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Abstract: Alzheimer’s disease (AD) is thought to be a series of neuroinflammatory diseases caused
by abnormal deposits of amyloid-β (Aβ) and tau protein in the brain as part of its etiology. We
focused on Aβ aggregation and M1 and M2 microglial polarity in microglia to search for novel
therapeutic agents. It has been reported that the inhibition of choline uptake via choline transporter-
like protein 1 (CTL1) in microglia preferentially induces M2 microglial polarity. However, the role
of the choline transport system on the regulation of microglial M1/M2 polarity in AD is not fully
understood. Licochalcones (Licos) A–E, flavonoids extracted from licorice, have been reported to
have immunological anti-inflammatory effects, and Lico A inhibits Aβ aggregation. In this study,
we compared the efficacy of five Licos, from Lico A to E, at inhibiting Aβ1-42 aggregation. Among
the five Licos, Lico E was selected to investigate the relationship between the inhibition of choline
uptake and microglial M1/M2 polarization using the immortalized mouse microglial cell line SIM-A9.
We newly found that Lico E inhibited choline uptake and Aβ1-42 aggregation in SIM-A9 cells in a
concentration-dependent manner, suggesting that the inhibitory effect of Lico E on choline uptake
is mediated by CTL1. The mRNA expression of tumor necrosis factor (TNF-α), a marker of M1
microglia, was increased by Aβ1-42, and its effect was inhibited by choline deprivation and Lico E
in a concentration-dependent manner. In contrast, the mRNA expression of arginase-1 (Arg-1), a
marker of M2 microglia, was increased by IL-4, and its effect was enhanced by choline deprivation
and Lico E. We found that Lico E has an inhibitory effect on Aβ aggregation and promotes polarity
from M1 to M2 microglia via inhibition of the CTL1 function in microglia. Thus, Lico E may become
a leading compound for a novel treatment of AD.

Keywords: licochalcone; microglia; choline transporter; M1/M2 polarization

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the extracel-
lular aggregation of amyloid-β (Aβ)-peptide and the consequent intracellular aggregation
of tau protein. The causes for these events are unknown, but microglial inflammatory
response would be playing a key role. The current focus is on understanding the pathogen-
esis of AD by targeting several mechanisms, including abnormal tau protein metabolism
and Aβ deposition, and the development of treatments that can suppress or modify the
progression of AD is underway. In recent years, an increasing number of studies have
recognized that neuroinflammation, primarily caused by activated microglia, is involved
in the pathogenesis of AD [1–5]. Activated microglia, such as macrophages in peripheral
tissues, exist in two polar states: the M1 phenotype, which is largely associated with the
release of inflammatory cytokines, and the anti-inflammatory M2 phenotype [6,7]. It has
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been suggested that during the early stages of AD, microglia with the M2 phenotype are
activated and have a protective (anti-inflammatory) function that attempts to clear amyloid
and release nerve growth factors [8]. The accumulation of Aβ and other toxins disrupts this
process, leading to the activation of the proinflammatory M1 phenotype and the release of
proinflammatory cytokines, causing self-proliferative neuronal damage. Some studies fol-
low this bimodal change with PET studies [9]. Controlling the M1/M2 polarity of microglia
may prevent the development of AD. Inhibiting the choline transport pathway has been
reported to suppress the secretion of inflammatory cytokines by macrophages [10,11]. Thus,
the choline transport system and cytokine release in microglia may be deeply involved.

Because choline is water-soluble, it must be taken up by the choline transporter in
order to have various physiological effects in the cell. Choline is a biological factor deeply
involved in cell growth and functions as a precursor of phospholipids such as phosphatidyl-
choline and sphingomyelin, which are major components of cell membranes [12]. Recent
studies have shown that the choline transporter-like protein 1 (CTL1) is predominantly
expressed in the mouse microglial immortalized cell line SIM-A9 and is strongly involved
in choline transport [13]. Furthermore, the inhibition of CTL1-mediated choline uptake in
SIM-A9 cells has been suggested to preferentially induce M2 microglial polarity [13]. CTL1
expressed in microglia is expected to be a therapeutic target molecule for inflammatory
diseases such as AD with activation of the microglia.

