
Citation: Janela, T.; Takeuchi, K.;

Bajorath, J. Predicting Potent

Compounds Using a Conditional

Variational Autoencoder Based upon

a New Structure–Potency Fingerprint.

Biomolecules 2023, 13, 393.

https://doi.org/10.3390/

biom13020393

Academic Editors: Umesh Desai,

Daniel Afosah and Mire Zloh

Received: 14 December 2022

Revised: 7 February 2023

Accepted: 16 February 2023

Published: 18 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Predicting Potent Compounds Using a Conditional Variational
Autoencoder Based upon a New Structure–Potency Fingerprint
Tiago Janela , Kosuke Takeuchi and Jürgen Bajorath *

Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and
Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6,
D-53115 Bonn, Germany
* Correspondence: bajorath@bit.uni-bonn.de; Tel.: +49-228-73-69100

Abstract: Prediction of the potency of bioactive compounds generally relies on linear or nonlinear
quantitative structure–activity relationship (QSAR) models. Nonlinear models are generated using
machine learning methods. We introduce a novel approach for potency prediction that depends
on a newly designed molecular fingerprint (FP) representation. This structure–potency fingerprint
(SPFP) combines different modules accounting for the structural features of active compounds and
their potency values in a single bit string, hence unifying structure and potency representation. This
encoding enables the derivation of a conditional variational autoencoder (CVAE) using SPFPs of
training compounds and apply the model to predict the SPFP potency module of test compounds
using only their structure module as input. The SPFP–CVAE approach correctly predicts the potency
values of compounds belonging to different activity classes with an accuracy comparable to support
vector regression (SVR), representing the state-of-the-art in the field. In addition, highly potent
compounds are predicted with very similar accuracy as SVR and deep neural networks.

Keywords: bioactive compounds; potency prediction; fingerprints; machine learning; conditional
variational autoencoder

1. Introduction

Compound potency prediction is a major task in chemoinformatics and computational
medicinal chemistry. For potency prediction, both structure- and ligand-based approaches
are available. Structure-based methods attempt to predict small molecule (ligand) potency
on the basis of experimental (or modeled) three-dimensional (3D) structures of ligand–target
complexes. Ideally, such predictions aim to calculate the free energy of binding [1,2], for
example, by applying alchemical free energy perturbation methods [2]. These calculations
are challenging due to their high computational costs and the need to achieve consistent
accuracy across different targets and compound classes [1]. Alternatively, scoring functions
of different levels of sophistication are used to approximate ligand binding energies [3–6].

At the other end of the methodological spectrum reside classical ligand-based ap-
proaches for 2D and 3D quantitative structure–activity relationship (QSAR) modeling,
which derive linear descriptor-based models for predicting potency values of congeneric
compounds (structural analogues) [7,8]. Furthermore, for ligand-based modeling of
non-linear SARs and potency prediction, random forest (RF) regression [9] and, in par-
ticular, support vector regression (SVR) have become preferred machine learning ap-
proaches [10,11]. While SVR typically produces statistically sound prediction models, it
also displays a tendency to under-predict the individual most potent compounds because
they are often algorithmically classified as outliers [12].

The increasing popularity of deep machine learning in pharmaceutical research [13–17]
is also influencing structure- and ligand-based potency prediction. One of the attractions
of deep learning is the ability to derive new object representations from input data such
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as molecular graphs, thereby alleviating the need to use pre-conceived molecular descrip-
tors for prediction tasks. Suitable deep neural network (DNN) architectures have been
adapted for developing scoring functions [6,7] or deriving ligand–target binding energy
models [18–21]. Despite their apparent success, such models are in part controversially
viewed due to the observed strong dependence of their performance on varying training
set composition [22,23], resulting from the memorization of training data leading to appar-
ently accurate predictions that do not depend on correctly accounting for ligand–target
interactions [22–24]. Similar observations have also been made for deep compound classifi-
cation models with limited generalization ability [25]. In addition to studying ligand–target
interactions, DNNs are also intensely investigated for ligand-based molecular property pre-
dictions including potency [26–29]. To these ends, various DNN architectures and learning
strategies have been adapted. However, on data sets from medicinal chemistry, which are
often limited in size, DNN-based property prediction models often do often exceed—or
even meet—the performance of simpler models [29,30]. Hence, for both compound prop-
erty and potency prediction, no firm conclusion can currently be drawn concerning the
potential superiority of DNNs over standard approaches. We have recently shown that
k-nearest neighbor (kNN) analysis meets the accuracy of other ML methods in potency
prediction [31]. Moreover, randomized predictions typically reproduce experimental po-
tency values within an order of magnitude, which is a direct consequence of potency value
distributions in compound activity classes commonly used for benchmarking [31]. Hence,
the best ML models and random predictions are only distinguished by a small margin of
maximally one order of magnitude, representing a general limitation associated with the
benchmarking of potency prediction methods. This needs to be taken into consideration
when evaluating these methods, calling for the inclusion of simple controls such as kNN.

