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Abstract: The application of graphene-based materials in medicine has led to significant techno-
logical breakthroughs. The remarkable properties of these carbon materials and their potential for
functionalization with various molecules and compounds make them highly attractive for numerous
medical applications. To enhance their functionality and applicability, extensive research has been
conducted on surface modification of graphene (GN) and its derivatives, including modifications
with antimicrobials, metals, polymers, and natural compounds. This review aims to discuss recent
and relevant studies related to advancements in the formulation of graphene composites, address-
ing their antimicrobial and/or antibiofilm properties and evaluating their biocompatibility, with
a primary focus on their biomedical applications. It was concluded that GN surface modification,
particularly with compounds intrinsically active against bacteria (e.g., antimicrobial peptides, silver
and copper nanomaterials, and chitosan), has resulted in biomaterials with improved antimicrobial
performance. Furthermore, the association of GN materials with non-natural polymers provides
composites with increased biocompatibility when interfaced with human tissues, although with
slightly lower antimicrobial efficacy. However, it is crucial to highlight that while modified GN
materials hold huge potential, their widespread use in the medical field is still undergoing research
and development. Comprehensive studies on safety, long-term effects, and stability are essential
before their adoption in real-world medical scenarios.

Keywords: graphene-based materials; surface modification; antimicrobial activity; biocompatibility;
biomedical applications

1. Introduction

In recent years, graphene materials have attracted significant interest due to their
remarkable properties and various applications. Graphene (GN) is a two-dimensional
carbon allotrope composed of a single layer of carbon atoms arranged in a hexagonal
lattice [1]. This structure, which has a high surface area and large aspect ratio, confers high
electronic and thermal conductivities to GN, as well as superior mechanical strength [2–4].
In addition, GN exhibits a high ability to interact with other molecules through various
processes, including physical and chemical interactions [5].

Graphene derivatives can be generated by introducing oxygen-containing functional
groups to the GN structure or reducing its oxide form, obtaining graphene oxide (GO)
or reduced graphene oxide (rGO) [6], respectively. Additionally, GN monolayers can be
modified with metals, antimicrobial drugs, polymers, and natural compounds [7–10]. While
these derivatives preserve their original properties, they also offer enhanced advantages,
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such as improving the GN dispersion factor in solvents or polymeric matrices and reducing
GN toxicity [11–13]. As a result, GN has been applied in numerous industries, including
construction [14], energy [15], food [16], environmental [17], and biomedical [18].

Within the medical field, there have been notable technological advances in the appli-
cation of GN and its derivatives in drug/gene delivery, biosensing, bioimaging [19], wound
healing [20], and tissue engineering [18]. Furthermore, due to the antimicrobial activity
and biocompatibility of GN-based materials, they are deemed suitable for manufacturing
implantable medical devices such as cardiovascular stents, orthopaedic scaffolds, and
urinary implants [21,22].

To date, different mechanisms have been proposed to explain the antimicrobial activity
of GN and its derivatives (Figure 1). GN’s sharp edges can physically damage bacterial cell
membranes, leading to loss of their integrity, leakage of intracellular content, and, ultimately,
cell death [23–25]. GN can also generate oxidative stress, which may come from different
paths—reactive oxygen species (ROS)-dependent or ROS-independent pathways—which, in
either case, disrupt cellular functions, resulting in cell inactivation [25,26]. Lastly, GN-based
materials can also wrap and trap bacterial cells [26–28]. GN can act as a barrier that traps and
isolates bacteria from the environment, further inhibiting their proliferation. Furthermore,
this wrapping/trapping effect induces cell membrane damage in combination with the
other mechanisms mentioned previously [28]. The interaction between GN and bacterial
cell membranes is believed to be the driving factor behind the toxicity exerted by these
carbon materials.
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Figure 1. Schematic representation of the antibacterial mechanisms of GN and factors influencing its
antimicrobial activity. (1) Penetration and disruption of the bacterial cell membrane with consequent
leakage of the intracellular content; (2) oxidative stress with (a) and without (b) generation of reactive
oxygen species (ROS); (3) bacteria wrapping/trapping.

The antimicrobial potential of GN is related not only to its structural properties
(e.g., particle size and number of layers) but also to the surface modification, the nature of
the targeted microorganism (Gram-positive or Gram-negative bacteria), and the environ-
ment where GN and microbial cells interact (Figure 1).

