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Abstract: Ischemia-reperfusion injury (IRI) often occurs in the process of kidney transplantation,
which significantly impacts the subsequent treatment and prognosis of patients. The prognosis
of patients with different subtypes of IRI is quite different. Therefore, in this paper, the gene
expression data of multiple IRI samples were downloaded from the GEO database, and a double
Laplacian orthogonal non-negative matrix factorization (DL-ONMF) algorithm was proposed to
classify them. In this algorithm, various regularization constraints are added based on the non-
negative matrix factorization algorithm, and the prior information is fused into the algorithm from
different perspectives. The connectivity information between different samples and features is
added to the algorithm by Laplacian regularization constraints on samples and features. In addition,
orthogonality constraints on the basis matrix and coefficient matrix obtained by the algorithm
decomposition are added to reduce the influence of redundant samples and redundant features on
the results. Based on the DL-ONMF algorithm for clustering, two PRGs-related IRI isoforms were
obtained in this paper. The results of immunoassays showed that the immune microenvironment
was different among PRGS-related IRI types. Based on the differentially expressed PRGs between
subtypes, we used LASSO and SVM-RFE algorithms to construct a diagnostic model related to renal
transplantation. ROC analysis showed that the diagnostic model could predict the outcome of renal
transplant patients with high accuracy. In conclusion, this paper presents an algorithm, DL-ONMF,
which can identify subtypes with different disease characteristics. Comprehensive bioinformatic
analysis showed that pyroptosis might affect the outcome of kidney transplantation by participating
in the immune response of IRI.

Keywords: renal ischemia-reperfusion injury; renal transplant; pyroptosis; immune microenviron-
ment; diagnostic model; non-negative matrix factorization

1. Introduction

In the process of kidney transplantation, ischemia-reperfusion injury (IRI) is an in-
evitable complication during kidney transplantation [1]. IRI may lead to the occurrence
and development of subsequent acute kidney injury, thus affecting patients’ renal function
and prognosis [2]. Therefore, it is essential to classify IRI, which will assist clinicians in
evaluating the long-term prognosis of different patients.

To explore the role of ferritin-deficiency-related genes (FRG) in the classification of IRI,
Wei et al. used consensus cluster analysis and the least absolute shrinkage and selection
operator (LASSO) to construct predictive features of delayed graft function associated
with FRG. They identified two iron-related patient clusters (pBECN1 and pNF2) in renal
IRI samples [3]. Zhang et al. explore the mechanisms and potential molecular markers
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involved in renal IRI. They revealed the vital role of the NOD-like receptor signaling
pathway during IRI and the close relationship between this pathway and the infiltration
of specific immune cell types through a series of bioinformatics analyses [4]. Meng et al.
identified immune-related genes associated with graft rejection and developed prognostic
models based on immune-related genes in kidney transplantation. This model has good
sensitivity and specificity in predicting 1-year and 3-year renal transplant survival [5].

Non-negative matrix factorization (NMF) is a classical clustering analysis method
that obtains a low-dimensional representation of samples (features) by factoring the com-
plete data matrix into the form of multiplication of two nonnegative matrices (basis and
coefficient matrices). NMF algorithms are widely used in image recognition, electroen-
cephalogram (EEG) signal processing, and biological data analysis. NMF algorithms make
significant progress in disease classification in recent years [6,7]. Gong et al. explored the
prognostic role of adjacent non-tumor tissues in patients with hepatocellular carcinoma
(HCC) through the NMF algorithm. They found significant prognostic differences among
different subgroups by analyzing the results of three subgroups [8]. Winterhoff et al. used
Agilent microarrays to determine the gene expression profiles of 276 well-annotated ovarian
cancers, four TCGA transcriptional isoforms, and their significant prognostic associations
in all three histological subtypes (p < 0.001) [9]. Zhao et al. used the NMF approach to
identify immunophenotypes and latent subtypes using 719 HCC samples with public
genomic data. The authors divided hepatocellular carcinoma into high-risk and low-risk
subtypes to provide clues for prognosis and immunotherapy prediction of hepatocellular
carcinoma [10]. Alzheimer’s disease (AD) is a heterogeneous disease. Zheng et al. used the
gene expression data of 222 AD patients in the Religious Order Study and the Memory and
Aging Project (ROSMAP) study to identify two subtypes of AD, namely synaptic type and
inflammatory type, using the NMF algorithm [11].

