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Abstract: Most eukaryotic cells, including hepatocytes, secrete exosomes into the extracellular
space, which are vesicles facilitating horizontal cell-to-cell communication of molecular signals
and physiological cues. The molecular cues for cellular functions are carried by exosomes via
specific mRNAs, microRNAs, and proteins. Exosomes released by liver cells are a vital part of
biomolecular communication in liver diseases. Importantly, exosomes play a critical role in mediating
alcohol-associated liver disease (ALD) and are potential biomarkers for ALD. Moreover, alcohol
exposure itself promotes exosome biogenesis and release from the livers of humans and rodent
models. However, the mechanisms by which alcohol promotes exosome biogenesis in hepatocytes are
still unclear. Of note, alcohol exposure leads to liver injury by modulating various cellular processes,
including autophagy, ER stress, oxidative stress, and epigenetics. Evidence suggests that there is a
link between each of these processes with exosome biogenesis. The aim of this review article is to
discuss the interplay between ethanol exposure and these altered cellular processes in promoting
hepatocyte exosome biogenesis and release. Based on the available literature, we summarize and
discuss the potential mechanisms by which ethanol induces exosome release from hepatocytes, which
in turn leads to the progression of ALD.
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1. Introduction

In the year 2017, more than 2 million individuals were affected by alcohol-associated
liver diseases (ALD) in the US, and it has been rapidly becoming a global health burden that
requires immediate medical care [1]. ALD is also one of the predominant causes of liver-
associated mortality, resulting in the higher demand for liver transplant in high-income
economies [2]. The temporal evolution of ALD-associated pathology begins with early
steatosis, followed by liver inflammation, necrosis, and subsequent fibrosis, eventually
leading to liver cirrhosis and hepatocellular carcinoma [3]. While the liver is the primary
target for ethanol-induced injury due to its role in ethanol metabolism, many other or-
gans, including the gut, pancreas, brain, and heart are also vulnerable to ethanol-induced
injury [4]. Ethanol exerts direct effects in these organs, leading to their dysfunction. In
addition, the altered organ function due to chronic ethanol exposure impairs the functions
of other distal organs by organ–organ crosstalk [5]. For example, the adipose–liver, and
gut–liver axes have been known to play critical roles in mediating the progression of
ALD [6,7].

It is firmly established that within an individual organ the effect of ethanol in one cell
type is transmitted to another cell type, thereby propagating ethanol-induced organ injury.
With regards to ALD, ethanol’s effects in hepatocytes can alter the functions of Kupffer
cells, which in turn escalates the inflammatory response of the latter [8,9].
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Likewise, ethanol-induced hepatocyte injury is known to aberrantly regulate the
functions of hepatic stellate cells (HSCs), thereby leading to liver injury [10,11]. Thus,
several types of ethanol-induced changes in hepatocytes affect the functions of other cell
types in liver. Conversely, the nonparenchymal cells, including Kupffer cells, HSCs, and
endothelial cells, are also known to interact with each other and with hepatocytes, leading
to the development of alcohol and non-alcohol-related liver injury [12–17].

Ethanol’s effects on the gut microbiome can also influence the functions of liver cells,
leading to liver injury [18–21]. For example, ethanol-induced alterations in intestinal mi-
croflora activity can cause intestinal barrier dysfunction [22,23]. The gut microflora secretes
endotoxins such as lipopolysaccharide (LPS) and β-glucan that can easily translocate into
the liver by crossing the damaged intestinal barrier, hastening the progression of ALD [24].
In particular, LPS is known to activate hepatic macrophages, leading to a substantial
increase in reactive oxygen species (ROS), proinflammatory cytokines, and chemokines,
finally resulting in liver injury [15,25]. In addition to macrophages, other nonparenchymal
cells as well as parenchymal cells are also activated by LPS, thereby contributing to the
severity of liver disease [26–29]. Additionally, it was found that alcohol accelerates the
progression of liver damage, leading to fibrosis and cirrhosis in patients coinfected with
human immunodeficiency virus (HIV) or hepatitis B virus [30].