In this work, we introduce a novel concept for compound potency prediction that
combines a special fingerprint (FP), termed structure–potency FP (SPFP), with a deep
learning approach. FPs accounting for chemical structure and topology are a mainstay
for chemical similarity searching [32,33]. SPFP is the first FP representation specifically
designed to combine compound structure and potency information in a modular format.
Using SPFP, a conditional variational autoencoder (CVAE) [34,35] is trained to predict
potency from chemical structure using the structural module of test compounds as input.
Given the uniform structure–potency bit string encoding, SPFP–CVAE models do not
depend on class labels or associated variables for learning.

2. Materials and Methods
2.1. Compound Activity Classes

Bioactive compounds were extracted from ChEMBL (version 28) [36]. The compounds
with a reported direct target interaction (target confidence score: 9) and a numerically
specified potency (pIC50) value (standard relation: “=”) were initially retrieved. Then,
the compounds with a molecular weight less than 1000 Da and potency values falling
into the pIC50 range from 5 to 11 were selected. All the compounds with interactions
labeled as “inactive”, “not active”, “inconclusive”, “potential transcription error”, or “pan
assay interference compounds” (PAINS) [37] were discarded. Furthermore, the PAINS
filter from RDKit, a filter based on liability rules from medicinal chemistry [38], and
the aggregation advisor [39] were applied to remove compounds with potential assay
interference characteristics. On the basis of these criteria, 132,175 unique compounds
were obtained with activity against 1315 human targets. The qualifying compounds were
organized into target-based activity classes (pharmaceutical anti-targets were omitted).
A set of 10 activity classes was randomly selected from the large pool, comprising 18,231
unique compounds (Table 1) and used for activity class-based model building, hyper-
parameter optimization, and model evaluation.
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Table 1. Activity classes. Ten activity classes used for deriving and evaluating activity class-based
prediction models are reported.

Target Name Target ID # Compounds

Beta-secretase 1 4822 2270
11-beta-hydroxysteroid dehydrogenase 1 4235 2232

Phosphodiesterase 10A 4409 2109
Acetyl-CoA carboxylase 2 4829 1811
Dipeptidyl peptidase IV 284 1709

Sodium channel protein type IX alpha subunit 4296 1703
Tyrosine-protein kinase SYK 2599 1616

Vascular endothelial growth factor receptor 2 279 1614
Epidermal growth factor receptor erbB1 203 1606

Vanilloid receptor 4794 1562

2.2. Model Building and Evaluation

For each activity class, training and test sets were randomly assembled to yield a
constant 90:10 compound partition. Across all models, the predictive performance was
evaluated over 10 independent trials using different performance measures. For 80:20
compound data partitions used as a control, nearly identical results were obtained.

2.2.1. Conditional Variational Autoencoder

CVAE [40] is an adaptation of the variational autoencoder (VAE) [41], a supervised
deep learning algorithm for generative modeling that constructs a conditioned data repre-
sentation into a continuous latent variable (z). The probabilistic encoder q(z|X, c) (recogni-
tion network) uses a condition vector (c) to map the input data to a Gaussian distribution,
p(z|c)∼N(0, I) (prior network) into the latent space. The decoder p(X|z, c) then reconstructs
data samples from the conditioned latent space to obtain the original input representation
(dimensionality). The encoder and decoder are trained with the objective of optimizing the
evidence lower bound (ELBO) of the input data [42,43]. During training, the conditioned
encoder learns to approximate a latent variable distribution by minimizing the Kullback–
Leibler (KL) divergence [44] between data distributions in the original and latent space.
The decoder is trained to minimize the reconstruction error of the data representation.