We focused on the choline transporter and searched for candidates for AD treatment.
The conditions for our search were (1) inhibition of Aβ aggregation and (2) inhibition of
choline uptake in microglia. We hypothesized that the conversion to anti-inflammatory M2
polarity could be controlled by finding a new substance that inhibits the microglial choline
transporter CTL1. Licochalcone A (Lico A), a flavonoid isolated from licorice, has been
reported to inhibit Aβ aggregation [14]. Licos A–E (Figure 1) have been suggested to have
immunological anti-inflammatory properties [15]. Therefore, we focused on the Lico family
as candidates for CTL1 inhibitors.
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Figure 1. Chemical structural formula of licochalcones A, B, C, D and E.

In this study, we first compared the inhibitory effects of five types of Licos, A–E, on
Aβ1-42 aggregation and choline uptake and selected Lico E. The aim of this study was
to investigate how Lico E affects microglial polarity via the choline transporter function.
Aβ1-42 promotes M1 polarity in microglia and secretes inflammatory cytokines, and
interleukin-4 (IL-4) promotes M2 polarity in microglia and macrophages [16,17]. In this
experiment, the mouse microglial cell line SIM-A9 was used to induce M1 polarity with
Aβ1-42 and M2 polarity with IL-4, focusing on the effects of Lico E and choline uptake via
CTL1 on each type of microglia.

2. Materials and Methods
2.1. Materials

Licos A, B, C and D were obtained from MedChem Express, Princeton, NJ, USA, and
their purities were 99.58%, 99.41%, 99.55% and more than 99%. Lico E was obtained from
Herbest (Baoji Herbest Bio-Tech Co., Ltd., Baoji, China), and its purity was over 99.17%.
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SensoLyte® Thioflavin T Aβ1-42 Aggregation Kit and Aβ1-42 peptide were purchased from
AnaSpec, Inc. (Fremont, CA, USA). The immortalized mouse microglia cell line SIM-A9
was obtained from Applied Biological Materials Inc. (Richmond, BC, Canada). RPMI 1640
medium and Penicillin-Streptomycin Solution were purchased from FUJI-FILM Wako Pure
Chemical Corporation (Osaka, Japan). Choline-free RPMI 1640 medium was purchased
from Cell Science & Technology Inst., Inc. (Sendai, Japan). CellTiter-Glo® Luminescent Cell
Viability Assay and Caspase-Glo® 3/7 Assay were purchased from Promega Corporation
(Madison, WI, USA). [3H]Choline and Hionic-Fluor were purchased from PerkinElmer Life
Sciences, Inc. (Hopkinton, MA, USA). QIA shredder and RNeasy Mini Kit were purchased
from Qiagen Inc. (Valencia, CA, USA). TaqMan® Gene Expression Assays and TaqMan
RNA-to-CT 1-Step Kit were purchased from Applied Biosystems (Foster City, CA, USA).
Fetal bovine serum was purchased from Gibco (Grand Island, NY, USA).

2.2. Aβ1-42 Aggregation

The aggregation of Aβ1-42 was measured over time using the SensoLyte® Thioflavin T
Aβ1-42 Aggregation Kit. The SensoLyte® ThT Aβ1-42 Aggregation Kit is a convenient and
standard method for measuring Aβ42 aggregation using Thioflavin T (ThT) dye, and it was
performed according to the manufacturer’s instructions. A 10 mM Lico (A–E) stock solution
in 100% dimethyl sulfoxide (DMSO) was prepared and diluted to the desired concentration
with 100% DMSO. The final DMSO concentration of Licos was set at 1%. To each well of a
non-binding 96-well black microplate (Greiner Bio-One GmbH, Frickenhausen, Germany),
5 µL of 2 mM ThT, 0.5 µL of various concentrations of Licos and 44.5 µL of 250 µg/mL
Aβ1-42 peptide were added. Assay buffer and 100% DMSO were used as vehicle controls.
The plates were loaded into a FilterMaxTM F5 Multi-Mode Microplate Reader (Molecular
Devices, LLC, Sunnyvale, CA, USA), and the fluorescence intensity was measured at 37 ◦C
with Ex/Em = 440/484 nm and 15 s shaking between reads to facilitate aggregation. The
fluorescence intensity was measured every 5 min for 60 min. The fluorescence reading from
the blank control wells was used as the background fluorescence. Each value reported is
the average of three readings for every sample. This background reading was subtracted
from the readings of the other wells. All fluorescence readings are expressed in relative
fluorescence units (RFU).