However, the traditional NMF algorithm does not consider the rich information
in the data and the solution to cope with high-dimensional features in the clustering
process. Therefore, this paper proposes an algorithm based on double Laplacian orthogonal
nonnegative matrix factorization (DL-ONMF). In this algorithm, the interaction information
of samples and features is considered, and the sample network and feature network are
added to the algorithm by graph regularization. In addition, orthogonality constraints
on the basis matrix and the coefficient matrix are added to prevent redundancy between
samples/features from affecting the results and restrict the growth of the two matrices
by their Frobenius norm. Firstly, the differentially expressed genes (DEGs) were obtained
by differential analysis of the IRI-related data in the GEO database. Furthermore, the
intersection of DEGs and pyroptosis-related genes (PRGs) was taken, and the intersection
genes were input into the innovative algorithm proposed in this paper.

2. Methods
2.1. Nonnegative Matrix Factorization (NMF)

NMF algorithm is a classical dimension reduction method successfully applied in
image recognition, speech recognition, biological data processing, and other fields. A
complete matrix X = [x1, x2 . . . , xn] ∈ Rm×n is decomposed into two nonnegative ma-
trices, including the base matrix U = [u1, u2, . . . un] ∈ Rm×k and the coefficient matrix
V = [v1, v2, . . . vn] ∈ Rk×n, where m represents the number of features (samples), and n
represents the number of samples (features). U and V store information about features
and samples, respectively. In bioinformatics, omics data can be preprocessed to obtain the
form of feature matrix X, which can be further applied to feature gene selection, disease
subtype classification, and other tasks. The objective function of the NMF algorithm is
shown below.

ONMF = ‖ X−UV ‖2
F

s.t. U ≥ 0, V ≥ 0
(1)

Since this paper aims to analyze disease subtypes using (PRGs), m represents the
number of genes, and n represents the number of samples.
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2.2. GraphNet Regularizer

The GraphNet regularizer is a modified version of the elastic network regularization,
which can integrate the connectivity information between samples or features. Specifically,
if the connectivity between the i–th node and the j–th node is robust, GraphNet encourages
this connectivity, making the two nodes more similar. The expression of the GraphNet
regularizer is as follows.

G(u) = ∑ i,jCu(i,j)
(
ui − uj

)2

G(v) = ∑ i,jCv(i,j)

(
vT

i − vT
j

)2 (2)

Here, ui and uj represent the i–th and j–th sample points, respectively. vi and vj
represent the i–th and j–th feature points, respectively. The Laplacian operator can rewrite
the above equation.

G(u) = UTLuU
G(v) = VLvVT (3)

Here, Lu and Lv represent the Laplaras matrix of X and Y, respectively. The Laplace
matrix is defined as L = D− C. D is the degree matrix, and S stands for the connectivity
matrix. Then, Lu and Lv can be expressed as the following equations, respectively.

Lu = Du − Su
Lv = Dv − Sv

(4)

2.3. Orthogonal Non-Negative Matrix Factorization Algorithm Based on Dual Laplace
Regularization Constraint (DL-ONMF)

This paper adds the connectivity information between samples and features to the
algorithm as prior knowledge. To reduce the influence of multicollinearity on the results,
orthogonal constraints are applied to U and V, respectively. In addition, the Frobenius
norm for U and V is also added based on the NMF algorithm to control the growth of U
and V. The objective function of the DL-ONMF algorithm is as follows.

Γ(U, V) = minU,V ‖ X−UV ‖2
F + λ1 ‖ V ‖2

F + λ2 ‖ U ‖2
F + γ1Tr

(
UT LuU

)
+

γ2Tr
(
VLvVT) + β1 ‖ UUT − I ‖2

F + β2 ‖ VVT − I ‖2
F

s.t. U, V ≥ 0
(5)

where I represents the identity matrix, λ1 and λ2 control the growth of U and V, re-
spectively. γ1 and γ2 control the strength of connectivity between features and samples,
respectively. β1 and β2 control the power of the orthogonal constraints on U and V, re-
spectively. The Lagrange multiplier method is used to optimize the objective function, as
shown in Equation (6).

L f = Γ(U, V) + Tr
(
∅UT

)
+ Tr

(
ϕVT

)
(6)

Here, ∅ and ϕ are Lagrange multipliers. Next, L f takes the derivative with respect to
U and V, respectively, to obtain Equation (7).