The CVAE encoder and decoder networks consisted of three hidden layers, with 512,
256, and 128 neurons, respectively. For hyper-parameter optimization, a grid search proto-
col was applied to determine the number of neurons for the latent layer (16, 32, and 64).
Different learning rates (0.1, 0.01, and 0.001), dropout rates (0 and 0.5), and batch sizes
(16, 32, and 64) were evaluated. Network training was performed with Adam [45] optimizer
and the hyperbolic tangent (tanh) was used as the activation function. The parameters
β (1 and 2) and σ (0.01, 0.1, and 1) were tested. The learning rate was steadily reduced, dur-
ing training, to improve learning, and the models were run for a maximum of 150 epochs
or until convergence was reached with the early stopping option to avoid network over-
fitting. The CVAE cost function was computed as the mean of the reconstruction (binary
cross-entropy) loss and KL divergence loss.

2.2.2. Support Vector Regression

The support vector regression (SVR) is a variant of the supervised support vector
machine algorithm that derives an ε-insensitive tube based on the training data for the
prediction of numerical values, with the maximum permitted error provided by the width
of the ε tube [10,11].

For SVR, the cost hyper-parameter C was optimized by testing (0.001, 0.005, 0.01, 0.05, 0.1,
0.5, 1, 10, 100, and 10000) values. The SVR models were built using the Tanimoto kernel [46].
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2.2.3. Random Forest Regression

Random forest regression (RFR) is a machine-learning algorithm based on an ensemble
of decision trees. During model training, each tree is created by splitting the respective
node and bootstrapping aggregation is used to randomly select the training instances. The
mean value across all decision trees is used to determine the final prediction [47].

In RFR parameter optimization, the number of decision trees (50, 100, and 200), the
minimal number of samples for a split (2, 3, 5, and 10), and the minimum number of
leaf-node samples (1, 2, 5, and 10) were used as the search parameter space.

2.2.4. Deep Neural Network

DNN is a deep learning method capable of mathematically modeling data using a non-
linear activation function through the neurons of the network’s fully connected layers. The
network learning process consists of interactively determining the difference between the
observed and predicted values, using a stochastic gradient descent algorithm to minimize
the loss function until it converges to a specific minimum value [48,49].

The DNN models were trained using several network architectures by varying the
different numbers of hidden layers (2 and 3) with hyperbolic tangent (tanh) activation, and
the network neurons (100–500). Grid searches were performed for different batch sizes
(16 and 64), dropout (0 and 0.5), and learning rates (0.1, 0.01, and 0.001). The networks were
trained using an Adam optimizer for a maximum of 200 epochs with early termination.

2.2.5. k-Nearest Neighbor Ranking

kNN is a supervised learning method that ranks the training compounds based on
increasing the fingerprint similarity (shortest distance). For the final prediction, the k-top
training compounds potency value is accessed (e.g., 1-NN—potency value, and 3-NN—
average potency) and assigned to the test compound [50]. For kNN optimization, the
optimal k values were evaluated with 1, 3, and 5 top-rated compounds.

2.2.6. Mean Regression

The mean regressor (MR) approach is based on assigning the mean potency value of
the training set to each compound present in the test set. This method was used as a control
calculation to generate the random predictions.

2.2.7. Random Predictions

A y-randomization control was performed by the random reassignment of potency
values across the compounds from each activity class (random shuffling) [51].

2.2.8. Hyperparamters and Implementation

The kNN, SVR, RF, and SPFP–CVAE model hyperparameters were optimized us-
ing an internal five-fold cross-validation, whereas the DNN parameter optimization was
performed with an internal 90:10 training–validation split. The SVR, RFR, kNN, and
MR models were generated using scikit-learn [52]. The CVAE and DNN models were
implemented with Keras [53] and Tensorflow [54].