2.3. Cell Culture

SIM-A9 cells retain typical microglial characteristics and have been reported to re-
spond to inflammatory stimuli similarly to primary microglia, particularly with respect to
phagocytic activity and inflammatory signals in response to LPS and Aβ stimulation. Fur-
thermore, LPS increased the levels of inducible nitric oxide synthase and cyclooxygenase-2,
whereas IL-4 stimulation increased arg-1 levels, demonstrating that SIM-A9 cells can switch
their profiles to pro- or anti-inflammatory phenotypes, respectively [18]. SIM-A9 cells
exhibit key characteristics of cultured primary microglia and serve as a valuable model
system for the investigation of microglial behavior in vitro.

Cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum
(Gibco, Grand Island, NY, USA) and Penicillin-Streptomycin Solution (FUJI-FILM-Wako)
using non-coated flasks and 24-well plates. The medium was replaced every 3–4 days and
incubated at 37 ◦C in a humidified atmosphere of 5% CO2 and 95% air.

2.4. Measurement of Cell Number

Cell counts were measured as previously described [19]. SIM-A9 cells were seeded
in 24-well plates at 5000 cells/well, cultured for 24 h and then treated with Licos D and
E for 24 h. The cell number was determined using the CellTiter-Glo® Luminescent Cell
Viability Assay. Chemiluminescence measurements were performed using a Filter-MaxTM

F5 Multi-Mode Microplate Reader (Molecular Devices, LLC, Sunnyvale, CA, USA).
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2.5. Measurement of Caspase-3/7 Activity

Caspase-3/7 activity assays were performed as previously described [19,20]. Cells
were cultured in 48-well plates for 48 h and then treated with Lico D and E for 24 h.
Caspase-3/7 activity and cell number were simultaneously measured using the Caspase-
Glo® 3/7 Assay and the CellTiter-Glo® Luminescent Cell Viability Assay. The Caspase-
Glo® 3/7 Assay is a homogeneous, luminescent assay that measures both caspase-3 and
-7 activities. The assay provides a luminogenic caspase-3/7 substrate, which contains the
tetrapeptide sequence DEVD, in a reagent optimized for caspase activity and luciferase
activity. Luminescence was measured with a FilterMax F5 Multi-Mode Microplate Reader
(Molecular Devices, LLC, Sunnyvale, CA, USA). Caspase-3/7 activity was calculated as the
activity per number of cells.

2.6. [3H]Choline Uptake into SIM-A9 Cells

With reference to earlier studies [19,21], [3H]choline uptake analysis was carried out
using [3H]choline (specific activity: 2800 GBq/mmol). SIM-A9 cells were cultured for 48 h
using a non-coated 24-well culture plate. The cells were washed twice with 1 mL of uptake
buffer and preincubated with each concentration of Licos D and E for 20 min. Uptake buffer
was used to wash the cells twice. Next, [3H]choline (final conc. = 10 µM) was added and
taken up for 20 min at 37 ◦C. The uptake buffer was then discarded and quickly washed
three times with an ice-cold uptake buffer to terminate uptake. Aliquots of cells dissolved
in 0.1% Triton X-100 were mixed with the liquid scintillation cocktail Hionic-Fluor, and
radioactivity was measured with a liquid scintillation counter (Tri-Carb® 2100 TR, Packard,
Meriden, CT, USA). Specific uptake of [3H]choline was defined as the difference in total
[3H]choline uptake in the presence and absence of 30 mM unlabeled choline chloride.

2.7. RNA Extraction and Real-Time PCR Assay

Aβ1-42 peptide was purchased from AnaSpec, Inc. (Fremont, CA, USA). An amount
of 1 mM Aβ1-42 was dissolved in assay buffer (AnaSpec, Inc., Fremont, CA, USA), and the
fibril formation of Aβ1-42 was prepared by shaking vigorously for 15 s at 5 min intervals
for 8 h at 37 ◦C.

The mRNA expression levels of the target genes were quantified according to pre-
viously established methods [20,22,23]. Total RNA was isolated from SIM-A9 cells after
various stimuli using a QIA shredder and RNeasy Mini Kit according to the manufacturer’s
instructions. TaqMan® Gene Expression Assays (Applied Biosystems, Foster City, CA, USA;
Thermo Fisher Scientific, Inc. Waltham, MA, USA) were used to select TaqMan probes
corresponding to target mouse mRNAs (TNF-α, ARG1 and housekeeping gene β-actin).
The accession numbers of the target genes and the assay IDs of the Taq-Man probes are
TNF-α: NM_001278601, Mm00443258_m1; Arg-1: NM_001199186.1, Mm00475988_m1; and
β-actin: AK078935.1, Mm00607939_s1. Data from one-step real-time PCRs conducted using
the TaqMan RNA-to-CT 1-Step Kit (Applied Biosystems) were analyzed using the Light
Cycler 96 System (Roche Diagnostics, Mannheim, Germany). Relative mRNA expression
levels of target genes were computed using the comparative cycle time method, and the
expression levels of target genes were computed relative to β-actin.