∂L f
∂U = −2XV + 2UVTV + 2λ1U + 2γ1LuU + 4β1UUTU − 4β1U +∅

∂L f
∂V = −2XTU + 2VUTU + 2λ2V + 2γ2LvV + 4β2VVTV − 4β2V + ϕ

(7)

Let the partial derivative be zero, and the iteration rules for U and V can be obtained.

uik ← uik
(XU + γ1SuU + 2β1U)ik

(UVTV + λ1U + γ1DuU + 2β1UUTU)ik

vik ← vik
(XU + γ1SvU + 2β2V)ik

(VUTU + λ2V + γ1DvV + 2β2VVTV)ik

(8)
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2.4. Definition of Reconstruction Performance of the NMF Algorithm

Since the NMF-based algorithms decompose the expression matrix into two (or more)
non-negative matrices in the form of multiplication, the correlation between the original
expression matrix and the multiple matrices after dimensionality reduction can measure
the performance of the algorithm for data reconstruction. In this paper, the reconstruc-
tion performance of the algorithm is calculated using the Pearson correlation coefficient
(PCC), which is PCC(X, UV). In addition, the relative error is introduced to measure the
performance of the algorithm.

relative_error = ‖ X−UV ‖2
F (9)

2.5. Silhouette Coefficient

The silhouette coefficient is a way to evaluate the clustering effect. The contour
coefficients were calculated using the following formula.

s(i) =
b(i)− a(i)

max{a(i), b(i)} (10)

Here, a(i) is the average distance between sample i and other samples in the same
cluster. The smaller a(i) is, the more sample i should be clustered to that cluster. Let a(i) be
called the intra-cluster dissimilarity of sample i. b(i) is the average distance between sample
i and all samples of some other cluster. The contour coefficients take values between −1
and 1. The best value is 1, and the worst value is −1. Values close to 0 indicate overlapping
clusters. Negative values usually indicate that the sample are assigned to the wrong cluster
because different clusters are more similar.

2.6. PRGs Expression before and after Renal Ischemia-Reperfusion

The “limma” package was used to explore the differential expression of 110 PRGs
in GSE43974, GSE126805, and their combined datasets. p-value < 0.05 and log FC > 0
were used as the threshold for screening differentially expressed PRGs (DEPRGs). The
differential results associated with PRGs in the pooled dataset were then visualized in heat
maps and volcano maps. The differential results associated with PRGs in GSE43974 and
GSE126805 are visualized in boxplots. Protein–protein interaction (PPI) networks were
constructed to assess gene interactions among DEPRGs and visualized in Cytoscape. To
determine the correlation between pairs of DEPRGs, Pearson’s correlation coefficients were
calculated for DEPRGs in samples after IRI from the pooled dataset and visualized using
“complot” in R.

2.7. Enrichment Analysis and Immune Analysis of Different Clusters

Gene ontology (GO) enrichment analysis (including biological process (BP), cellular
component (CC), and molecular function (MF)) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis were performed to explore and compare the enrich-
ment functions of differentially expressed genes among subtypes. The R package “cluster
profile” was used to perform KEGG and GO analyses. Single-Sample Gene Set Enrichment
Analysis (ssGSEA) was used to calculate the differences in immune pathways and cells
in different renal ischemia-reperfusion injury subtypes. In addition, we evaluated the
expression differences of PRGs, immune checkpoint loci, and HLA-related genes among
different subtypes, which were visualized using box plots.

2.8. Construction and Validation of Renal Transplantation Related Diagnostic Model

Two machine learning algorithms, least absolute shrinkage and selection operator
(LASSO), and support vector machine recursive feature elimination (SVM-RFE), were used
to screen feature genes. The “glmnet” package was used to perform LASSO analysis,
and ten-fold cross-validation was used to avoid overfitting. SVM-RFE was used to rank
PRGs related to renal transplant progression. SVM-RFE was used for feature selection by
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tenfold cross-validation. “pROC” was used to draw ROC curves to evaluate the diagnostic
performance of the diagnostic model and diagnosis-related PRGs.

2.9. Construction of Nomogram

Nomogram construction was precious for the diagnosis of clinical renal transplan-
tation outcomes. Based on diagnosis-related PRGs, the “rms” R package was applied to
construct the nomogram. Calibration curves were used to assess the accuracy of the nomo-
gram. Decision curve analysis was used to evaluate the clinical utility of the nomogram.
The clinical impact curve was drawn to predict high-risk probability stratification for a
population of 1000.