Smaller GN particles with a higher surface-to-volume ratio can interact more ef-
fectively with microbial cells and affect their membrane integrity [29,30]. In addition,
smaller particles may diffuse more easily within microbial biofilms, allowing better dis-
ruption of their structure and function [31]. Likewise, few-layer GN sheets have shown a
strong antimicrobial effect, leading to significant damage to microbial cell membranes [32].
Contrarily, more layers decrease the GN dispersibility and its contact with microorgan-
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isms [26]. Previous studies have also reported that GN modified with cationic functional
groups is more toxic to microbial cells than GN containing neutral or negatively charged
groups [33,34]. This may be attributed to favorable electrostatic interactions between the
positively charged GN surfaces and negatively charged microbial cell membranes [34].
Functionalization can also change the GN surface hydrophobicity [33], thereby enhancing
its dispersibility [35]. Furthermore, GN surface modification allows the attachment of
bioactive molecules, such as antimicrobial agents or peptides, which specifically target and
disrupt microbial cells [8,36].

Studies have revealed that GN and its derivatives, such as GO and rGO, can inactivate
both Gram-positive and Gram-negative bacteria in either planktonic or sessile states [37].
However, it has been evidenced that these graphene-based materials are more effective
towards Gram-positive than Gram-negative bacteria [38,39]. While Gram-positive bacteria
contain a plasmatic membrane and a thick peptidoglycan layer, Gram-negative bacteria
have an outer membrane mainly composed of lipopolysaccharides, which may offer addi-
tional protection against chemical and physical stress [40]. Additionally, GN materials have
shown promising antimicrobial activity against drug-resistant bacteria; therefore, they can
be considered for therapeutic purposes [41].

When using GN materials for medical applications, it is crucial to comprehensively
evaluate their biocompatibility to ensure that they are safe for use in real scenarios, such
as medical devices or wound dressings. Numerous studies have been conducted and
the results are mostly promising [27,42–44]. In vitro studies have shown that GN-based
materials can interact with human cells, and their effects on cell viability and proliferation
can vary depending on factors like GN size, concentration, and surface functionaliza-
tion [45,46]. In general, lower concentrations and well-dispersed GN tend to be more
biocompatible. Likewise, surface functionalization plays a significant role in increasing GN
biocompatibility [45].

Despite the plentiful range of GN-based materials developed in recent years, most
are still far from practical biomedical applications. As a result, further investigation is
necessary to understand the functionality, applicability, and safety of these carbon materials.
Hence, this review aims to critically discuss recent progress in the formulation of graphene
composites, assessing their antimicrobial and/or antibiofilm activities while also evaluating
their biocompatibility, with a focus on biomedical applications. Research involving GN
and its derivatives modified with antimicrobials, metals, polymers, or natural compounds
is addressed (Figure 2). By summarizing and categorizing recently developed GN-based
composites based on their surface modification type, this review provides a comprehensive
perspective on the applicability and effectiveness of GN materials in the medical field,
including insights into GN–bacteria interactions. Additionally, it serves as a valuable
resource to aid researchers in the development and optimization of GN materials tailored
for specific medical applications.
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biomedical field.

2. Graphene Modified with Antimicrobials

One desirable feature of graphene is its capacity to bind to a variety of molecules,
including antimicrobial agents, peptides, and biocides. This capability not only broadens
the range of potential applications of GN materials but also has the potential to enhance
their antimicrobial activity and biocompatibility [47]. Table 1 summarizes recent studies
that assessed the biocompatibility and antimicrobial performance of GN materials modified
with antimicrobial compounds, including antibiotics [48], antimicrobial peptides [8,49,50],
and disinfectants [36].

Table 1. Studies focusing on the biocompatibility and antimicrobial activity of graphene modified
with antimicrobials.

Graphene Material Biomedical
Application Biocompatibility Microorganism Main Conclusions Ref.

Doxycycline
(Dox)-graphene

oxide (GO)
immobilized on
titanium (TiO2)

Medical devices

Dox-GO/TiO2 did
not affect the

viability of human
fibroblasts (over 80%

cell viability).