2.8. Data Analysis

All the data are presented as the mean ± standard deviation (SD). Statistical analyses
were performed with Dunnett’s multiple comparisons test and Šídák’s multiple com-
parisons test using the statistical analysis software GraphPad Prism 9 (GraphPad, San
Diego, CA, USA). Statistics with p-values under 0.05 were considered significant. IC50
values were calculated by the non-linear regression of the data using the four-parameter
logistic equation.
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3. Results
3.1. Licochalcones A, B, C, D and E Inhibit Aβ1-42 Aggregation In Vitro

The inhibitory effect on Aβ1-42 aggregation was measured based on the fluorescence
generated by thioflavin T binding [24]. First, we compared the Aβ1-42 aggregation in-
hibitory effects of each of the five Licos A–E substances at a concentration of 100 µM. As
shown in Figure 2A, all licochalcones (Licos A–E) significantly inhibited the aggregation of
Aβ1-42 compared to the vehicle control in the order of D > E > C > B > A. In particular, we
found that Licos D and E at various concentrations significantly inhibited the aggregation
of Aβ1-42 in a concentration-dependent manner (Figure 2B,C). The IC50 values of Licos
D and E calculated from the AUC data were 30.4 and 103.7 µM, respectively. Licos A–E
at 100 µM showed no effect on the relative fluorescence intensity at Ex440 nm/Em484 nm
(Figure S1). Furthermore, we acquired UV-vis spectra of the 100 µM Lico A-E. Licos A-E
had no absorption at 440 and 484 nm (Figure S2). It was concluded that Licos A-E did not
affect the measurement system of Aβ1-42 aggregation.
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Figure 2. Effect of Licos A, B, C, D and E on Aβ1-42 aggregation. The right-side figure is the AUC
of the left-side figure. (A) The aggregation of Aβ1-42 (213 µg/mL) in the absence or presence of
Licos. The concentration of substances was 100 µM. (B) The aggregation of Aβ1-42 in the absence or
presence of Lico D. (C) The aggregation of Aβ1-42 in the absence or presence of Lico E. The AUC
data were fitted to non-linear regression analysis. Values are the mean ± SD (n = 3 samples/group).
* p < 0.05, ** p < 0.005 and *** p < 0.0005 vs. vehicle control. Statistical analysis of the data was
performed using Dunnett’s multiple comparisons test.
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3.2. Lico E Exhibits Lower Cytotoxicity than Lico D in SIM-A9 Cells

We examined the effects of Licos D and E (1.6, 3.25, 6.5 and 12.5 µM), which had strong
inhibitory effects on Aβ1-42 aggregation, on the numbers of cells and caspase-3/7 activity
of SIM-A9 cells (Figure 3). Treatment with Lico D for 24 h significantly and strongly reduced
the number of cells (EC50 = 2.9 µM) and significantly increased caspase-3/7 activity in a
concentration-dependent manner, and both effects were inversely correlated. At 2.9 µM, the
50% effective concentration of Lico D that causes cell death, caspase-3/7 activity increases
to 221.1%. On the other hand, when treated with Lico E for 24 h, a decrease in cell number
of about 30% was observed only at 12.5 µM. Treatment of Lico E up to 12.5 µM for 24 h had
no effect on caspase-3/7 activity. Lico E was found to be less cytotoxic to SIM-A9 cells than
Lico D.
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Figure 3. Effect of Licos D and E on the number of cells and caspase-3/7 activity of SIM-A9 cells.
(A) The number of viable cells was determined after each separate treatment with Licos D and E
(1.5625, 3.125, 6.25 and 12.5 µM) for 24 h. Cell number was calculated using 100% viable cells in
the vehicle control group. (B) Caspase-3/7 activity was presented as a percentage of vehicle control.
Values are the mean ± SD (n = 4). **** p < 0.0001 compared with vehicle control. Statistical analysis of
the data was performed using Tukey’s multiple comparisons test.