3. Results
3.1. Data Preprocess

Two kidney-transplantation-related datasets, GSE21374 and GSE36059, were down-
loaded from GEO database. In GSE21374, samples of successful and failed kidney trans-
plants were included. GSE36059 included samples of successful and failed kidney trans-
plants. GSE21374 was used as the training dataset of the diagnostic model, and GSE36059
was used as the test dataset to verify the prediction accuracy of the diagnostic model.

The “SVA” package was used to eliminate batch effects of GSE43974 and GSE126805.
Next, GSE43974 and GSE126805 were integrated, resulting in 205 and 246 samples after
renal I/R. In addition, a total of 110 pyroptosis-related genes (PRGs) were collected from
previous papers [12] (Supplementary Material Figure S1). Finally, the expression data
of 110 PRGs were extracted from GSE43974, GSE126805, and their combined datasets,
respectively.

3.2. Identification of DEPRGs in Renal Ischemia-Reperfusion Injury

A total of 74 PRGs were extracted from the combined dataset. Among the 74 PRGs,
40 DEGs were identified from the combined dataset (Figure 1A,B). Among them, the
expression of 28 DEPRGs was down-regulated in IRI samples compared with samples
before renal ischemia-reperfusion, including LY96, CD14, BST2, PARP1, GZMA, VIM,
KCNQ1OT1, CAPN1, ANXA2, ANO6, CASP1, PICARD, APIP, APIP, GZMA. HMGB1,
LRPPRC, IFI16, ATF6, BECN1, AKT1, UBE2D2, ELAVL1, STK4, BCL2, ORMDL3, BTK,
TP53, GLMN and GSDMB. Twelve DEPRGs were up-regulated in IRI, including TET2,
DHX9, NLRP3, GJA1, SERPINB1, CASP3, DDX3X, SIRT1, IL1B, SQSTM1, GBP1, and BIRC3.
In addition, 41 and 15 DEGs were identified in the GSE43974 dataset (Figure 1C) and
GSE126805 dataset (Figure 1D), respectively. The PPI network revealed the interactions
among 40 IRI-related PRGs (Figure 1E). TP53 had the highest central position in the
PPI interaction network. Correlation analysis showed the correlation of 40 PRGs in IRI
(Figure 1F). SIRT1 had the highest correlation with DDX3X (cor = 0.72).
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Figure 1. Identification of DEPRGs in IRI. Heatmap (A) and volcano map (B) of 40 DEPRGs in
the combined dataset. Boxplots show the difference in DEPRGs expression before and after renal
ischemia-reperfusion in GSE43974 (C) and GSE126805 (D). * p < 0.05, ** p < 0.01, the *** p < 0.001.
(E) PPI networks of 40 DEPRGs in the combined dataset. (F) Correlation among 40 DEPRGs in the
combined dataset. Positive correlations are shown in blue and negative correlations are in red. The
color depth reflects the strength of the correlation.

3.3. Selection of Hyperparameters for DL-ONMF Algorithm

The DL-ONMF algorithm proposed in this paper is assumed to involve six parameters
λ1, λ2, γ1, γ2, β1, and β2. A parameter set [0.001 0.01 0.1 1] was set. The six hyperparameters
were selected among the four specified parameters using a grid search method. We showed
the dimension reduction k for the selection process in Figure 2A. The dimension reduction
performance of the algorithm was reduced due to the excessive setting. Therefore, the value
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of k was set between 1 and 5, and the reconstruction performance of the algorithm with
different values of k was calculated. Finally, k was set to 5 in this paper. Next, we fixed the
best k value and selected the other hyperparameters. Figure 2B showed the reconstruction
performance of the algorithm under different parameter combinations. Among them, the
PCC corresponding to the 769th group of parameters was the largest, reaching 0.8966. We
select the best parameters combination for λ1 = 0.001, λ2 = 1, γ1 = 0.001, γ2 = 0.001,
β1 = 0.001 and β2 = 0.001. After 100 iterations of the algorithm, the function values of all
constraint terms tended to be stable.