Escherichia coli
Staphylococcus

aureus

Dox-GO/TiO2 reduced the
viability of adhered bacteria

by over 90%, whereas the
GO/TiO2 surface

inactivated adhered bacteria
by 40%.

[48]

Antimicrobial
peptide

(CATH-2)–reduced
graphene oxide

(rGO)

Medical devices

Functionalized rGO
induced low

cytotoxicity towards
erythrocytes in

comparison to rGO
alone.

E. coli

Peptide-functionalized rGO
exhibited higher

antimicrobial activity
compared to rGO (13.3- and

21.8-mm inhibition halo).

[49]
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Table 1. Cont.

Graphene Material Biomedical
Application Biocompatibility Microorganism Main Conclusions Ref.

Antimicrobial
peptide (ponericin
G1)/growth factor

(bFGF)/poly(lactide-
co-glycolide
(PLGA)-GO
composite

Wound healing

Produced composite
increased cell
proliferation

compared to PLGA
(p < 0.05).

E. coli
S. aureus

Ponericin G1/PLGA-GO
reduced bacteria growth

compared to PLGA or
PLGA-GO composite

(p < 0.05).

[8]

Antimicrobial
peptide

(OH30)/polyethylene
glycol (PEG)-GO

Wound healing

OH30/PEG-GO had
high cell viability

(over 80%) and low
toxicity.

S. aureus

In vitro data demonstrated
that OH30 released by the

synthesized composite
inhibited S. aureus growth

by up to 95% after 3 h.
In vivo data indicated that,

on day 7, the number of
S. aureus in wounds

containing the composite
was 6 times less than OH30

or PEG-GO (p < 0.05).

[50] *

N-halamine-GO
fibrous membrane NS NP E. coli

Synthesized composite
exhibited high biocidal
activity against E. coli

(>90%).

[36]

NP, Not Performed; NS, Not Specified; *, in vivo study.

Tran et al. [48] modified the GO surface with doxycycline (Dox), a bacteriostatic antibi-
otic, and coated titanium (TiO2) surfaces for potential application in medical devices. The
results demonstrated that Dox-modified GO/TiO2 surfaces reduced the viability of adhered
bacteria by 90% compared to the 40% reduction observed with GO/TiO2 surfaces. This
suggests that Dox exhibited a synergistic effect with the GO material, efficiently inhibiting
bacterial adhesion. This antibiotic acts by inhibiting bacterial protein synthesis [51] and
likely makes cells more susceptible to the action of GO. Concerning biocompatibility, these
materials did not adversely affect the viability of human fibroblasts, making them suitable
for potential medical applications [48].

Other authors have modified GO surfaces with antimicrobial peptides (AMP), in-
cluding the N-terminal fragment of Cathelicidin-2 (CATH-2) [49], ponericin G1 [8], or
OH-CATH30 (OH30) [50]. In vitro results demonstrated that this association significantly
impaired the growth of Escherichia coli and Staphylococcus aureus (up to 95% reduction). Fur-
thermore, data from an in vivo study revealed that wounds containing AMP-GO materials
exhibited six times fewer S. aureus cells than those containing AMP or the GN material
alone [50]. The antimicrobial activity of AMP is well known, as they act by interacting with
bacterial cell membranes, increasing their permeability and leading to cell death [49]. Thus,
both AMP and GO target bacterial membranes, strengthening the antimicrobial action of
the synthesized material. Additionally, these AMP-GO materials displayed low cytotoxicity
towards mammalian cells (over 80% cell viability) [8,49,50].

Lastly, Lan et al. [36] developed an N-halamine-GO fibrous membrane, which was
capable of inactivating E. coli cells by over 90%. N-halamines can transfer active halogen
ions (e.g., Cl+) to bacteria through direct contact or release, thereby exerting antibacterial
effects in combination with GO.

Although the materials mentioned above have been tested against a limited number
of bacterial species (only E. coli and S. aureus), results suggest that they have promis-
ing antibacterial activity (over 90% biocidal activity) and excellent biocompatibility with
human tissues.
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3. Graphene Modified with Metals

Various metals and metal oxides have been utilized to modify the surface of GN and
its derivatives in order to enhance their antimicrobial activity. Metals are known for their
strong antimicrobial properties against a wide range of pathogens [52–54]. However, their
biocompatibility can vary depending on factors such as the type of metal chosen and the
method of conjugation.