Emerging evidence suggests that ethanol-induced extracellular vesicles (EVs) play a
critical role in promoting the pathological cell–cell interactions that lead to ALD [17,31,32].
With the advent of new technologies to isolate and detect exosomes, researchers have
been focusing on elucidating the exosome function in the pathological progression of ALD.
Exosomes are extracellular nanovesicles of nearly 40 nm to 160 nm that carry biological
information via lipids, proteins, and coding and noncoding RNAs [33]. Historically, an
exosome was thought to be a cellular waste removal system, but later it was widely ac-
cepted that it is a membrane-derived structure originating from multivesicular bodies of
the endosomal pathway [34]. A vesicular body is formed by the invagination of the plasma
membrane and the endocytosis of proteins, lipids, mRNAs, and microRNAs [33]. After
maturation, some multivesicular bodies fuse with the plasma membrane and subsequently
release intraluminal vesicles (ILVs) called “exosomes” into the extracellular space [33]. Fur-
ther, exosomes act as cellular “shuttles”, carrying biomolecules, communicating between
different cell types. Exosomes are utilized as a strategy for cellular communication in regu-
lating organ homeostasis under normal conditions [35,36]. Under normal physiological
conditions, hepatocytes release exosomes to restore organ integrity and homeostasis [37,38].

However, it should be noted that exosomes not only act as mediators in liver physiol-
ogy but are also used as communication agents in the pathogenesis of liver disease when
triggered by an external stimulus such as alcohol [39,40]. Importantly, alcohol consumption
increases exosome release in various liver cell types, and these exosomes/EVs orchestrate
cell–cell communication by horizontally shuttling genetic information from a donor cell to
a target cell, thereby leading to ALD [40]. The possible interactions among different cell
types in the liver via exosomes that lead to the pathogenesis of ALD are shown in Figure 1.

Although a great deal of effort has been devoted to understanding the mechanisms
of exosome cargo loading, very little is known about the cellular cues that regulate the
synthesis and secretion of exosomes. Below, we discuss the possible mechanisms by which
ethanol promotes exosome biogenesis and release from hepatocytes, which in turn can lead
to the pathogenesis of ALD.
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Figure 1. Role of exosomes in the liver. The liver uses exosomes as a cross-communication strategy
between parenchymal (hepatocytes) and nonparenchymal cells (cholangiocytes, sinusoidal endothe-
lial cells, Kupffer cells, and hepatic stellate cells (HSC)) for normal functioning and homeostasis.
Exosomes derived from hepatocytes, macrophages, or HSCs upon ethanol exposure alter the functions
of each other, leading to the progression of ALD.

2. Liver Exosomes in Tissue Homeostasis and Tissue Injury

The physiological functioning of the liver is achieved by a complex cross-communication
between parenchymal (hepatocytes) and nonparenchymal cells (stellate cells, liver sinu-
soidal endothelial cells, Kupffer cells, and cholangiocytes). The hepatocytes perform most
liver functions, and the nonparenchymal cells release various metabolites and molecules to
support and aid hepatocytes as well as their nonparenchymal neighbors [38]. To maintain
the functional order and homeostasis in the hepatic environment, these cells utilize one
or more methods to communicate with each other. Exosomes provide a cellular com-
munication strategy by conveying molecular cues to target cells at both short and long
distances [38]. A prevailing misconception is that the exosomal ability to carry a variety of
biological cargoes from hepatocytes to other cells or vice versa is pathological. However, it
is important to understand that it is also a part of the homeostatic response to injury [41].
For instance, exosomes derived from primary hepatocytes in a culture containing sph-
ingosine kinase 2 promoted liver regeneration in two-thirds partial liver resections [41].
Similarly, nonparenchymal cells, including HSC, liver sinusoidal endothelial cells, and
cholangiocytes, also secrete exosomes to regulate liver remodeling upon liver injury [42].
For example, the HSC-derived exosomes create a favorable microenvironment for the
release of profibrogenic factors and collagen deposition to maintain organ integrity in
response to liver injury [42]. On the other hand, exosomes containing miR-214 produced
by quiescent HSCs inhibit HSC activation, thereby limiting the injury response [43].



Biomolecules 2023, 13, 222 4 of 13

During a prolonged insult, exosomes released by liver cells augment the extent of liver
injury. For example, Devhare et al. showed that exosomes from HCV-infected hepatocytes
contain miR-19a, which targets SOCS3 to activate STAT3-mediated TGF-β signaling in
HSCs and promotes HSC proliferation [44]. Additionally, damaged cholangiocytes secrete
exosomes containing the long noncoding RNA H19, which conversely causes self-injury
to hepatocytes due to faulty intercellular communication [45,46]. Together, healthy or
injured hepatocytes release exosomes, and these exosomes have important roles in tissue
homeostasis or tissue injury. However, recurrent injuries to hepatocytes upon prolonged
exposure to ethanol can alter exosomal release and exosomal cargo, which in turn can
aggravate liver damage.