Biomolecules 2023, 13, x FOR PEER REVIEW 7 of 17 
 

The dimension reduction performance of the algorithm was reduced due to the 
excessive setting. Therefore, the value of 𝑘  was set between 1 and 5, and the 
reconstruction performance of the algorithm with different values of 𝑘 was calculated. 
Finally, 𝑘 was set to 5 in this paper. Next, we fixed the best 𝑘 value and selected the 
other hyperparameters. Figure 2B showed the reconstruction performance of the 
algorithm under different parameter combinations. Among them, the PCC 
corresponding to the 769th group of parameters was the largest, reaching 0.8966. We 
select the best parameters combination for 𝜆ଵ = 0.001, 𝜆ଶ = 1, 𝛾ଵ = 0.001, 𝛾ଶ = 0.001, 𝛽ଵ = 0.001 and 𝛽ଶ = 0.001. After 100 iterations of the algorithm, the function values of 
all constraint terms tended to be stable. 

 
Figure 2. Variation trend of hyperparameter selection and function values of different constraint 
terms with the increasing number of iterations for DL-ONMF algorithm. (A) Line plot of the 
reconstruction performance of the algorithm under different parameter combinations. (B) Line 
plot of the reconstruction performance of the algorithm for different values of 𝑘. 

3.4. Algorithm Clustering Results 
This paper used the spectral clustering [13] method to obtain the final clustering 

results for the dimension reduction results obtained by the DL-ONMF algorithm. 
Specifically, this paper set the number of clusters from 2 to 5, and the contour 
coefficients were obtained under different cluster numbers. Figure 3A-D illustrated the 
2D visualized scatter plots obtained using the t-sne dimensionality reduction algorithm 
for other cluster numbers (2 to 5). Figure 3E-H showed the 3D visualization scatter plots 
for different cluster numbers (2 to 5) obtained using the t-sne dimensionality reduction 
algorithm. The other colored points represented different classes of samples. In addition, 
this paper showed the contour coefficients for different cluster numbers in Figure 3I. The 
highest contour coefficients were obtained when clustering into two classes. Therefore, 
we set the number of clusters to two. 

Figure 2. Variation trend of hyperparameter selection and function values of different constraint
terms with the increasing number of iterations for DL-ONMF algorithm. (A) Line plot of the
reconstruction performance of the algorithm under different parameter combinations. (B) Line plot
of the reconstruction performance of the algorithm for different values of k.

3.4. Algorithm Clustering Results

This paper used the spectral clustering [13] method to obtain the final clustering results
for the dimension reduction results obtained by the DL-ONMF algorithm. Specifically, this
paper set the number of clusters from 2 to 5, and the contour coefficients were obtained
under different cluster numbers. Figure 3A–D illustrated the 2D visualized scatter plots
obtained using the t-sne dimensionality reduction algorithm for other cluster numbers
(2 to 5). Figure 3E–H showed the 3D visualization scatter plots for different cluster numbers
(2 to 5) obtained using the t-sne dimensionality reduction algorithm. The other colored
points represented different classes of samples. In addition, this paper showed the contour
coefficients for different cluster numbers in Figure 3I. The highest contour coefficients were
obtained when clustering into two classes. Therefore, we set the number of clusters to two.
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Figure 3. Results obtained under the best parameters for different cluster numbers. (A–D) are
2D visualized scatter plots of other cluster numbers (2 to 5) obtained using the t-sne dimension-
ality reduction algorithm. (E–H) are 3D visualization scatter plots of different cluster numbers
(2 to 5) obtained using the t-sne dimensionality reduction algorithm. (I) is the line plot of the contour
coefficient change as the number of clusters increases.

3.5. Comparison of Algorithm Performance

In order to evaluate the performance of the proposed algorithm, two metrics, recon-
struction performance and reconstruction error, are introduced in Section 2.4. Table 1
presents the performance comparison results of the two algorithms.

Table 1. Results of algorithm performance comparison.

Algorithm Reconstruction Performance Reconstruction Error

NMF 0.8955 8.2945
DL-ONMF 0.8964 8.2773

In addition, in order to evaluate the clustering performance of NMF, K-means and
DL-ONMF, we counted the visualization and contour coefficient results of t-sne and PCA
dimensionality reduction, respectively, when the clustering of the three algorithms was in
2–5 classes. Among them, the visualization results of t-sne dimensionality reduction and
contour coefficient changes of DL-ONMF algorithm are shown in Figure 3. Other cases
are shown in the supplementary material. As can be seen in Figures 3 and S1–S3 in the
supplementary material, the proposed algorithm obtains the highest contour coefficients
in both classes of cases. In addition, it can be seen from the dimensionality reduction
visualization that the proposed algorithm has a clearer clustering effect in the two types
of cases.
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3.6. Subtype Analysis