Table 2 presents studies that have evaluated the antimicrobial activity and biocompati-
bility of GN materials modified with metals or metal oxides. Several authors have focused
on surface-modifying GO [55,56] or rGO [57,58] with silver nanoparticles (AgNPs). The
resulting composites exhibited higher inactivation rates against both Gram-positive and
Gram-negative bacteria, with the exception of the composite synthesized and tested by
Wierzbicki et al. [55] against Salmonella enteritidis (approximately 50% reduction; Figure 3).
The modification of GN-based materials with AgNPs results in a synergistic effect, as they
inactivate bacteria by interacting with proteins and enzymatic thiol groups [57]. Further-
more, composites containing AgNPs appear safe for medical use.

Table 2. Studies addressing the biocompatibility and antimicrobial activity of graphene modified
with metals.

Graphene Material Biomedical
Application Biocompatibility Microorganism Main Conclusions Ref.

Silver nanoparticles
(AgNPs)-reduced

graphene oxide (rGO)
Medical textiles NP Escherichia coli

AgNPs-rGO composites
exhibited enhanced

activity against E. coli
(100% inactivation)

compared to rGO (82.5%
inactivation).

[57]

AgNPs-graphene
oxide (GO) NE

The viability of
human cells was not

changed when
incubated on

nanoplatforms
coated with
AgNPs-GO.

Salmonella
enteritidis

AgNPs-GO nanoplatform
significantly inhibited

S. enteritidis growth (over
50% cell inactivation).

[55]

AgNPs-rGO
immobilized into

polyurethane/cellulose
acetate matrix

Wound healing

In vivo data
demonstrated that
AgNPs-rGO-based
film significantly

promoted the wound
healing process.

Pseudomonas
aeruginosa

Staphylococcus
aureus

The produced film
exhibited an inactivation

rate of 100% for
Gram-negative bacteria

and 95% against
Gram-positive bacteria.

[58] *

AgNPs-GO deposited
on nickel-titanium

alloy
Medical devices NP Streptococcus

mutans

AgNPs-GO reduced the
number of S. mutans

viable cells by up to 5 Log.
[56]

Gold (Au)-decorated
amine-functionalized

graphene oxide
(NH2-GO)

Implant devices

Au-NH2-GO did not
affect the viability of

human cells
(approximately
100% viability).

Bacillus subtilis
E. coli

P. aeruginosa
S. aureus

The synthesized material
exhibited a higher (5-fold
more) antibacterial activity
against Gram-positive and

Gram-negative bacteria
than bare Au or NH2-GO

material.

[59]
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Table 2. Cont.

Graphene Material Biomedical
Application Biocompatibility Microorganism Main Conclusions Ref.

Copper oxide
(CuO)-GO

nanohybrids into
bacterial cellulose (BC)

matrix

NS

CuO-GO/BC film
exhibited excellent

biocompatibility
towards fibroblast

cells (>100%).

B. subtilis
E. coli

P. aeruginosa
S. aureus

After 3 h, CuO-GO/BC
films completely

inactivated Gram-positive
bacteria while only

reducing the viability of
Gram-negative bacteria

by 20%.

[52]

CuO-rGO NS NP P. aeruginosa

CuO-rGO composites led
to complete bacterial
inactivation (7 Log

reduction).

[53]

Copper nanoparticles
(CuNPs)-graphene
(GN) supported on
silicon (Si) wafers

NS

CuNPs-GN/Si
showed slight

toxicity for human
cells (15% reduction

in cell viability).

E. coli
S. aureus

In the presence of
CuNPs-GN/Si films,
S. aureus growth was

completely inhibited, and
E. coli viability was

reduced by 87%.

[54]

Palladium
(Pd)/polypyrrole

(PPy)-rGO composite

Tissue
engineering

Pd/PPy-rGO (<100
µg/mL) did not

substantially affect
osteoblast viability

(>80%).

B. subtilis
E. coli

Klebsiella
pneumoniae

P. aeruginosa

Pd/PPy-rGO
nanocomposite

significantly inhibited the
biofilm formation of

B. subtilis (72%), E. coli
(90%), K. pneumoniae

(89%), and P. aeruginosa
(83%).