3. Role of Ethanol in Exosome Release

Exosomes are persistently released into the surroundings by a variety of cells, irrespec-
tive of whether they are in a natural environment or artificially cultured. Several studies
have shown that ethanol increases circulating exosomes in rodents as well as human sub-
jects with alcohol use disorder (AUD). For example, binge and/or chronic alcohol use
increases the number of circulating exosomes in healthy human subjects and in mice [40,47].
Momen-Heravi et al. showed that ethanol increases exosome release into the serum of mice
as well as human subjects with AUD [47]. Further, an increased number of circulating EVs
with high levels of miR-27 were found in the plasma of patients with alcohol-associated
hepatitis [48]. Cho et al. showed that the exosome numbers were increased in the serum
of patients with AUD, as well as in the binge ethanol-fed mice and rats, in a CYP2E1-
dependent manner [49]. The increase in circulating exosomes upon ethanol exposure could
be due to the ethanol’s effects on various types of cells.

Several lines of evidence suggests that ethanol increases exosome release in differ-
ent cell types including hepatocytes and microglia [50–52]. Moreover, ethanol exposure
increases exosome release from cardiomyocytes, and ROS were implicated in mediating
this response [53]. Next, it was noted that the total number of EVs secreted from alcohol-
treated monocytes was significantly increased compared with untreated monocytes [48].
It should be noted that hepatocytes are a significant source of exosomes upon ethanol
exposure. Ethanol has been shown to increase exosome release from HepG2 hepatoma
cells expressing CYP2E1 (HepG2Cyp2E1 cells) [54]. In the same study, the authors demon-
strated that alcohol-induced EV release stimulated macrophage activation and the release
of inflammatory cytokines. [54]. Momen-Heravi et al. showed that ethanol increased the
number of exosomes in a dose-dependent manner in Huh 7.5 hepatoma cells and primary
human hepatocytes, and these exosomes contained miRNA-122 [40]. These studies have
demonstrated that ethanol triggers exosome release in hepatocytes, which in turn can
mediate the development of ALD. The mechanisms by which ethanol-induced hepatocyte
exosomes mediate ALD pathogenesis is beyond the scope of this review, and the reader is
referred to an excellent review published on the role of ethanol-induced EVs in mediating
cell–cell communication, thereby resulting in ALD [17].

4. Mechanisms by Which Ethanol Promotes Hepatocyte Exosome Biogenesis
and/or Release

Several types of Ras-associated binding (Rab) proteins are involved in the biogenesis
of exosomes. In particular, Rab11, Rab 27, and Rab 35 are directly involved in exosome
biogenesis and secretion [55]. In addition, vesicle-associated membrane proteins (VAMP)
and syntaxins are involved in exosome release [56,57]. Interestingly, Bala et al. showed
that the expression of proteins of the Rab family such as Rab1a, Rab5c, Rab6, Rab10, Rab11,
Rab27a, and Rab35 were increased at the mRNA level in primary human hepatocytes after
alcohol treatment [50]. Moreover, Rab5, Rab6, and Rab11 showed significant induction
in the livers of patients with ALD. Additionally, VAMP3, VAMP5, VAMP-associated pro-
tein B (VAPb), and syntaxin16 mRNA transcripts were increased in alcohol-treated cells
and in the livers of alcohol liver disease patients [50]. An alcohol-induced increase in
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these genes was associated with increases in exosome secretion in alcohol-treated hepa-
tocytes [50]. However, the underlying cellular mechanisms by which ethanol alters these
players, leading to an increase in exosome biogenesis/release, are still unclear. Below, we
discuss some of the mechanisms involved when ethanol-induced hepatocyte injuries trigger
exosome synthesis/secretion.

5. Possible Roles of Cellular Processes Involved in ALD in Mediating Hepatocyte
Exosome Biogenesis/Secretion

There are four major cellular processes that are altered in hepatocytes upon ethanol
exposure, leading to ALD: (1) autophagy, (2) ER stress, (3) oxidative stress, and (4) epige-
netic changes. In fact, ethanol is known to inhibit autophagy [58] and induce endoplasmic
reticulum (ER) stress [59], oxidative stress [60], and the acetylation of DNA [61]. Inter-
estingly, these pathways are also linked to exosome release in other pathological liver
conditions [62–64]. The existing evidence suggests that changes in these cellular processes
by ethanol are involved in facilitating exosome biogenesis/secretion upon ethanol exposure.
Below, we summarize the roles of these individual processes in mediating ethanol’s effect
in promoting exosome release.