2.2.9. Evaluation Metrics

The performances of all the models were evaluated by calculating the mean absolute
error (MAE) and root mean squared error (RMSE) for predicted and experimental test
compound potency values using scikit-learn.

MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi| (1)
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RMSE(y, ŷ) =

√√√√ n

∑
i=1

(yi − ŷi)
2

n
(2)

where n is the number of compounds, and y and ŷ are the experimental and predicted
potency values, respectively.

An assessment of the statistical significance was performed for the value distributions
from predictions based on MAE and RMSE values using the nonparametric Wilcoxon
test [55]. The null hypothesis was either rejected or accepted, by setting alpha to 0.05 and
comparing it to the respective p-value (p ≤ 0.05).

2.3. Molecular Representation

The compounds were represented using a folded version of the extended connectivity
fingerprint with bond diameter 4 (ECFP4) [56], which is a generally preferred topological de-
scriptor for many chemoinformatics applications, consisting of layered atom environments,
consisting of 2048 bits. The ECFP4 fingerprint was generated using RDKit [57].

The scripts for the reported calculations and the curated activity classes are available
from the authors upon request.

3. Results and Discussion
3.1. Concept of Potency Prediction Based on Fingerprint-Based Potency Encoding

The introduction of a structure–potency fingerprint (SPFP) provided the basis for a new
approach in potency prediction. The underlying idea was to unify structural and potency
encodings in a modular fingerprint representation of a constant format such that the potency
module representing a numerical value could be predicted from the structural module
of test compounds using deep learning. This unified and intuitive modular encoding of
compound structure and potency enabled the derivation of a chemical language model
such as a CVAE using SPFPs of training compounds to predict the potency module of test
compounds using only their structure module as input.

An extended connectivity fingerprint with a constant size of 2048 bits represented the
structure module of SPFP that was combined with a newly designed potency module for
representing compound potency values. We defined two principal requirements for the
potency module. Hence, it was required to, first, represent the biologically relevant large
(negative decadic logarithmic) potency range from 5 to 11 and, second, encode the potency
values at a meaningful resolution such that accurate predictions could in principle be
obtained. Therefore, alternative single value, value range, and cumulative coding schemes
suitable for bit string representations were initially investigated and cumulative value
range encoding was found to be the most robust approach (that is, yielding the most stable
predictions across independent trials). Accordingly, contiguous segments of increasing
numbers of bits were used to represent increasingly potent compounds populating the
entire logarithmic potency range from 5 to 11. For example, Figure 1a,b show how a
potency value of 5.2 and 8.0 was encoded by setting on the first four and 51 bits in the
potency module, respectively. To meet the second requirement stated above, we set the
size of the potency module to a minimum of 100-bit positions such that each individual
bit position accounted for 0.06 log units via cumulative potency encoding. Accordingly,
the resolution of the potency predictions was intrinsically limited to 6% of a log unit. This
level was deemed acceptable for the approach because it fell within the typical range of
experimental accuracy limitations. Smaller bit numbers for the potency module would
lead to larger resolution limits while larger numbers would further increase the resolution.
Therefore, we also tested larger versions of the potency module using the SPFP–CVAE
models comprising 500 and 1000 bits, as reported in Figure 2. These control calculations
produced very similar results to those obtained for the 100-bit potency module, hence
showing that the prediction accuracy could not be further increased by decreasing the
resolution limit of the potency encoding and supporting the choice of 100-bit positions for
the potency module. Furthermore, for potency predictions using CVAE sampling, a bit



Biomolecules 2023, 13, 393 6 of 13

module with a constant format and meaningful size was required to assess the predictions
in a meaningful way (see below).
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Figure 2. Prediction accuracy for SPSF with differently sized potency modules. Boxplots report mean
absolute error (MAE) values of SPFP–CVAE models using alternative SPFP versions with potency
modules comprising 100, 500, or 1000 bits evaluated across all activity classes according to Table 1. In
boxplots, the upper and lower whiskers indicate maximum and minimum values, the boundaries of
the box represent the upper and lower quartiles, values classified as statistical outliers are shown as
diamonds, and the median value is indicated by a horizontal line.