[60]

Cerium oxide
(CeO2)-GO Wound healing NP

E. coli
P. aeruginosa

S. aureus
Salmonella typhi

CeO2-GO nanocomposite
inhibited E. coli,

P. aeruginosa, S. aureus, and
S. typhi biofilms by 38, 40,
31, and 35%, respectively.

[61]

NP, Not Performed; NS, Not Specified; *, in vivo study.
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Figure 3. Scanning electron microscope (SEM) images of (a) Salmonella enteritidis bacteria and
(b) S. enteritidis growing on silver nanoparticles (AgNPs)-graphene oxide (GO)-coated nanoplatform.
Reprinted with permission from Ref. [55]. Copyright 2019 The Authors.

The second most common metal used for GN surface modification is copper (Cu),
either in the nanoparticle [54] or oxide form [52,53]. In general, Cu-GN materials demon-
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strated superior antimicrobial activity against Gram-positive bacteria (100% inactivation)
compared to Gram-negative ones (20–90% inactivation), which can be attributed to the more
intricate cell membrane structure of Gram-negative bacteria. The synthesized materials
carry a positive charge that attracts bacterial membranes through physical adsorption and
electrostatic interactions [52]. Additionally, they induced the generation of ROS, which ulti-
mately kill bacteria. Furthermore, the developed materials exhibit excellent compatibility
with human tissues [52,53].

The surface modification of GO with gold (Au) also exhibited promising activity
against pathogenic bacteria (five-fold reduction) and did not affect the viability of human
cells [59].

Although palladium (Pd)-reduced GO exhibited low biocompatibility, it is considered
a promising material for tissue engineering, with bacterial inactivation ratios ranging from
72 to 90%, depending on the type of bacteria [60]. This composite wraps the bacterial cells
and inhibits their metabolism. Lastly, cerium oxide (CeO2)-GO materials demonstrated
moderate antimicrobial activity (30–40% bacterial inactivation) against both Gram-positive
and Gram-negative bacteria by inducing ROS production [61].

Although they may be associated with lower biocompatibility, composites resulting
from the combination of carbon materials and metals, particularly silver and copper,
exhibit strong antimicrobial activity, mainly against Gram-positive bacteria. In addition,
approximately 80% of the antimicrobial activity of developed GN–metal composites is
attributed to GN action.

4. Graphene Modified with Polymers

Graphene surface modification with polymers is an interesting approach that can
offer several advantages, including enhanced GN dispersion and improved mechanical
properties and biocompatibility [62,63]. In addition, the association with polymers can
potentially increase the antimicrobial activity of GN-based materials, as the polymers serve
as a matrix that helps GN dispersion [35], thus promoting contact with microorganisms.
Furthermore, some polymers have inherent antimicrobial properties because they contain
cationic groups that can facilitate interactions with bacteria [64,65].

Table 3 summarizes studies addressing the biocompatibility and antimicrobial activity
of GN materials modified with natural and non-natural polymers. Both pristine GN and GO
have been modified with various polymers for potential medical applications (e.g., tissue
engineering, wound dressing, or implantable medical devices).

Hajduga et al. [64] produced polycaprolactone (PCL)-GN composites and evaluated
their antimicrobial activity against Gram-positive and Gram-negative bacteria. While these
composites were able to inactivate S. aureus by 90%, no effect was observed against E. coli,
although both materials (GN and PCL) have known antimicrobial activity. These discrepant
results may be related to the morphology of the tested bacteria, as previously described.
In turn, poly(lactic-co-glycolic acid) (PLGA)-GN composites were developed and tested
against E. coli under electric stimulation [9]. Results indicated that, at lower frequencies,
synthesized films decreased bacterial viability by up to 60%. Lastly, Oliveira et al. [66]
demonstrated that polydimethylsiloxane (PDMS)-GN composites significantly reduced the
number of total (57%), viable (69%), culturable (55%), and viable but non-culturable (VBNC)
cells (85%) of S. aureus biofilms, while a decrease of 25% in total cells and approximately
52% in viable, culturable, and VBNC cells was observed for Pseudomonas aeruginosa biofilms.