5.1. Ethanol, Autophagy, and Exosomes

Autophagy is a common metabolic process in most eukaryotic cells and functions
to promote cell survival. Under various stress signals, such as starvation, hypoxia, or
endoplasmic reticulum stress, autophagy can degrade soluble proteins and other organelles
into amino acids in the cytoplasm for energy production and biosynthesis. In addition,
autophagy clears denatured or misfolded proteins and aged or damaged organelles to
maintain intracellular homeostasis [65]. Under severe or chronic stress, excessive or in-
sufficient autophagy can lead to the accumulation of large amounts of self-degradation
or toxic substances, ultimately leading to cell death, which is closely associated with the
pathogenesis of liver diseases [66].

Evidence suggests that there is an intricate link between exosome biogenesis and
macroautophagy [67]. The selective removal and secretion of harmful proteins in exosomes
or by the autophagy–lysosomal pathway are coordinated processes that participate in
protein homeostasis and contribute to the maintenance of cellular fitness [67,68]. As
mentioned, exosomes are formed as intraluminal vesicles (ILV) within late endosomes as
a result of membrane invagination. The late endosomes, upon further maturation into
multivesicular body (MVB) fuses with lysosomes, and the contents of the ILVs are degraded
via autophagy [68,69]. Alternatively, when autophagy is disrupted, the MVBs fuse with the
plasma membrane and release their contents into the extracellular environment as exosomes.
Remarkably, autophagy modulators regulate MVB formation and exosome release [70].
Autophagy induction by starvation, rapamycin treatment, or LC3 overexpression inhibits
exosome release, suggesting that, under conditions that stimulate autophagy, MVBs are
directed to the autophagic pathway with the consequent inhibition of exosome release [70].
Thus, the balance between autophagy induction and exosome release are tightly regulated.
However, little is known regarding the mechanistic link between exosome secretion and
autophagy upon ethanol exposure.

Ethanol is known to inhibit autophagy. The importance of autophagy in ALD has
been experimentally evaluated by Babuta et al. using a chronic alcohol liver disease mouse
model [71]. They noted that alcohol reduced autophagy flux in vivo in chloroquine-treated
mice as well as in vitro in hepatocytes and macrophages treated with bafilomycin A. Their
results revealed that alcohol disrupted autophagy function at the lysosomal level through
decreased lysosomal-associated membrane protein 1 (LAMP1) and lysosomal-associated
membrane protein 2 (LAMP2) in livers with ALD [71]. In addition, Menk et al. also
reported that chronic alcohol consumption impaired hepatocellular autophagy [72].

Exosome biogenesis and autophagy pathways are intricately linked [73], and a re-
ciprocal relationship exists between autophagy and exosome biogenesis. For example,
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autophagy inhibition restores exosome release in Jurkat T cells [74]. The downregulation
of LAMP1 or LAMP2, proteins involved in autophagy, increased exosome release in hep-
atocytes and macrophages [71]. Therefore, it is reasonable to speculate that an increase
in exosome production in ALD may be linked to a disrupted autophagic mechanism.
Alternatively, alcohol exposure increases exosomal miR-155, which inhibits LAMP1 and
LAMP2 in the autophagy pathway [71]. This study demonstrates that miR-155-deficient
mice were protected from the alcohol-induced disruption of autophagy and had attenuated
exosome synthesis [71]. These studies suggest that the alcohol-induced increase in exosome
production may be linked to the disruption of autophagy and impaired autophagosome
and lysosome function in ALD.

5.2. Ethanol, ER Stress, and Exosomes

Many research studies have shown that ER stress plays a key role in the progression
of nonalcoholic fatty liver disease as well as ALD [75,76]. Emerging evidence suggests that
ER stress promotes exosome release in hepatocytes [77]. It has been demonstrated that the
ER stress induced by palmitate in hepatocytes enhances the release of EVs [63]. Moreover,
tunicamycin, an ER stress inducer, promotes the release of EVs in choriocarcinoma cells
which carry death-associated molecular patterns (DAMPs), indicating the crucial crosstalk
between ER stress and exosome release in regulating cell death mechanisms [78]. In
addition, the treatment of HepG2 hepatoma cells with tunicamycin increased exosome
secretion, and these exosomes increased PD-L1 expression in macrophages, which in turn
inhibited T-cell functions [79].

