similarity matrix and miRNA GIP kernel similarity matrix, and the aggregation result is
used as the initial feature matrix of miRNA nodes, so the M-dimensional initial feature
vector, MFm(i), of the miRNA, mi, can be expressed as:

MFm(i) = (x1, x2, x3, . . . , xM−1, xM), (10)

where x1, x2, x3, . . . , xM−1, xM represents the similarity features of columns 1 to M on row i
of the miRNA initial feature matrix, and the similarity features are aggregated as shown
in (2):

MF
(
mi, mj

)
=

{
MFS

(
mi, mj

)
if MFS

(
mi, mj

)
6= 0

MGS
(
mi, mj

)
else

, (11)

where MFS is the miRNA functional similarity matrix, and MGS is the miRNA GIP kernel
similarity matrix. After that, we created an N × N binary adjacency matrix, GD, based on
the number of diseases, N, and the semantic similarity network of diseases in a similar
way to express the correlation between diseases. According to the same method, the initial
feature matrix, DF, of the aggregated disease nodes is also created. Finally, we created
an M× N binary adjacency matrix, A, based on the known number of miRNAs M and
number of diseases, N, in the dataset, and the value of row i and column j of the binary
matrix, A, will be marked as 1 if there is a definite association between miRNA mi and
disease dj. Based on the adjacency matrix, A, we obtained the matrix representation of the
miRNA–disease heterogeneous network as follows:

G =

[
0 A

AT 0

]
∈ R(M+N)×(M+N). (12)

2.2. Model Framework

To better aid experimental researchers in the discovery of new biomarkers and achieve
more efficient and accurate predictions of miRNA–disease associations, we introduce a
computational method named DAEMDA, outlined in Figure 1. This method comprises
three primary steps: (I) Construction of complex networks and initial features of nodes:
generate interaction networks and original feature matrices based on similarity and correla-
tion information provided by experimental materials. (II) Feature extraction and feature
embedding encoding: mining the information of nodes and heterogeneous graphs using
two attention encoders, which are used to generate high-quality feature embedding encod-



Biomolecules 2023, 13, 1514 6 of 17

ing. (III) Association prediction: the two-channel feature embedding encodings are fused,
and the final prediction results are obtained using a neural network classifier.
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2.2.1. Graph Attention-Based Encoder

A graph attention network (GAT) combines the feature encoding of nodes based on
the topological relationships between the nodes of a heterogeneous graph. In simple terms,
GAT selects the relevant information of its neighboring nodes by the attention mechanism
for each node and weighted summation to form a summarized feature representation.
This feature representation not only includes the node’s own feature information but
also considers the relevant information of its neighboring nodes, which is equivalent to
compressing the information of the whole heterogeneous graph into a global feature vector.

The GAT encoder takes the heterogeneous graph, G = (V, E) ∈ R(M+N)×(M+N), as
input, where E is the set of edges, V is the set of nodes, and for any node, Vi, has its feature

vector,
→
h vi ∈ Rl , where l is the dimension of the feature vector, and in this study, the feature

vectors of nodes are obtained using the node features with information about the shallow
neighbors of the nodes after encoding the similarity network through the GCN encoder.
For any MDA

(
Vi, Vj

)
∈ E, node Vi and its neighbor node, Vj ∈ N(i), where N(i) denotes

the set of neighbor nodes of Vi. Then, the similarity coefficient, eij, between nodes Vi and Vj
is defined as follows:

eij = σ

(
→
a

T
[→

W
→
h vi ‖

→
W
→
h vj

])
, (13)

where ‖ denotes the vector connection operation,
→
a is a self-learning parameter used to

control the importance weights of interactions between nodes,
→
W is a feature transformation
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parameter that can be learned, and σ is the LekyReLU activation function. For the central
node, Vi, after obtaining the importance among all its neighboring nodes, the softmax
function is applied to normalize all eij to obtain the attention coefficients, aij. Then, for

the node Vi, we weight and sum its feature vector,
→
h vi , with the corresponding attention

coefficient, aij, between its neighboring nodes to obtain a weighted sum vector for node Vi:

zi = ∑j∈N (i) aij
→
W
→
h vj . (14)