3.3. Licos D and E Inhibit Choline Uptake at Concentrations That Do Not Increase
Membrane Permeability

First, we examined the effect of Licos D and E on membrane permeability in SIM-A9
cells. Impaired membrane permeability induces cell death and, consequently, decreased
ATP contents are observed. We, therefore, measured ATP contents after treatment with up
to 100 µM of Licos D and E for 40 min in SIM-A9 cells. Licos D and E were observed to
impair membrane permeability and decrease ATP contents at high concentrations above
25 µM (Figure 4A,B). Based on these results, we investigated the effect of Licos D and E on
[3H]choline uptake at concentrations below 25 µM.

We examined the effects of Licos D and E on [3H]choline uptake in SIM-A9 cells since
the inhibition of CTL1-mediated choline uptake promotes polarity from M1 to M2 mi-
croglia [13]. Both Licos D and E inhibited [3H]choline uptake in a concentration-dependent
manner, with IC50 values of 17.1 and 12.4 µM, respectively (Figure 4B,C).
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Figure 4. Effects of Licos D and E on membrane permeability and [3H]choline uptake in SIM-
A9 cells. ATP contents were measured after treatment with 1.5625–100 µM of Licos D (A) and E
(B) for 40 min. ATP contents were determined using the CellTiter-Glo® Luminescent Cell Viability
Assay. After preincubation of Licos D (C) and E (D) for 20 min, 10 µM [3H]choline was added
and uptake was measured for 20 min. IC50 values of Licos D and E for inhibition of [3H]choline
uptake were 17.1 and 12.4 µM, respectively. The results are presented as a percentage of uptake
measured with the vehicle control. Values are the mean ± SD (n = 4). ** p < 0.005, *** p < 0.0005 and
**** p < 0.0001 compared with vehicle control. Statistical analysis of the data was performed using
Dunnett’s multiple comparisons test.

3.4. Choline Deficiency Suppresses Aβ1-42-Stimulated Increase in TNF-a mRNA Expression and
Enhances IL-4-Stimulated Increase in Arg-1 mRNA Expression

First, we examined the mRNA expression of M1 and M2 markers by 4 h stimulation of
Aβ1-42 and IL-4 and found that the mRNA expression of the M1 microglial marker TNF-α
and the M2 microglial marker Arginase-1 (Arg-1) was significantly increased (Figure S3).
Therefore, changes in the polarity of M1 and M2 microglia were assessed by changes in
TNF-α and Arg-1 mRNA expression, respectively.

The mRNA expression levels of TNF-α and Arg-1 in SIM-A9 cells stimulated with
Aβ1-42 or IL-4 were analyzed. SIM-A9 cells stimulated with 10 µM Aβ1-42 for 4 h showed
a significant increase in TNF-α mRNA levels under normal conditions (Figure 5A). These
enhancing effects were markedly suppressed by choline deficiency (Figure 5A). Choline
deficiency also significantly suppressed basal TNF-α mRNA expression. Stimulation of
SIM-A9 cells with IL-4 significantly increased Arg-1 mRNA in a concentration-dependent
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manner under normal conditions (Figure 5B). These potentiating effects were markedly
enhanced by choline deficiency (Figure 5B).
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Figure 5. Effect of choline deficiency on TNF-α and Arg-1 mRNA expression in SIM-A9 cells
stimulated by Aβ1-42 and IL-4. (A) Expression of TNF-α mRNA in SIM-A9 cells stimulated with
10 µM Aβ1-42 in normal or choline-free medium for 4 h. Values are the mean ± SD (n = 3). ** p < 0.005
and *** p < 0.0005 compared with normal culture medium under the same condition. †† p < 0.0001
compared with the vehicle of normal culture medium. Statistical analysis of the data was performed
using Šídák’s multiple comparisons test. (B) Expression of Arg-1 mRNA in SIM-A9 cells stimulated
with IL-4 (2.5 and 5 ng/mL) in normal or choline-free medium for 4 h. Values are the mean ± SD
(n = 3). * p < 0.05 and ** p < 0.005 compared with normal culture medium under the same condition.
Statistical analysis of the data was performed using Šídák’s multiple comparisons test. † p < 0.01 and
†† p < 0.0001 compared with the vehicle of normal culture medium. Statistical analysis of the data
was performed using Dunnett’s multiple comparisons test. Relative expression is expressed as a ratio
of the target mRNA to β-actin mRNA.