Concerning GO, its association with polyoxyalkyleneamine (POAA) [67] or poly(ε-
caprolactone) (PCL) [68] resulted in composites that significantly decreased the viability of
Gram-positive and Gram-negative bacteria (approximately 80%). Furthermore, a recently
developed epoxy resin rich in GO demonstrated promising in vitro inactivation percentages
against E. coli and S. aureus (57 and 97%, respectively) [69]. However, when evaluated
in vivo, the antibacterial efficacy of this composite decreased to 47% for E. coli and 68% for
S. aureus.
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In vitro and in vivo studies have shown that GO surface modification with natural
polymers, such as chitosan (CS) or carboxymethyl CS, increased its antimicrobial activity,
resulting in over 90% inactivation of Bacillus subtilis, E. coli, and S. aureus cells [43,67],
with no toxic effects observed in mammalian cells [43]. The combination of CS/poly(vinyl
alcohol) with GO resulted in nanocomposites that could completely inhibit the growth of a
wide range of pathogens, even at low concentrations (0.75 and 1 wt.%) [10,70]. Furthermore,
biocompatibility assays demonstrated that these composites exhibited no toxicity towards
pre-osteoblast cells, with over 70% cell viability [10]. Also, CS/polyethylene glycol-GO
composites were promising for reducing E. coli and S. aureus viability (over 95% cell
inactivation) while maintaining mammalian cell viability at 95% [42]. In fact, CS is known
to be a powerful antibacterial compound that inactivates bacterial cells by interacting with
their negatively charged membranes, leading to a decrease in their permeability and leakage
of intracellular content. Additionally, CS can bind to bacterial DNA, thereby inhibiting
the replication process. Lastly, CS is able to chelate metal ions which are essential for
bacterial growth and proliferation [71]. Therefore, the surface modification of GN materials
with CS enhances their interactions with bacteria, leading to more significant cell damage
(Figure 4a,c).
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microscopy (TEM). Reprinted with permission from Ref. [67]. Copyright 2018 The Authors.

Furthermore, the GO surface modification with folic acid and silk fibroin resulted in
composites with high antibiofilm activity (80% inhibition of biofilm formation by P. aerugi-
nosa) and biocompatibility (97% fibroblast viability) [71].

In general, these results indicate that the addition of GN materials to natural and
non-natural polymers increased their antimicrobial activity by up to 70%, demonstrating
a synergistic effect. Several authors have suggested that the main mechanism of action
of polymer–GN composites is the wrapping of bacterial cells. When an external barrier
made of GN-based materials is formed around the bacteria (Figure 4c) [67], it facilitates
contact with cells, reduces access to essential nutrients for microbial growth, and induces
oxidative stress, ultimately leading to cell death. Other authors have demonstrated that the
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effectiveness of polymer-containing composites results from a combined bactericidal and
bacterial-repelling effect [72].

Regarding biocompatibility, human cells exposed to GN-based composites maintained
their viability and proliferation capability [68,69]. In general, the combination of GN
materials and polymers yielded composites with improved biocompatibility and substantial
in vitro antimicrobial activity against medical pathogens.

Table 3. Studies reporting the biocompatibility and antimicrobial activity of graphene modified with
polymers.

Graphene Material Biomedical
Application Biocompatibility Microorganism Main Conclusions Ref.

Non-natural polymers

Polyoxyalkyleneamine
(POAA)-graphene

oxide (GO)
Surface coatings NP Bacillus subtilis

Escherichia coli

After 3 h, bacteria exposed
to POAA-GO decreased
their viability to at least

75%.

[67]

Poly(ε-caprolactone)
(PCL)-GO

Tissue
engineering

Human fibroblasts
kept their

culturability and
proliferation for up

to 14 days.

E. coli
Staphylococcus

epidermidis

PCL-GO composites
inactivated S. epidermidis

and E. coli adhered cells by
80% after 24 h.

[68]

PCL-graphene (GN) Nasal implants NP
E. coli

Staphylococcus
aureus

The efficacy of PCL-GN
against S. aureus was

about 90%. In contrast,
this composite did not
exhibit activity against

E. coli.

[64]

Epoxy-rich-GO
(er-GO) Wound dressing

Human cells
exposed to er-GO
exhibited viability
ratios greater than

100%.