In order to improve the expressiveness and accuracy of GAT and to be able to capture
the features of multiple information domains at the same time, we extend the calculation of
attention coefficients of nodes in the GAT model to multiple heads, and finally, we stitch
the weights and vectors of multiple heads together and perform nonlinear activation to
obtain the final node feature vector, Z′i , of node vi:

Z′i =
k
‖

k=1
σ

(
∑j∈Ni

α
(k)
ij

→
W

(k)→
h
(k)

vj

)
, (15)

where K represents the number of multi-headed attention heads. Also, to improve the
fusion of feature information, we apply a jumping knowledge module to merge the output
of each layer in the multi-layer GAT. In the end, the merged vectors are linearly transformed
to obtain the l-dimensional feature embedding generated by the GAT encoder:

HGAT = Linear(concat(GAT1, . . . , GATn−1, GATn)), (16)

where GATi represents the feature embedding matrix of the layer i GAT output, and n is
the total number of GAT layers used in this encoder.

2.2.2. Self-Attention-Based Encoder

Here, we designed the transformer global feature encoder for this method following
an architectural pattern similar to the transformer encoder studied by Vaswani et al. [30].
The transformer encoder in our study is a serial combination of several identical layers, and
each individual layer contains two separate sub-layers, a multi-head attention layer, and a
feedforward neural network layer. In contrast to the original method, instead of using the
results of the node features after the masking operations using positional coding as the input
to the encoder, we obtained the input to the encoder according to the following method:

Fmd = concat(Linear(MF), Linear(DF)) + Hdeg(G), (17)

where MF and DF are the similarity feature matrices of the network nodes, and Hdeg(G) are
learnable matrices generated based on degree centrality, which reflects the important status
of miRNA and disease nodes in the network, and introducing degree centrality matrices
can make better use of graph properties to make the model more easily focus on nodes with
high contributions. Considering the superiority of the self-attention mechanism in global
structure learning, each node can learn the information of any position, but this will cause
the loss of the associativity information of the nodes in the graph. The association between
nodes in a multidimensional space can be defined by connectivity, which we use to learn
our defined matrix, Bϕ(G), by measuring the spatial relationship between two nodes in
the graph, i.e., the shortest path between two nodes. By introducing this matrix as a bias
quantity into the self-attention operation, we can make our self-attention encoder focus
more on the nodes close to it and less on the nodes far from it when encoding the nodes. In
summary, our self-attention encoder is described as follows:
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Q = Fmd ×Wq
K = Fmd ×Wk
V = Fmd ×Wv

, (18)

Attention = so f tmax
(

QKT
√

d
+ Bϕ(G)

)
V, (19)

where Fmd ∈ R(M+N)×k is the input to the self-attention encoder, W is the parameter matrix
that is used for the linear transformation when performing the self-attention operation,
and the result of the linear transformation (Q, K, V) ∈ R(M+N)×d, d, is the dimension of
the matrices Q, K, and V. Suppose we arrange the h self-attention layers in parallel into a
multi-head attention layer, the output matrix can be written as:

MultiHead(Fmd)
(h) = concat(head1, . . . , headh−1, headh)WO, (20)

headi = Attention
(

Fmd ×Wi
q, Fmd ×Wi

k, Fmd ×Wi
v

)
, i = 1, . . . , h. (21)

After this, in order to make the deep network more stable, converge faster, and
effectively eliminate the gradient disappearance and gradient explosion problems, we also
layer-normalized the output matrix of the multi-head attention layer and finally obtained
the feature encoding matrix, HEncode, as follows:

HEncode = FNN
(

LN
(

MultiHead(Fmd)
(h)
))

, (22)

where LN is layer normalization, and FNN is a feedforward neural network composed
of two linear transformations and one nonlinear activation (using the ReLU activation
function) together. The addition of feedforward neural network layers can enhance the
expressiveness of the model to a great extent, improve the generalization ability, and
decouple the importance hidden by the feature representation at different locations.