However, only a few studies explored the role of ER stress in altering exosome release
upon ethanol exposure. Cho et al. reported that thapsigargin, an ER stress inducer, in-
creased exosome release in primary mouse hepatocytes [49]. In the same study, ethanol
also increased exosome release, and this effect was blunted by 4-phenylbutryric acid, an
ER stress inhibitor [49]. Further, they showed that EVs from ethanol-exposed mice, rats,
and human subjects reduced the viability of primary hepatocytes. In another study, an
ethanol-induced increase in exosomal miR122 was attenuated upon ER stress inhibition by
4-phenylbutyric acid [80]. These studies suggest that ER stress plays a role in promoting
exosome secretion and/or cargo loading upon ethanol exposure. However, the mechanisms
by which ER stress leads to exosome secretion remain unclear.

It should be noted that ER stress is critical for maintaining cell survival by activating
the unfolded protein response (UPR). It is now clear that ER stress is also a potent trigger for
autophagy [65]. As discussed previously, the inhibition of autophagy promotes exosome
release. Thus, it is apparent that under physiological conditions the ER maintains home-
ostasis by utilizing the balanced action of autophagy and the exosomal release pathway
or the unfolded protein response pathway. Any imbalance in these processes leads to an
increase in exosome release and the pathogenesis of various diseases [81]. However, there
is a huge knowledge gap in understanding the precise mechanisms leading to an imbalance
in these processes for regulating exosome secretion in ALD.

5.3. Ethanol, Oxidative Stress, and Exosomes

Generally, mitochondria are the factories for ROS synthesis during both physiological
and pathological conditions. Besides the fact that mitochondria have an intrinsic ROS
scavenging ability conferred by antioxidant enzymes, including superoxide dismutase 2
and glutathione peroxidase [82], it is worth noting that this is not enough to compensate
for the cellular need for ROS clearance to protect themselves from oxidative-stress-induced
cell damage. Therefore, the cells deploy exosomes as an effective tool to assist with
overcoming their antioxidant deficiency and protect themselves from oxidative-stress-
induced cytotoxicity. For example, EVs can serve as an alternative mechanism to remove
oxidized proteins after oxidative stress to maintain cellular homeostasis [83]. Oxidized
lipids are also loaded into exosomes that are released from cells undergoing oxidative
stress [84].
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Further exploring the link between exosomes and oxidative stress in the literature
reveals that exosomes from healthy cells protect target cells from oxidative injury through
the transfer of antioxidants [85]. Exosomes exert their cytoprotective and anti-inflammatory
properties by regulating the redox environment and oxidative stress in the liver. The antiox-
idant effects of exosomes in in vivo and in vitro models demonstrate that the antioxidative
exosomes derived from Nrf2 over-expressing adipose mesenchymal stem cells reduce
excessive ROS, inflammation, and lung injury via antioxidative stress and immunomodula-
tion [86].

It is becoming clear that oxidative stress itself influences the release and the molecular
cargo of exosomes that, in turn, injures the target cells upon ethanol exposure. CYP2E1, an
enzyme involved in ethanol metabolism, is an important source of ROS. It is interesting
to note that alcohol use results in increased exosome release via CYP2E1 [49]. In addition
to promoting exosome release, CYP2E1 is also incorporated into the exosomal cargo in
an oxidative stress-dependent manner. Moreover, the inhibition of oxidative stress using
N-acetyl cysteine inhibits CYP2E1-mediated exosome release [49], indicating the role of
oxidative stress in promoting exosome release. In another study, ethanol plus HIV infection
triggered intense EV generation, and this was associated with an increase in oxidative
stress [87]. These studies suggest that ethanol-induced oxidative stress contributes, at least
in part, to exosome release.

5.4. Ethanol, Epigenetics, and Exosomes

Epigenetic regulation is a cellular process that brings modifications to the genome and
gene expression without altering the nucleotide sequence itself. Ethanol-induced epigenetic
changes including histone post-translational modifications and DNA methylation play an
important role in the development of ALD [88]. Alcohol-induced histone modifications
alter the expression of miRNAs in the liver, which eventually result in the pathological
progression of ALD [88]. However, it is not yet known how these epigenetic changes caused
by ethanol exposure modulate exosome release during ALD progression.