First, we performed a difference analysis using the limma algorithm on the two ob-
tained subtype groups, with a p value set at 0.05 (t.test). Finally, 44 differentially expressed
genes were obtained. A heat map of the differential expression of these genes was gen-
erated (Figure 4A). Among these genes, 37 genes were up-regulated and 7 genes were
down-regulated. GO and KEGG enrichment analysis were performed for up-regulated
genes and down-regulated genes, respectively, and bubble plots of enrichment results were
drawn (Figure 4B,C).
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3.7. Different Immune Characteristics among IRI Subtypes

Firstly, the expression of 74 PRGs in the two pyroptosis-related subtypes was elu-
cidated, and a total of 47 PRGs were differentially expressed (wilcox.test) between the
two subtypes (Figure 5A,B). Previous studies have shown that IRI involves innate and
adaptive immune responses [14]. Therefore, in this paper, we used ssGSEA to explore
the immunological characteristics among IRI subtypes. The results of immunoassays
showed that the abundance of a variety of immune cells was different between subtypes.
Such as Activated.CD4.T.cell, Activated.dendritic.cell, CD56dim.natural.killer.cell and
Gamma.delta.T.cell (Figure 5C). We found that the abundance of immune cells in IRI pa-
tients was generally higher in cluster1 than in cluster2. In addition, 48 immunological
examination sites and 25 HLA-related genes were also explored in the two subtypes. The
results showed that a total of 9 immune examination sites (Figure 5D) and 8 HLA-related
genes (Figure 5E) were differentially expressed between cluster1 and cluster2, and their ex-
pression in cluster1IRI patients was also higher than that in cluster2. These results indicate
that this paper’s immune microenvironment of the two pyroptosis-related IRI subtypes
identified by the DL-ONMF algorithm is significantly different and may be an essential
factor in kidney transplantation. Therefore, it is necessary to further explore the effect of
the two subtypes of DEPRGs on the success and failure of kidney transplantation.
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Figure 5. Immune features in the two pyroptosis-related clusters. Heatmap (A) and boxplot (B) of
47 DEPRGs in the typing dataset. (C) The difference in the abundance of immune cells between
cluster1 and cluster2. (D) Expression differences between cluster1 and cluster2. (E) Expression
differences of HLA-related genes between cluster1 and cluster2. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.8. Construction of Renal Transplantation Related Diagnostic Model

To explore the significance of DEPRGs in the process of renal transplantation, the
expression of 47 DEPRGs in successful and failed renal transplantation patients was eluci-
dated. In Figure 6A,B, 33 of 47 PRGs were differentially expressed between the successful
and failed renal transplant recipients (p < 0.05). The expression profiles of these 33 DEPRGs
were left as input for the following analysis.
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LASSO and SVM-RFE were used to screen further the diagnostic features related to
renal transplantation. The partial likelihood deviations and coefficients of LASSO versus
logλ show (Figure 7A,B) that 21 diagnosis-relevant PRGs (CASP1, IL1B, PYCARD, DDX3X,
GJA1, GBP1, HDAC6, SERPINB1, BIRC3, APOL1, p < 0.05) were identified. TUBB6, IFI16,
STAT3, NFKB1, TLR2, ANXA2, CHI3L1, LRPPRC, IL32, BST2, and CLEC5A). According to
the importance of SVM-RFE calculation and ten-fold cross-validation results (Figure 7C,D),
19 kidney transplant diagnosis-related PRGs (ANXA2, CASP1, TLR2, PYCARD, DDX3X,
IL32, APOL1, SERPINB1, CLEC5A, NFKB1, and PRGS (ANXA2, CASP1, TLR2, PYCARD,
DDX3X, IL32) were identified. LRPPRC, CHI3L1, TUBB6, HDAC6, GZMA, CD14, BIRC3,
IFI16, and DHX9). Then, we intercrossed the diagnostic genes screened by the two algo-
rithms, and a total of 16 renal transplantation diagnosis-related PRGs (CASP1, PYCARD,
DDX3X, HDAC6, SERPINB1, BIRC3, APOL1, TUBB6, IFI16, NFKB1, TLR2, ANXA2, PRGS)
were obtained. CHI3L1, LRPPRC, IL32, and CLEC5A) (Figure 7E). To evaluate the pre-
dictive accuracy of the diagnostic model, ROC curves were plotted for the GSE21374 and
GSE36059 datasets. The AUC of GSE21374 and GSE36059 was 0.886 and 0.813, respectively
(Figure 7F,G). Finally, we plotted separate ROC curves for the 16 diagnostically relevant
PRGs. In Figure 8A–D, 16 genes also showed better diagnostic performance in GSE21374
and GSE36059 alone. Specifically, CASP1 had the best diagnostic performance, with an
AUC of 0.774 in the ROC curve of the GSE21374 dataset.
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Figure 7. Machine learning in screening candidate diagnostic biomarkers for renal transplantation.
(A) Plot of partial likelihood deviance. (B) Plot of LASSO coefficient profiles. Accuracy (C) and
error (D) of 10-fold cross-validation (CV) in SVM-RFE algorithms, respectively. (E) Venn diagram
showing the characteristic genes shared by LASSO and SVM-RFE algorithms. ROC curve evaluates
the diagnostic performance of characteristic genes in GSE21374 (F) and GSE36059 (G).
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3.9. Construction of Nomogram