E. coli
S. aureus

er-GO composite
decreased in vitro E. coli
and S. aureus viability by

up to 57 and 97%,
respectively. In vivo data
indicated that E. coli and

S. aureus viability was
reduced by 47 and 68%,

respectively, in presence of
er-GO.

[69] *

Poly(Lactic-co-
Glycolic Acid)

(PLGA)-graphene
nanoplatelets (GNP)

NE NP E. coli

At 15 MHz, PLGA-GNP
composites reduced E. coli
viability by 33%, while at
lower frequencies (10 and

5 MHz), these films
decreased bacteria

viability by up to 60%.

[9]

Polydimethylsiloxane
(PDMS)-GNP

Implantable
medical devices NP

Pseudomonas
aeruginosa
S. aureus

The PDMS-GNP reduced
the number of total (57%),
viable (69%), culturable
(55%), and VBNC cells

(85%) of S. aureus biofilms.
A decrease of 25% in total

cells and about 52% in
viable, culturable, and

VBNC cells was observed
for P. aeruginosa biofilms.

[66]
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Table 3. Cont.

Graphene Material Biomedical
Application Biocompatibility Microorganism Main Conclusions Ref.

Natural polymers

Chitosan
(CS)-graphene oxide

(GO)
Surface coatings NP B. subtilis

E. coli

After 3 h, bacteria exposed
to CS-GO composite

decreased their viability to
less than 10%.

[67]

CS/poly(vinyl alcohol)
(PVA)-GO

nanocomposites

Tissue
engineering

After 30 days of film
implantation, the

absence of injuries in
the intervened areas
with normal healing

was observed.

Bacillus cereus
S. aureus

E. coli
Salmonella spp.

Biocomposites containing
0.75 and 1 wt.% GO
completely inhibited

pathogen growth.

[70] *

CS/PVA-GO Wound healing

CS/PVA-GO
hydrogels showed

nontoxicity towards
pre-osteoblast cells

(>70% cell viability).

E. coli
S. aureus

Hydrogels exhibited high
antimicrobial activity

against E. coli and
S. aureus (up to 35 and
32 mm inhibition halo,

respectively).

[10]

CS/polyethylene
glycol

(PEG)-decorated GO
biocomposite

Wound healing
Cell survival on

CS/PEG-GO was
95.4%.

E. coli
S. aureus

CS, 1 wt% CS/GO and
1 wt% CS/PEG-GO were
able to inactivate S. aureus
by 80, 85, and 100% and
E. coli by 65, 85, and 95%,

respectively.

[42]

Carboxymethyl
Chitosan

(CC)-GO-based
Sponge

Wound healing

CC/L-cysteine-GO
sponge showed a
high cell viability

rate, as
demonstrated by

Live/Dead staining.

E. coli
S. aureus

In vivo data indicated that
the CC/L-cysteine-GO

sponge had a faster
wound-healing rate than

CC/GO. In vitro tests
revealed that the addition
of L-cysteine-GO and GO
to CC increased sponges’

antimicrobial activity.

[43] *

Folic acid (FA)/silk
fibroin (SF)-GO

Wound healing
Tissue

engineering

The viability of
fibroblast cells

exposed to
FA/SF-GO for 24 h

was 97%.

P. aeruginosa

After 24 h, FA/SF-GO film
reduced biofilm formation

by 80% compared to
control (polystyrene).

[73]

NP, Not Performed; NS, Not Specified; VBNC, viable but non-culturable; *, in vivo study.

5. Graphene Modified with Natural Compounds

Owing to their biodegradability, renewability, and biocompatibility, there has been
growing interest in composites that incorporate natural compounds. In recent years,
several natural compounds, including vivianite [74], usnic acid (UA) [75], quercetin [76],
and juglone [76], have been studied in conjugation with GN composites. Table 4 presents
the biocompatibility and antimicrobial activity of these modified GN materials against
several Gram-positive and Gram-negative bacterial species.
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Table 4. Studies demonstrating the biocompatibility and antimicrobial activity of graphene modified
with natural compounds.

Graphene Material Biomedical
Application Biocompatibility Microorganism Main Conclusions Ref.

Hydroxyapatite/
Vivianite-GO NS

Cell viability of
osteoblasts in the
presence of this

composite was 98%.