2.2.3. Predicting miRNA–Disease Associations

With the two feature encoders, we obtained the feature embedding matrices for the
two-channel output. In order to highlight the important features and improve the sensitivity
of the model to important information, we performed a maximum pooling operation for
these. Simply speaking, the maximum value of the corresponding positions of the two
matrix species is selected as the pooling result. This operation can keep the stronger features
and ignore those relatively weaker ones, and, finally, we obtain the prediction result of
the model:

A′ = maxpooling(HGAT ‖ HEncode). (23)

In order to enable the model optimization, minimize the difference between the true
and predicted associations, and thus improve the prediction accuracy of the model, we use
the loss function of cross-entropy:

L(y, p) = − 1
N ∑N

i=1[yilog(pi) + (1− yi)log(1− pi)], (24)

where y is the true label vector, p is the label vector predicted by the model, and N is the
number of samples.

3. Results
3.1. Experimental Settings
3.1.1. Parameter Settings

The selection of hyperparameters holds immense significance in the realm of deep
learning models. Optimal hyperparameter choices can lead to improvements in training



Biomolecules 2023, 13, 1514 9 of 17

speed, a reduction in overfitting, and ultimately result in enhanced performance. In our
pursuit of the best-performing hyperparameters, we conducted a series of experiments.
Finally, we set the number of heads in the multi-head attention layer to four, set the length of
the shortest path to eight, set the number of neurons in the hidden layer of the feedforward
neural network to 2048, and set the dimensionality of feature embedding to 512 dimensions.
In order to reduce overfitting and improve the generalization ability of the model, we use
the Dropout technique to randomly remove neurons from the model and set the Dropout
rate = 0.5. In addition, we use the Adam optimizer to update the weights of the network
and set the learning rate to 1 × 10−4 to better reduce the loss of the model.

3.1.2. Baselines

We selected six high-performing methods, as shown below, as baseline methods to
compare with our prediction methods, and the parameters of all the compared methods
were based on the best parameters of each reported in the original study.

• NIMGSA [31]: A neural inductive matrix completion-based method with graph au-
toencoders and self-attention mechanism for miRNA–disease association prediction.

• AGAEMD [20]: The authors considered the node-to-node attention profile in the
heterogeneity graph and dynamically updated the miRNA functional similarity matrix
during model iterations.

• ERMDA [32]: The authors utilize a resampling method to process the existing data
and use integrated learning to introduce a soft voting method for the final prediction
of the association.

• GATMDA [33]: A new computational method to discover unknown miRNA–disease
associations based on a graph attention network with multi-source information, which
effectively fuses linear and non-linear features.

• SFGAE [34]: Association prediction between two classes of nodes was accomplished
by constructing miRNA self-embeddings and disease self-embeddings, independent
of graph interactions between the two classes of graphs.

• AMHMDA [35]: GCN is used to extract multi-perspective node information from
multi-similarity network species for constructing hypergraphs, and an attention mech-
anism is used to fuse features from hypergraph nodes for predicting MDA.

3.1.3. Experimental Environment
Hardware Equipment Used in This Study

• CPU: Intel Xeon Platinum 8255C, 2.50 GHz;
• GPU: RTX 2080Ti (11 GB), cuda12.0;
• Memory: 40 GB.

This study is based on the Ubuntu 20.04 operating system, Python 3.8 environment,
using the Pytorch framework to implement the model and complete the experiments.

3.1.4. Evaluation Metrics

We mainly used four commonly used evaluation metrics, namely, an area under the
ROC curve (AUC), an area under the exact recall curve (AUPR), accuracy (ACC), F1 score
(F1), precision, and recall rate to evaluate the method performance. Among them, AUC is
based on the true positive rate, = TP

TP+FN , and false-positive rate, = FP
TN+FP , which reflects

the relationship between sensitivity and the specificity of the prediction model, and AUPR
is based on the precision, = TP

TP+FP , and recall rate, = TP
TP+FN . The AUC and AUPR values

are two important metrics to evaluate the prediction effectiveness, respectively; in short,
the larger the AUC and AUPR the better the performance of the model. The remaining
metrics are defined as shown below:

ACC =
TP + TN

TP + TN + FP + FN
(25)
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F1 = 2· precision·recall
precision + recall

(26)

3.2. Performance Evaluation

To conduct a thorough and unbiased evaluation of our method, we employed a
five-fold cross-validation (5-CV) approach on the HMDD v3.2 dataset. Within the 5-CV
experiments, we executed five distinct operations with our prediction model: (1) The entire
dataset was initially and randomly partitioned into five equally sized subsets. (2) During
each cross-validation iteration, four of these subsets were utilized for training. One subset
was designated for validation. It is essential to emphasize that each subset was exclusively
employed as validation data once throughout the entire 5-CV process. The following
figures and table show the results of our experiments.