To further explore these 16 diagnosis-related PRGs (CASP1, PYCARD, DDX3X, HDAC6,
SERPINB1, BIRC3, APOL1, TUBB6, IFI16, NFKB1, TLR2, ANXA2, CHI3L1, LRPPRC, IL32,
and CLEC5A), a nomogram model was constructed based on these 16 genes (Figure 9A).
The calibration curve showed that the nomogram model based on the 16 diagnosis-related
PRGs was in good agreement with the ideal model (Figure 9B). DCA analysis showed that
although both the nomogram model and individual diagnosis-related PRGs generated
net benefits, the net use of the nomogram model was significantly greater than that of
individual diagnosis-related PRGs, indicating that the nomogram model may be more
clinically useful than individual diagnosis-related PRGs (Figure 9C). Analysis of the clinical
impact curves showed that the nomogram model had relatively high diagnostic power
(Figure 9D).
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Figure 9. Construction of the nomogram model. (A) Construction of the nomogram model based on
the selected PRGs (CASP1, PYCARD, DDX3X, HDAC6, SERPINB1, BIRC3, APOL1, TUBB6, IFI16,
NFKB1, TLR2, ANXA2, CHI3L1, LRPPRC, IL32 and CLEC5A). (B) Calibration curve illustrating
the diagnostic ability of the nomogram model. (C) Nomogram models have higher clinical utility
than individual PRGs, according to DCA. (D) The clinical impact curve demonstrates a high level of
diagnostic ability of the nomogram model.

4. Discussion

IRI often occurs in the process of kidney transplantation and affects the renal function
and prognosis of patients. This paper proposes a DL-ONMF algorithm to classify patients
with IRI and confirm two IRI subtypes. The two IRI subtypes have significant differences
in immune characteristics. Specifically, we first extracted differentially expressed genes and
the intersection genes of 110 PRGs. The PPI network was used to reveal the interactions
among 40 IRI-related PRGs. We obtained DEGs between the two isoforms using the DL-
ONMF algorithm under the best parameter combination. This study found that most
of the pathways enriched by differential genes in the two groups were closely related to
reperfusion injury. We found that most of the significant pathways involved in up-regulated
genes were closely related to the treatment of renal ischemia. For example, G protein α12 is
a negative regulator of adipocyte mediated by kidney injury molecule-1, which can inhibit
the activation of reactive oxygen species during renal ischemia-reperfusion injury [15].
G-protein-coupled receptor 35 agonists can realize mitochondrial remodeling and renal
ischemia protection [16]. On the contrary, most of the significant pathways involved in



Biomolecules 2023, 13, 275 15 of 17

down-regulated genes were closely related to the development of renal ischemia/renal
disease. For example, In the treatment experiments of ischemia-reperfusion injury in
transgenic and wild-type mice, transgenic mice showed rapid and enhanced renal injury.
Transgenic mice with low Igf-1Ea expression can significantly up-regulate pro-inflammatory
cytokines such as TNF-α and Ccl2 [17]. The inflammasome is an attractive potential
therapeutic target in a variety of renal diseases [18].