3.5. Lico E Suppresses TNF-α mRNA Expression and Enhances Arg-1 mRNA Expression in
SIM-A9 Cells Stimulated with Aβ1-42 and IL-4

Finally, we analyzed the effect of Lico E on TNF-α and Arg-1 mRNA expression
in SIM-A9 cells stimulated with Aβ1-42 and IL-4. SIM-A9 cells stimulated with 10 µM
Aβ1-42 had significantly increased TNF-α mRNA levels compared with vehicle controls.
These increased effects were significantly inhibited by Lico E treatment in a concentration-
dependent manner (Figure 6A). Furthermore, Lico E significantly inhibited the expression
of basal TNF-α mRNA in a concentration-dependent manner (Figure 6A). Stimulation with
10 µM Aβ1-42 significantly reduced Arg-1 mRNA levels compared with vehicle controls.
Lico E increased Arg-1 mRNA expression, which was reduced by Aβ1-42 stimulation
(Figure 6B). Lico E significantly increased basal Arg-1 mRNA expression in a concentration-
dependent manner (Figure 6B).

SIM-A9 cells stimulated with 5 ng/mL IL-4 had significantly increased Arg-1 mRNA
levels compared with vehicle controls (Figure 6C). These increased effects were significantly
enhanced by Lico E treatment in a concentration-dependent manner (Figure 6C). In addition,
10 µM of Lico E significantly increased the expression of basal Arg-1 mRNA.
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Aβ1-42 and IL-4. (A) Effect of Lico E on TNF mRNA expression in SIM-A9 cells stimulated with
Aβ1-42. (B) Effect of Lico E on Arg-1 mRNA expression in SIM-A9 cells stimulated with Aβ1-42. Cells
were treated with various concentrations (0, 3 and 10 µM) of Lico E for 30 min, followed by stimulation
with 10 µM Aβ1-42 for 4 h. Values are the mean ± SD (n = 3). * p < 0.05 and *** p < 0.0005 compared
with vehicle control. Statistical analysis of the data was performed using Šídák’s multiple comparisons
test. † p < 0.05 and †† p < 0.0001 compared with vehicle control (0 µM of Lico E). Statistical analysis
of the data was performed using Dunnett’s multiple comparisons test. # p < 0.005 and ## p < 0.0005,
### p = 0.0005 and #### p < 0.0001 compared with vehicle control (0 µM of Lico E). Statistical
analysis of the data was performed using Dunnett’s multiple comparison test. (C) Effect of Lico E
on Arg-1 mRNA expression in SIM-A9 cells stimulated with IL-4. Cells were treated with various
concentrations (0, 3 and 10 µM) of Lico E for 30 min, followed by stimulation with 5 ng/mL IL-4
for 4 h. Values are the mean ± SD (n = 3). *** p < 0.0005 compared with vehicle control. Statistical
analysis of the data was performed using Šídák’s multiple comparisons test. † p < 0.01 compared
with vehicle control (0 µM of Lico E). Statistical analysis of the data was performed using Dunnett’s
multiple comparisons test. # p < 0.005 and ## p < 0.0005 compared with vehicle control (0 µM of Lico
E). Statistical analysis of the data was performed using Dunnett’s multiple comparisons test.

4. Discussion

AD is characterized by the abnormal aggregation of Aβ, forming extracellular fibrous
deposits called amyloid plaques. The inhibition of Aβ aggregation is, therefore, expected to
be a way to stop or slow the progression of AD [25]. In a recent report, 11C-(R)-PK11195-PET,
which can detect microglial activation in patients with AD and mild cognitive impairment
(MCI), revealed two peaks of microglia activity in disease progression [9]. The first peak,
which corresponds to the stage of normal cognitive function before MCI, shows the prop-
erties of M2 microglia and is thought to suppress Aβ aggregation and its clearance. The
second peak corresponds to a stage of cognitive decline, showing the properties of M1
microglia, which release inflammatory cytokines and induce neuropathy, resulting in cogni-
tive dysfunction. It has been suggested that the inhibition or elimination of Aβ aggregation
may indirectly maintain neuronal function. Microglia can exert neuroprotective effects by
degrading Aβ plaques in response to the accumulation of Aβ [16]. Therefore, it is important
to suppress the function of neuropathic M1 microglia and activate neuroprotective M2
microglia as a therapeutic strategy for AD.