From the experimental results presented in Figures 2 and 3, it is evident that the AUC
(area under the ROC curve) values of the five-fold cross-validation model are as follows:
0.9481, 0.9431, 0.9467, 0.9416, and 0.9397, respectively. Additionally, the area under the
Precision-Recall curve (AUPR) values are observed to be: 0.9470, 0.9439, 0.9465, 0.9390, and
0.9381. Combined with the experimental data in Table 2, in this experiment, the mean AUC
value of DAEMDA under the HMDD v3.2 dataset is 0.9439, the mean AUPR value is 0.9429,
the mean accuracy value is 0.8744, the mean F1 score is 0.8746, the mean precision value is
0.8747, and the mean recall is 0.8763. The corresponding standard deviations are 0.0031,
0.0037, 0.0057, 0.0048, 0.0261, and 0.0286, respectively. Based on these comprehensive
experimental results obtained from our study design, we can assert with confidence that
our model exhibits exceptional stability in its performance characteristics. This remarkable
stability can likely be attributed to the effective incorporation of normalization techniques
within our self-attention-based encoder architecture.
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Table 2. Results of prediction performance for DAEMDA on HMDD v3.2 dataset by 5-CV experiment.

Testing Set Accuracy F1-Score Precision Recall

1 0.8737 0.8682 0.9076 0.8321
2 0.8777 0.8763 0.8862 0.8666
3 0.8797 0.8817 0.8671 0.8967
4 0.8773 0.8763 0.8830 0.8698
5 0.8638 0.8706 0.8294 0.9160

Mean 0.8744 ± 0.0057 0.8746 ± 0.0048 0.8747 ± 0.0261 0.8763 ± 0.0286
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In order to comprehensively evaluate the performance of the model in real applica-
tions and assess its generalization ability, we adopted a more rigorous testing method.
Specifically, we used the HMDD v3.2 dataset, which was divided into a training set and
an independent test set (with 4978 positive and negative samples) according to the ratio
of 80%-20%. In order to simulate a real scenario where associated data are often missing,
we performed five-fold cross-validation on the training set, using only 64% of the entire
dataset for training. Subsequently, we selected the best-performing models from the cross-
validation phase and conducted experiments on an independent test set. The confusion
matrix of the experimental results is shown in Table 3.

Table 3. The confusion matrix obtained by experiments on independent test sets.

True Labels
Predicted Labels

Yes MDA No MDA

Yes MDA TP = 2187 FN = 338
No MDA FP = 302 TN = 2151

Further analysis of the data within the confusion matrix resulted in the following
performance metrics for the model on the independent test set: an AUC value of 0.9403,
an AUPR value of 0.9381, an accuracy value of 0.8714, an F1 value of 0.8724, a precision
value of 0.8661, and a recall value of 0.8787. Although the model’s performance on the
independent test set is slightly lower than that on the validation set, the overall performance
remains at a high level. This observation underscores the robustness of our model.

To better compare our model with other methods scientifically and fairly, we conducted
a five-fold cross-validation-based experimental comparison with the baseline method using
AUC and AUPR as rating metrics under the HMDD v3.2 dataset, and the comparison
results are shown in Figure 4 and Table 4. It can be seen that the performance of the model
is superior to the comparison methods in all the cases.

Table 4. Comparison with other methods on HMDD v3.2 dataset.

Method AUC AUPR

NIMGSA 0.8932 0.8680
AGAEMD 0.9045 0.9042
ERMDA 0.9233 0.9217

GATMDA 0.9350 0.9345
SFGAE 0.9362 0.9335

AMHMDA 0.9393 0.9369
DAEMDA 0.9439 0.9429
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3.3. Ablation Experiment

To verify the effectiveness of generating feature embeddings in our model using a
dual-channel mixture, we conducted ablation experiments on the HMDD v3.2 dataset.
Specifically, we constructed four variants of DAEMDA: DAE-A indicates that our model
uses the self-attention encoder without adding graph attribute information, DAE-B indi-
cates that our model uses the traditional graph attention-based encoder, DAE-C indicates
that our model does not use the self-attention-based encoder, and DAE-D indicates that
our model does not use the graph attention-based encoder. The experimental results are
shown in Table 5.