Epigenetic changes, particularly acetylation, play a role in exosome release. For exam-
ple, lactate inhibits Sirt1 activity, thereby increasing the acetylation of high mobility group
box-1 (HMGB1) in macrophages. The acetylated HMGB1 is then secreted via exosomes and
increases endothelial permeability [89]. In another study, the adipose-specific knockdown
of Sirt1 resulted in obesity and insulin resistance by promoting exosome release [90]. Lat-
ifkar et al. examined the consequences of depleting breast cancer cells of SIRT1. They found
that reducing SIRT1 levels decreased the expression of one subunit of the vacuolar-type H+
ATPase, which is responsible for proper lysosomal acidification and protein degradation.
This impairment in lysosomal function led to an increase in exosome secretion [91].

Furthermore, Lee et al. showed that, in addition to SIRT1, knockdown of SIRT2 also
increased exosome release in HEK293 cells [92]. Taken together, these various reports
show that the epigenetic changes caused by SIRTs inhibit exosome release and that the
inhibition/loss of Sirt1 and/or Sirt2 activities result in increased exosome secretion. Chronic
ethanol consumption causes steatosis and inflammation in rodents and humans, and these
effects are mediated, in whole or in part, by the inhibition of SIRT 1 [61]. However, the
interplay between ethanol and the SIRTs in mediating exosome release is still unknown.

6. Conclusions and Future Perspectives

The field of exosome biology in relation to cancer progression has been growing ex-
ponentially. It is also becoming clear that exosomes play a key role in the development
of NAFLD [93]. Evidence supports a role for ethanol in increasing the formation of exo-
somes in cultured cells and rodent models as well as patients with alcoholic hepatitis [47].
However, little is known regarding the mechanisms by which ethanol promotes exosome
biogenesis and secretion.

As depicted in Figure 2, the ethanol-mediated inhibition of autophagy and the in-
duction of ER stress, oxidative stress, and epigenetic changes can play a role in increasing



Biomolecules 2023, 13, 222 8 of 13

exosome formation. However, the role of other signaling pathways altered by ethanol in
altering the formation of exosomes and their biological activity remains unknown. For
example, ethanol inhibits AMPK signaling, and the inhibition of AMPK signaling in adi-
pose tissue induces exosome shedding and NAFLD in mice [93]. As mentioned, ethanol
is known to inhibit SIRT1, which in turn promotes the progression of ALD. Recently,
SIRT1 and SIRT2 have been shown to inhibit cargo loading and the release of extracel-
lular vesicles [92]. It would be interesting to know if an ethanol-mediated decrease in
AMPK and SIRT activities in the liver plays a role in promoting exosome secretion upon
ethanol exposure.
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Figure 2. Ethanol promotes exosome release from hepatocytes. Exosomes are nanovesicles that are
borne from the intraluminal vesicles of multivesicular bodies (MVBs) and released into fluids of the
circulatory system to facilitate cell–cell interactions. Alcohol promotes the release of exosomes from
hepatocytes, which are influenced by various cellular processes such as oxidative stress, ER stress,
autophagy, and possibly epigenetics. These molecular mechanisms influencing exosome release
self-sufficiently cause ALD progression.

Another prevailing hypothesis in this field is that inhibiting exosome biogenesis is a
potential therapeutic strategy against cancer. Accordingly, asteltoxin, a new EV secretion
inhibitor, was identified and was shown to inhibit EV release via increasing AMPK signal-
ing in cancer cells [94]. Sulfisoxazole inhibits the secretion of small extracellular vesicles by
targeting endothelin receptor A in breast cancer cells [95]. Manumycin-A (MA), a natural
microbial metabolite, was analyzed in exosome biogenesis and secretion in castration-
resistant prostate cancer (CRPC) C4-2B cells. MA attenuated exosome biogenesis, and
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the inhibitory effect of MA on exosome biogenesis and secretion was primarily mediated
via the targeted inhibition of Ras/Raf/ERK1/2 signaling [96]. The role of these exosome
inhibitors in altering ALD remains unknown and warrants investigation. However, care
should be taken in such studies, as the inhibition of exosome biogenesis has the potential
to cause some adverse effects. For example, adiponectin increased exosome biogenesis
and protected cells from ceramide accumulation in the cells, thereby leading to cardiopro-
tective effects [97]. This study indicates that there are protective effects of exosomes in
some conditions.

Overall, exosomes play a vital role in maintaining cellular homeostasis. It is also
be-coming clear that dysregulated exosome release and their cargo contribute to the patho-
genesis of a variety of diseases, including ALD. Further studies on the mechanisms by
which ethanol promotes exosome secretion and the effects of inhibitors and promoters of
exosome secretion will provide a mechanistic rationale for targeting these novel players to
ameliorate ALD.
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