Lico A, a flavonoid isolated from licorice, has been reported to inhibit Aβ1-42 aggre-
gation [14]. The search for new derivatives of Lico A that prevent Aβ aggregation and
oxidation and promote neuroprotection has been investigated [14]. Therefore, we focused
on the licochalcone family (Licos A–E) and examined its effects on the inhibition of Aβ1-42
aggregation and changes in M1 and M2 microglia polarity. Among them, Licos D and E
were found to have strong inhibitory effects on Aβ1-42 aggregation. When the effects of
both compounds on the cell viability of SIM-A9 cells were examined, Lico D showed a
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stronger decrease in cell number compared to Lico E. A characteristic difference between
the two compounds was that Lico D increased caspase-3/7 activity and induced cell death
by apoptosis, whereas up to 12.5 µM Lico E had no effect. In terms of cytotoxicity, Lico E
appears to be superior to Lico D as a lead compound. In the future, the cytotoxicity of Lico
E needs to be investigated not only on microglia but also on neuronal cells, and the search
for more safe derivatives than Lico E is needed.

In cancer cells, the CTL1-mediated choline uptake inhibitors Amb4269675, Amb4269951
and Amb544925 have been reported to inhibit cell proliferation at low concentrations and
induce cell death at high concentrations [19–21]. Inhibiting CTL1-mediated uptake of
choline is thought to decrease intracellular choline and decrease the synthesis of phos-
phatidylcholine, a component of the plasma membrane, resulting in the inhibition of cell
proliferation. Furthermore, strong inhibition of CTL1-mediated choline uptake causes cell
death by the induction of apoptosis via the ceramide/survivin pathway [19–21]. In the
current study, although Licos D and E had similar inhibitory effects on choline uptake,
the strong inhibition of cell survival by Lico D may be due to a mechanism other than
inhibition of choline uptake. Lico D has been reported to have various biological activities,
such as antioxidant, anti-inflammatory and anticancer properties [15]. Lico D inhibits the
phosphorylation of NF-κB p65 in the LPS signaling pathway [26]. Lico D also inhibits
JAK2, EGFR and Met (c-Met) activities and induces ROS-dependent apoptosis [27]. These
biological activities of Lico D may have suppressed the cell viability of SIM-A9 cells. Lico E
has also been found to possess a variety of pharmacological profiles, including anticancer,
antiparasitic, antibacterial, anti-inflammatory and antidiabetic effects. In particular, cell
viability suppression and apoptosis induction were observed at high concentrations of
50 µM [28,29]. The IC50 value for inhibition of [3H]choline uptake by Lico E was 12.4 µM,
which is close to the concentration of 12.5 µM that reduces the number of cells (about 30%
inhibition), suggesting that the inhibition of choline uptake by Lico E caused inhibition of
cell proliferation. Lico E does not show any effect on caspase-3/7 activity up to 12.5 µM,
suggesting that it does not induce cell death by apoptosis.

Accumulating evidence suggests that microglia are major immune cells in the central
nervous system and act as key players in the development of neurodegenerative diseases
such as AD. It is now well known that microglia are functionally plastic and have a dual
phenotype, the inflammatory M1 phenotype and the anti-inflammatory M2 phenotype.
Therefore, suppressing the M1 phenotype and stimulating the M2 phenotype may be a
potential therapeutic approach for neuroinflammation-related diseases such as AD. Recent
studies have suggested that the inhibition of CTL1-mediated choline uptake in SIM-A9 cells
suppresses the M1 phenotype and activates the M2 phenotype [13], and CTL1 expressed in
microglia has attracted attention as a therapeutic target molecule for inflammatory diseases
associated with microglial activation such as AD.