3.2. Learning and Prediction Strategy

The CVAE model architecture used here consists of an encoder, latent space layer, and
decoder, as illustrated in Figure 3.
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Figure 3. Architecture of the conditional variational autoencoder. The encoder network transforms
the potency module (PFP), conditioned by the structure module (c), into a distribution of latent
variables (z). The decoder samples a conditioned latent vector from a Gaussian distribution and
reconstructs the potency module.

For each compound activity class, a CVAE model was trained to reproduce the com-
plete bit patterns of the potency module, conditioned by the structure module, as illustrated
in Figure 4a. Each CVAE model was then used to predict the bit settings of the potency
module (PFP). Therefore, the potency values of the test compound were predicted by
submitting the structure module (c) to the CVAE decoder to generate the corresponding
potency module, as illustrated in Figure 4b. Since the CVAE predictions depended on the
sampling of potency modules in latent space, the evaluation criteria for potency module
variants were defined. Accordingly, for a given test compound, a sampled potency module
was classified as valid if it contained a contiguous bit string in which all bits were set on. If
this criterion was met, the predicted potency value was assigned to the center of the respec-
tive potency interval (e.g., 5.03 for the [5.0–5.06] interval), resulting in a constant standard
deviation of ±0.03 log units for all predictions. By contrast, if the output bits were not
contiguous, that is, if they were not consistent with the cumulative encoding of the potency
module, the prediction was classified as invalid and the sampling was continued until a valid
prediction was obtained, given a maximal number of permitted sampling steps.
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3.3. Potency Predictions

For 10 randomly selected compound activity classes, different ML models were gen-
erated. Figure 5 shows that the compound potency value distributions of the activity
classes were overlapping yet distinct, mostly yielding median potency values in the high



Biomolecules 2023, 13, 393 8 of 13

nanomolar range. The comparison also shows that logarithmic potency values below 5
(approaching experimental accuracy limitations) and above 10 (sub-nanomolar potency)
were generally sparse.

Biomolecules 2023, 13, x FOR PEER REVIEW 9 of 15 
 

Figure 4. Conditional variational autoencoder modeling. In (a,b), the CVAE training and prediction 
strategies are illustrated, as discussed in the text. 

3.3. Potency Predictions 
For 10 randomly selected compound activity classes, different ML models were 

generated. Figure 5 shows that the compound potency value distributions of the activity 
classes were overlapping yet distinct, mostly yielding median potency values in the high 
nanomolar range. The comparison also shows that logarithmic potency values below 5 
(approaching experimental accuracy limitations) and above 10 (sub-nanomolar potency) 
were generally sparse.  

 
Figure 5. Potency value distribution of activity classes. Kernel density estimation plots (left) and 
boxplots (right) compare the potency values distributions of the 10 activity classes. Coloring of 
boxplots is arbitrary. The horizontal line indicates the median of the value distribution and diamond 
symbols represent statistical outliers.   

Activity class-dependent potency prediction models were then generated for SPFP‒
CVAE, k-nearest neighbor (kNN) analysis, SVR, RFR, and DNN. These ML approaches 
currently represent the state of the art in compound potency prediction [31]. In addition, 
a mean regressor (MR) was applied as a control, which simply assigned the mean potency 
value of an activity class to all test compounds. The results are reported in Figure 6.  

Figure 5. Potency value distribution of activity classes. Kernel density estimation plots (left) and
boxplots (right) compare the potency values distributions of the 10 activity classes. Coloring of
boxplots is arbitrary. The horizontal line indicates the median of the value distribution and diamond
symbols represent statistical outliers.