Table 5. The comparison results of DAEMDA and its degeneration models.

Method DAE-A DAE-B DAE-C DAE-D DAEMDA

AUC 0.9233 0.9248 0.9261 0.9381 0.9439
AUPR 0.9217 0.9272 0.9257 0.9393 0.9429

Meanwhile, in order to obtain the best performance of the model, we designed four
variants for the combination of the two-channel feature embedding, namely, the linear
change-based combination, M-LIN, the dot product-based combination, M-DOT, the mean
pooling-based combination, M-MEAN, and the summation-based combination, M-ADD.
The experimental results on the HMDD v3.2 dataset are shown in Table 6.

Table 6. The comparison results of DAEMDA and its variant models.

Method M-LIN M-DOT M-MEAN M-ADD DAEMDA

AUC 0.9405 0.9415 0.9420 0.9422 0.9439
AUPR 0.9401 0.9391 0.9394 0.9405 0.9429

We can see from the experimental results in Table 6 and Figure 5 that the best perfor-
mance is obtained with the maximum pooling-based combination used in this method.
Based on the above two sets of experiments, we can conclude that (1) both of our encoders
are effective, and the absence of either encoder in our model causes a loss in performance;
(2) our improved approach is effective, and our encoders perform better compared to using
traditional encoders; (3) the way the features are combined is also important to some extent,
and choosing the right combination gives the model the relatively best performance.
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3.4. Parameter Analysis
3.4.1. Number of Attention Heads

Choosing an appropriate number of multi-head attention heads can improve the
performance of the model. If too few heads are chosen, important information may be lost
when learning features, while choosing too many heads can increase the complexity of the
model or even learn invalid information. We compare the performance of the model with
different numbers of self-attention encoder heads, U, and graph attention encoder heads, H,
through several experiments. The results of the experiments are shown in Figure 6, which
shows that the performance of the model is relatively optimal when U = 4 and H = 4, and
the model is more sensitive to the change of U than to the change of H.
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3.4.2. Number of Feature Dimension

The size of the feature dimension encoded by the encoder in deep learning is also one
of the important factors affecting the performance of the model. Generally speaking, the
larger the feature dimension, the more information the model has, but it also increases
the computational burden and the risk of overfitting. While a lower feature dimension
can reduce the computational burden, it also brings problems such as information loss
and underfitting. Therefore, a reasonable choice of feature dimension size is crucial to the
performance of the model. So, in order to obtain the optimal feature encoding dimension,
we conducted experiments on different feature dimensions. The experimental results are
shown in Figure 7, and we can see that the model has the best performance when the
feature dimension is 512.
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4. Case Study

Cancer is a common and serious disease, and many studies in recent years have
shown that specific miRNA expression changes are associated with cancer progression,
metastasis, and prognosis. To further verify the validity of our proposed model, we
conducted case studies on three different cancers. Specifically, we trained our model
based on the data from HMDD v3.2 and removed the association data associated with the
above diseases in the association network sequentially. Then, we ranked all the miRNAs
predicted for the candidate diseases according to their prediction scores, and we validated
the ranked results using the HMDD v3.2 database. The top 30 miRNAs predicted for
the three diseases were all validated by the HMDD v3.2 database, after which we again
selected the top 10 miRNAs among the top 100 miRNAs, with positive prediction results
that were not validated by the HMDD database, and validated them using the dbDEMC
3.0 database (https://www.biosino.org/dbDEMC/index (accessed on 3 August 2023)) [36].
The prediction results are shown in Table 7 and Figure 8. By this more rigorous validation
than that of previous researchers, among the top 10 miRNAs regarding breast cancer
association prediction, all could be validated by the dbDEMC 3.0 database. Among the
top 10 miRNAs regarding gastric cancer association prediction, except for hsa-mir-133a-1,
which was not supported by relevant literature, the remaining 9 miRNAs were all validated
in dbDEMC 3.0. Among the top 10 miRNAs regarding lung cancer association prediction,
the overall prediction accuracy reached 90%, except for hsa-mir-19b-2, which was not
supported by relevant literature.