Aβ activates the M1 phenotype in microglia in vitro [16,30,31], and the microglial
activity marker CD68 and the M1 phenotype markers TNF-α and interleukin-1β have been
shown to be upregulated in Aβ-stimulated primary microglia [16,32]. TNF-α has been
shown to play a pivotal role in the early inflammatory process of AD in both animal models
of AD and in longitudinal human studies. In AD, TNF-α is chronically released from
activated microglia, neurons and astrocytes, and its release is stimulated by increased levels
of extracellular Aβ [33–36]. TNF-α stimulates γ-secretase activity, increases Aβ peptide
synthesis and may further increase TNF-α release [37]. Animal studies have highlighted
that blockade of the TNF-α pathway is associated with decreased histopathological markers,
such as the formation of Aβ plaques and a decreased number of microglial cells in the
AD brain [38]. In humans, studies have detected elevated levels of TNF-α in both MCI
and AD dementia [38,39]. Against this background, we analyzed the effects of Lico E
and CTL1 functions on the increased expression of TNF-α by Aβ stimulation, one of
the M1 phenotypes of microglia. In this study, stimulation of SIM-A9 cells with Aβ1-42
significantly increased TNF-α mRNA expression. This increase in TNF-α mRNA expression
was suppressed by choline deficiency and Lico E treatment. These findings suggest that
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Lico E inhibited CTL1-mediated choline uptake and consequently suppressed TNF-α
mRNA expression. CTL1 inhibitors such as Lico E suppress the M1 phenotype of microglia
and can be proposed as therapeutic target molecules for inflammatory brain diseases
such as AD. Although these mechanisms are unclear, TNF-α is released from microglia in
the form of encapsulated extracellular vesicles (EVs), small particles formed by a bilayer
of phospholipids [40], suggesting that the inhibition of choline uptake in microglia may
influence EV formation. In the future, it is necessary to examine whether EV formation
is affected by CTL1-mediated inhibition of choline uptake. Very interestingly, we found
that Aβ1-42 stimulation of SIM-A9 cells decreased the expression of the M2 marker Arg-
1 mRNA, and Lico E suppressed the decrease in Arg-1 mRNA expression by Aβ1-42
stimulation. Furthermore, Lico E increased Arg-1 mRNA expression in the basal state
and conversely suppressed TNF-α mRNA expression. These results suggest that Aβ1-42
activates the M1 phenotype and suppresses the M2 phenotype in microglia, and Lico E is
expected to provide neuroprotection by reversing these changes.

IL-4 is well known for inducing anti-inflammatory M2 microglia/macrophages. In the
periphery, IL-4 is produced from activated Th2 cells, is important for humoral immunity
and antigen presentation and induces the class change of B cells to antibody-producing
cells [41]. In the central nervous system, IL-4/IL-13 was found to shift the polarity of
Aβ-induced microglia to the M2 phenotype. Induction of M2 microglia with IL-4 and
IL-13 may promote Aβ degradation. In fact, previous studies showed that M2 microglia
reduced the deposition of various types of Aβ (Aβ1-38, Aβ1-40 and Aβ1-42) both in vitro
and in vivo [42,43]. Similar to the study by Okada et al. [13], we observed upregulation of
Arg-1 mRNA expression by IL-4 stimulation in SIM-A9 cells. Interestingly, the increase in
IL-4-stimulated Arg-1 mRNA expression was enhanced by choline deficiency and treatment
with Lico E, which has an inhibitory effect on CTL1-mediated choline uptake. Inhibition of
CTL1 function may stimulate the M2 phenotype of microglia and promote Aβ degradation.

This study is consistent with a previous study by Okada et al., which showed that
choline deprivation or CTL1 inhibition suppressed mRNA expression of the proinflamma-
tory cytokines IL-1β and IL-6 in LPS-stimulated M1 microglia and enhanced the mRNA
expression of Arg-1 in IL-4-stimulated M2 microglia [13]. We propose that CTL1-mediated
inhibition of choline uptake is a novel mechanism to promote the microglial phenotype
from M1 to M2 and represents a new therapeutic strategy for AD treatment. In addition,
Lico E appears to be a lead compound that enhances neuroprotection by promoting po-
larization from M1 to M2 microglia, thereby contributing to the delay or suppression of
AD development.

This study provides novel findings indicating that Lico E promotes the polarity of
microglia activated by Aβ1-42 from M1 to M2 via inhibition of the CTL1 function, but the
use of only SIM-A9 cells is a major limitation. In the future, experiments using primary
cultured microglia or human microglia and in vivo experiments in AD model animals
will be necessary. Furthermore, not only the changes in TNF-α and Arg-1 mRNA, but
also their protein levels need to be verified, as well as a comprehensive analysis of other
M1/M2 markers.

In conclusion, we found that Lico E has an inhibitory effect on Aβ1-42 aggregation
and promotes the polarity from M1 to M2 microglia via inhibition of CTL1 function in
microglia. Thus, Lico E may become a lead compound for a novel treatment of AD.
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S3: Expression of mRNAs for M1 and M2 markers after stimulation with Aβ1-42 and IL-4 for 4 h.
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