The immune analysis between IRI subtypes by the ssGSEA algorithm showed that
the abundance of immune cells and the abundance of 9 immune check sites were differ-
ent between the two subtypes. To explore the significance of DEPRGs in the process of
renal transplantation among PRGS-related IRI subtypes, 47 DEPRGs were analyzed in the
successful and failed renal transplantation. The obtained DEGs were put into the LASSO
and SVM-RFE algorithms, respectively. The intersection of diagnostic genes screened by
the two algorithms was taken, and 16 PRGs related to kidney transplantation diagnosis
were obtained. Vasantha et al. demonstrated that CASP1 is a driver of hepatocyte injury in
fatty livers undergoing IRI and that its inhibition leads to liver protection [19]. Yuan et al.
confirmed the potential role of HDAC6 in the retinal IRI model through biological exper-
iments [20]. Toll-like receptor (TLR) plays a central role in recognizing pathogens and
damage-associated molecular patterns in innate immunity. F Arslan et al. summarized
the beneficial effects of therapeutic inhibition of TLR2 on IRI injury in a mouse model of
myocardial infarction [21]. Dmitry et al. identified candidate genes, including ANXA2, by
performing an in situ renal IRI meta-analysis of 150 microarray samples [22]. Deng et al.
found that upregulation of miR-381-5p enhanced the effect of dexmedetomidine precondi-
tioning in preventing myocardial ischemic IRI in a mouse model by inhibiting CHI3L1 [23].
The study by Zhou et al. confirmed that LRPPRC as a transcription factor might be an
essential target for protection against IRI injury mediated by rhizoma alkaloids in Coptis
rhizoma [24]. In addition, PYCARD, NFKB1, and IL32 may also play a role in related
diseases induced by IRI [22,25–27].

Finally, a nomogram model was constructed for the 16 genes, and the clinical im-
plications of the 16 diagnosis-related PRGs were explored. The results showed that the
nomogram model had relatively high diagnostic power.

5. Conclusions

As a severe complication of transplantation, IRI has different subtypes of prognosis.
In this paper, we proposed a novel DL-ONMF clustering method to reduce the influence
of redundant features while entirely using the prior information contained in PRGs. We
performed an exhaustive biogenic analysis of the two subtypes obtained by the DL-ONMF
algorithm. The immunoassay results showed that the two PRGS-related subtypes obtained
by the DL-ONMF algorithm had different immune characteristics. Specifically, patients
with IRI in type 1 had a generally higher immune response than those with IRI in type 2.
This suggests that inter-subtyping differences may be contributing factors to the success
or failure of renal transplantation. Based on the inter-subtype DEPRGs, we used LASSO
and SVM-RFE algorithms to construct a diagnostic model related to renal transplantation.
The diagnostic model could reasonably predict the outcome of kidney transplant patients
(AUC = 0.886). In the subsequent study, we consider using the patient’s clinical information
as a priori information to induce the algorithm to cluster IRI subtypes closely related to
clinical indicators and provide new insights into the precise treatment of IRI.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13020275/s1, Figure S1: The results obtained by the NMF
algorithm under the best parameters for different cluster numbers. (A–D) are 2D visualized scatter
plots of other cluster numbers (2 to 5) obtained using the t-sne dimensionality reduction algorithm.
(E–H) are 3D visualization scatter plots of different cluster numbers (2 to 5) obtained using the t-sne
dimensionality reduction algorithm; Figure S2: The results obtained by the K-means algorithm under
the best parameters for different cluster numbers. (A–D) are 2D visualized scatter plots of other
cluster numbers (2 to 5) obtained using the t-sne dimensionality reduction algorithm. (E–H) are 3D
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visualization scatter plots of different cluster numbers (2 to 5) obtained using the t-sne dimensionality
reduction algorithm. (I) is the line plot of the contour coefficient change as the number of clusters
increases; Figure S3: The results obtained by the NMF algorithm under the best parameters for
different cluster numbers. (A–D) are 2D visualized scatter plots of other cluster numbers (2 to 5)
obtained using the PCA dimensionality reduction algorithm. (E–H) are 3D visualization scatter plots
of different cluster numbers (2 to 5) obtained using the PCA dimensionality reduction algorithm.
(I) is the line plot of the contour coefficient change as the number of clusters increases; Figure S4: The
results obtained by the K-means algorithm under the best parameters for different cluster numbers.
(A–D) are 2D visualized scatter plots of other cluster numbers (2 to 5) obtained using the PCA
dimensionality reduction algorithm. (E–H) are 3D visualization scatter plots of different cluster
numbers (2 to 5) obtained using the PCA dimensionality reduction algorithm. (I) is the line plot of the
contour coefficient change as the number of clusters increases; Figure S5: Comparison of the contour
coefficients of the three algorithms. (A–C) show the line plots of the contour coefficients of NMF,
K-means and DL-ONMF as the number of clusters, respectively.
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