Table 7. Top 10 predicted miRNAs associated with breast cancer, gastric cancer, and lung cancer.

Cancer
Top 10 Prediction

Rank miRNA Evidence Rank miRNA Evidence

Breast Cancer 1 hsa-mir-28 dbDEMC 6 hsa-mir-362 dbDEMC
2 hsa-mir-483 dbDEMC 7 hsa-mir-208 dbDEMC
3 hsa-mir-99b dbDEMC 8 hsa-mir-19b-2 dbDEMC
4 hsa-mir-136 dbDEMC 9 hsa-mir-433 dbDEMC
5 hsa-mir-431 dbDEMC 10 hsa-mir-208b dbDEMC

Gastric Cancer 1 hsa-mir-29b-2 dbDEMC 6 hsa-mir-92a-1 dbDEMC
2 hsa-let-7e dbDEMC 7 hsa-mir-98 dbDEMC
3 hsa-mir-33a dbDEMC 8 hsa-mir-324 dbDEMC
4 hsa-mir-424 dbDEMC 9 hsa-mir-138 dbDEMC
5 hsa-mir-133a-1 Unconfirmed 10 hsa-mir-663a dbDEMC

Lung Cancer 1 hsa-mir-424 dbDEMC 6 hsa-mir-99b dbDEMC
2 hsa-mir-125b-2 dbDEMC 7 hsa-mir-30 dbDEMC
3 hsa-mir-181b dbDEMC 8 hsa-mir-483 dbDEMC
4 hsa-mir-23b dbDEMC 9 hsa-mir-449b dbDEMC
5 hsa-mir-19b-2 Unconfirmed 10 hsa-mir-16-1 dbDEMC

https://www.biosino.org/dbDEMC/index
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Figure 8. The miRNA–disease association sub-network obtained through experiments. In the figure,
purple nodes represent miRNAs, green nodes represent diseases, gray edges between the two types
of nodes represent the associations that have been confirmed by databases, and red edges represent
associations predicted by the present method that have a high probability of correlation but have not
yet been confirmed.

5. Discussion

Our study differs from previous studies in that, first, instead of directly considering
local feature information between nodes and neighboring nodes, or nodes and meta-paths
in the graph, we integrate the global feature information of the nodes in the network. It also
integrates the graph properties of the network when mining the global information features,
which enables the model to discover high-quality inner information more efficiently and
generate embedding representations that are more favorable for MDA prediction. Further-
more, we refrain from directly employing GCN to aggregate neighboring node features.
Instead, we opt to re-encode the shallow feature information after GCN encoding, using
node-level attention. This enhances the aggregation of inter-node correlation information
and network topology within complex networks. In addition, we have designed an em-
bedding combination method tailored to this model, enabling the organic fusion of the
dual-channel feature embeddings obtained from the feature encoder.

Our method excels at concentrating on the global feature information of nodes, ef-
fectively leveraging the graph properties to create high-quality embeddings, bolstering
the model’s capacity to learn node representations, and generating superior embedded
representations based on both self-attention and graph attention mechanisms. Moreover,
DAEMDA demonstrates outstanding predictive performance in comparative experiments,
cross-validation, and case study experiments. Therefore, DAEMDA serves as an effective
and invaluable research tool for guiding and advancing research in the field of microRNAs.

However, the biological process of miRNAs involves multiple segments; products of
different stages in the same miRNA can play different roles in targeting different target
genes or in different biological processes, and this is likely to create variability in the associ-
ation between miRNAs and different diseases. Studies [37,38], for example, investigated
the effects of different end products of miR-143 on hepatocellular carcinoma and colon
cancer, respectively. In the future, as more mature miRNA information is refined, in order
to predict the association between relevant miRNAs and diseases at a finer granularity,
we will expand the training data and combine more biological characterization informa-
tion to achieve this purpose. This will help us to understand the intricate relationship
between miRNAs and diseases in a more detailed way, and thus promote the progress of
related fields.
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