Activity class-dependent potency prediction models were then generated for SPFP–
CVAE, k-nearest neighbor (kNN) analysis, SVR, RFR, and DNN. These ML approaches
currently represent the state of the art in compound potency prediction [31]. In addition, a
mean regressor (MR) was applied as a control, which simply assigned the mean potency
value of an activity class to all test compounds. The results are reported in Figure 6.
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Overall, similar prediction accuracy was observed for the different ML models, re-
gardless of their complexity, mostly with median MAE and RMSE of ~0.4–0.5 and ~0.6–0.7,
respectively. As observed before [31], simple kNN-based potency assignments approached
or exceeded the prediction accuracy of ML models and there was no advantage of deep
learning approaches over other ML methods. Moreover, the MR yielded median MAE
and RMSE values of ~0.8–0.9 and ~1.0–1.1, respectively. The performance of randomized
SPFP–CVAE models was only slightly worse than MR, mostly with a median MAE value
of ~1.0–1.2, owing to the dominance of compounds with potency values between 6 and 8
across all activity classes, as reported in Figure 5. These artificial predictions using MR or
randomized models reproduced experimental values within about one order of magnitude,
providing a limit for prediction accuracy, while most accurate ML models typically achieved
mean MAE value of ~0.4. Hence, there was only a relatively small margin between best
and artificial predictions, defining a window of less than one order of magnitude in which
model performance must be evaluated [31]. In the previous study, equally curated versions
of three activity classes (279, 284, 4822) from a different ChEMBL release were investigated
using ML methods with different calculation protocols, yielding prediction accuracies very
similar to the values reported herein [31].

Many of the small performance differences observed in Figure 6 were not statistically
significant, as reported in Figure 7, while differences between SPFP–CVAE, SVR, and RFR
were statistically significant for about half of the activity classes. However, the prediction
accuracy of these three approaches was very similar, which was also reflected by the
respective p-values. Overall, SVR was the preferred approach, but only by a very small
margin compared to SPFP–CVAE and other ML methods. For example, the differences in
the median MAE between SPFP–CVAE and SVR ranged max. ~0.01–0.02, depending on
the activity class, which was marginal at most and would be considered irrelevant for all
practical purposes.
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3.4. Predicting Highly Potent Compounds

We then investigated the ability of the different ML methods to predict the 10% most
potent compounds in a test set (typically amounting to ~15–20 compounds) using models
derived based on the original sets. The results for models derived from original training sets
are shown in Figure 8. Due to the small test sample size of these predictions, the MAE and
RMSE value distributions were broader than for the global predictions reported in Figure 6.
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Figure 8. Prediction accuracy for the most potent test compounds. Boxplots report the median MAE
(a) and RMSE (b) values for the 10% most potent test compounds from all classes and different ML
models including kNN.

Compared to the global predictions, the median MAE and RMSE value for most potent
compounds increased to ~0.6 and ~0.8 or greater, respectively, for about half of the activity
classes while the prediction accuracy remained similar to before for the remaining classes.
However, the performance of the different ML methods including kNN continued to be
comparable (MR was omitted here because of the naturally large deviations for the small
number of the most potent compounds). Overall, SVR, SPFP–CVAE, and DNN yielded
best predictions with only small (and activity class-dependent) differences between these
methods. The predictions for the exemplary compounds are shown in Figure 9.
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4. Conclusions

Compound potency prediction is an important task in chemoinformatics and medicinal
chemistry. For structure- and ligand-based predictions, different methods have been
introduced. QSAR techniques including non-linear modeling using machine learning
continue to play an important role. Herein, we have introduced a new methodological
concept for compound potency prediction that depends on the newly designed SPFP
format for structure–potency encoding and CVAE learning. The SPFP–CVAE concept
was devised to enable the prediction of bit settings in SPFP potency modules from input
structure modules, without learning correlations between structural representations and
potency values used as a dependent variable. In activity class-dependent predictions, the
SPFP–CVAE approach essentially met SVR performance, representing the current state of
the art in the field. Given the general limitations associated with the potency predictions in
benchmark settings, we consider the prediction of most potent compounds a particularly
meaningful exercise. In this case, SVR, SPFP–CVAE, and DNN achieved comparable
accuracy. Taken together, our results indicate that the SPFP–CVAE concept introduced
herein provides a new methodological framework for compound potency prediction that
can be further explored in various ways. Importantly, FP-based structure–potency encoding,
as introduced herein, can be easily modified for different applications, providing a versatile
input format for ML.
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