E. coli
S. aureus

Composite exhibited
activity against E. coli and
S. aureus after 24 h (14.5
and 13.4 mm inhibition

halo, respectively).

[74]

Usnic acid (UA)-GN Medical devices NP
S. aureus

Staphylococcus
epidermidis

After 24 h, UA-GN
inhibited S. aureus and

S. epidermidis biofilms by
3 Log at 25, 50, 100, and

200 µg/mL AU/GO
compared to GN films and
glass, except for S. aureus

growing on 25 µg/mL
AU-GN. After 96 h,

staphylococcal biofilms
were reduced by 5 Log
compared to the control

(glass).

[75]

Quercetin-GO Drug delivery
systems

GO-based materials
showed a

biocompatible
behavior at lower

concentrations
(>70% cell viability).

E. coli
S. aureus

Quercetin/GO composites
reduced S. aureus

culturability by 1 Log and
E. coli culturability by

5 Log.

[76]

Juglone-GO Drug delivery
systems

Materials showed a
biocompatible

behavior at lower
concentrations

(>70% cell viability).

E. coli
S. aureus

Juglone/GO composites
reduced S. aureus

culturability by 3 Log and
E. coli culturability by

5 Log.

[76]

NP, Not Performed; NS, Not Specified.

Among the studies presented, natural compounds were mainly associated with
graphene oxide.

Pandit et al. [75] conjugated GN with usnic acid and observed that, after 24 h of
contact, the synthesized composites reduced the growth of S. aureus and Staphylococcus
epidermidis by up to 3 Log in a dose-dependent manner (Figure 5). Furthermore, after 96 h,
staphylococcal biofilms were reduced by 5 Log. The potent antimicrobial activity of UA
is mainly based on the inhibition of RNA synthesis [75], which, in combination with GN
antibacterial mechanisms, impairs bacterial growth. The hydroxyapatite/vivianite-GO
composite also displayed promising antimicrobial activity against E. coli and S. aureus
while preserving the viability of osteoblast cells [74]. The ferrous (Fe2+) and calcium (Ca2+)
ions released from the composite may have contributed to potentiating its antimicrobial
performance. Moreover, hydroxyapatite is well known for its exceptional biocompatibility.
Croitoru et al. [76] modified GO surfaces with two natural antimicrobial agents, quercetin
and juglone. Quercetin and juglone/GO composites reduced S. aureus culturability by
1 and 3 Log, respectively, and E. coli culturability by 5 Log. These GO-based materials
showed biocompatible behavior at lower concentrations.

Overall, natural compounds, particularly quercetin and juglone, enhanced the antimi-
crobial activity and biocompatibility of GN-based materials intended for medical purposes.
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6. Conclusions

This review comprehensively summarizes and discusses recently developed graphene-
based materials, with a focus on their antimicrobial properties and biocompatibility, while
exploring potential medical applications such as tissue engineering, medical devices, and
wound healing.

Biocompatible and antibacterial nanomaterials are in high demand for a variety of
medical applications. The surface modification of GN and its derivatives (e.g., graphene
oxide or reduced graphene oxide) with antimicrobials (e.g., antimicrobial peptides or
biocides), metals or metal oxides, polymers, and natural compounds has enhanced the
functionality and applicability of these materials, resulting in improved antimicrobial
performance and increased biocompatibility towards human tissues.

The combination of graphene materials with agents that possess intrinsic antimicrobial
properties, such as antimicrobial peptides, metals (silver or copper), or chitosan, enhances
the effectiveness of GN materials in inactivating bacteria, especially Gram-positive bacteria,
because of their less complex membrane structure. Conversely, although promising for a
wide range of applications, the use of non-natural polymers for GN surface modification
results in composites with lower antimicrobial activity than those obtained through the
modifications mentioned above. However, GN–polymer composites exhibit superior
biocompatibility compared to antimicrobial or metal-based GN composites. In the latter
case, adverse effects on human cells are highly dependent on the type of metal used and
the methodology employed for their production.

Despite the significant progress made in these biomaterials, few in vivo studies have
validated their effectiveness and applicability, which may hinder their translation into real
medical scenarios. Additionally, studies addressing the long-term effectiveness, biocompat-
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ibility, and stability of these composites are lacking. Therefore, further research is needed
to introduce these promising biomaterials in the medical field.
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