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Abstract: Humanin is the first identified mitochondrial-derived peptide. Humanin-G (HNG) is a
variant of Humanin that has significantly higher cytoprotective properties. Here, we describe the
stability features of HNG in different conditions and characterize HNG degradation, oxidation, and
dimerization patterns over short-term and long-term periods. HNG solutions were prepared in
high-performance liquid chromatography (HPLC) water or MO formulation and stored at either 4 ◦C
or 37 ◦C. Stored HNG samples were analyzed using HPLC and high-resolution mass spectrometry
(HRMS). Using HPLC, full-length HNG peptides in HPLC water decreased significantly with time
and higher temperature, while HNG in MO formulation remained stable up to 95% at 4 ◦C on day 28.
HNG peptides in HPLC water, phosphate-buffered saline (PBS) and MO formulation were incubated
at 37 ◦C and analyzed at day 1, day 7 and day 14 using HRMS. Concentrations of full-length HNG
peptide in HPLC water and PBS declined over time with a corresponding appearance of new peaks
that increased over time. These new peaks were identified to be singly oxidized HNG, doubly
oxidized HNG, homodimerized HNG, singly oxidized homodimerized HNG, and doubly oxidized
homodimerized HNG. Our results may help researchers improve the experimental design to further
understand the critical role of HNG in human diseases.

Keywords: peptides; stability; degradation products; oxidations; high-performance liquid chro-
matography (hplc); high-resolution mass spectrometry (hrms)

1. Introduction

Mitochondrial DNA (mtDNA) is double-stranded, circular DNA comprised of 16,569 nu-
cleotide pairs that represents 37 genes encoding for 13 peptides, 22 transfer RNAs, and
2 ribosomal RNAs [1,2]. Mitochondria-derived peptides (MDPs), encoded by the human
mtDNA, play essential roles in many cellular physiological processes that can affect aging
and disease progression [3–9]. Exploring mitochondrial biology, several MDPs, consisting
of 16–38 amino acids, have been identified [10]. Humanin (HN), the first identified MDP,
contains 24 amino acids (2687.3 Da) [5] and has neuroprotective and anti-apoptotic proper-
ties in in vitro and in vivo models [5,11–14]. The serum HN levels decrease significantly
with age and are associated with age-related diseases in rodent animal models and human
clinical studies [15,16]. HN peptides protect against neurotoxicity in Alzheimer’s disease
and suppress amyloid-beta-induced neuronal death in vitro [17]. The administration of ex-
ogenous HN peptides provides cytoprotective effects in Type-2 diabetes rat models [15] as
well as myocardial and cerebral ischemia [18,19] and atherosclerosis [20] mouse models [3].
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Humanin-G (HNG) is an HN derivative with a S14G substitution exhibiting 1000-fold
more potent cytoprotective properties than HN, and it also demonstrates therapeutic poten-
tial for multiple diseases [5,21]. Similar to Humanin, HNG (2657.3 Da) inhibits amyloid-beta
(Aβ)-induced death in primary neurons in vitro and demonstrates cytoprotective effects
for myocardial ischemia-reperfusion injury in animal models [18,22–24]. HNG also has
antitumor effects as shown in neuroblastoma tumor xenograft experiments [25]. The effect
was linked to reduced angiogenesis and increased tumor cell apoptosis [25].

Recently, we investigated the effect of HNG in a transmitochondrial cybrid model
for age-related macular degeneration (AMD), which is the most common cause of visual
impairment in the elderly population. Cybrids are cell lines with identical nuclei but with
mitochondria from different individuals with AMD or age-matched normal subjects. The
AMD cybrids treated with HNG showed significantly increased levels of humanin receptor
proteins and decreased levels of RNA/proteins involved in apoptosis, autophagy, and ER
stress pathways [1]. HNG-treated AMD cybrids showed significantly lower levels of cell
death and improved functions in vitro [1]. However, conducting in vivo studies has been
challenging due to the instability of the HNG peptide because of its tendency to rapidly
degrade, oxidize and dimerize. The development of novel formulations to enhance the
stability of HNG peptides is a critical first step toward the therapeutic delivery of HNG in
retinal degeneration models in vivo and for future clinical investigations to treat several
age-related diseases such as AMD, Alzheimer’s disease, and diabetic retinopathy. To the
best of our knowledge, this is the first study that accurately analyzes the stability features of
HNG and identifies its fragments and their therapeutic potential using high-performance
liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS). We also
developed a stabilization formula (MO formulation) that significantly improves the HNG
peptide stability when stored long term and at 37 ◦C.

2. Materials and Methods
2.1. Chemicals and Materials

The HNG peptide (Catalog No: AS-60887) was purchased from AnaSpec Inc. (Fre-
mont, CA, US). Acetonitrile, HPLC water, LC-MS water, and formic acid were purchased
from Fisher Scientific (Waltham, MA, USA). Analytical grade solvents were used in
all experiments.

2.2. Physiochemical Properties

An ExPASy ProtParam bioinformatics software tool was used to determine struc-
tural prediction including the instability index value, grand average of hydropathy value
(GRAVY), and theoretical isoelectric point (pI). The instability index represents the predic-
tion of peptide instability. When a peptide’s instability index is less than 40, the peptide is
classified as stable, and if it is higher than 40, the peptide is designated as unstable. The
GRAVY method predicts peptide hydrophilicity and hydrophobicity. GRAVY’s positive
values and negative values represent the hydrophobic and hydrophilic structures, respec-
tively [26–29]. The ExPASy PeptideCutter bioinformatics software tool was utilized to
predict potential cleave sites, cleaving enzymes, and chemicals in the HNG peptide [30].
Theoretical charge of HNG peptide over pH change was analyzed using the peptide analy-
sis tool in the Thermo-Fisher Scientific website.

2.3. HNG Solution Preparation and Storage

For HPLC studies, HNG solutions were prepared at 125 µg/mL in HPLC water and
at 112.5 µg/mL in the stabilization formula (MO formulation). The MO formulation, a
proprietary solution, is a colorless liquid and includes organic acid (pH = 2.4–2.5) that has
been found to be non-toxic to cells. We prepared duplicate HNG peptide solutions that
were stored at two different temperatures (4 ◦C and 37 ◦C). For long-term stability analyses,
HNG solutions were stored for 11 months at 4 ◦C. HNG solutions were filtered using
0.22 µm filters before HPLC analysis. The stability features of the stored HNG solutions
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were evaluated by HPLC at seven different time-points (6 h, 21 h, 33 h, day 3, day 7,
day 14, and day 28). For HRMS studies, samples with a concentration of 30 µM HNG
were prepared from the stored HPLC water and MO-formulation to analyze 11-month-old
HNG products.

2.4. High-Performance Liquid Chromatography

The Agilent 1100 system with an Agilent Eclipse XDB-C8 5 µm, 4.6 × 150 mm HPLC
column was used to achieve liquid chromatographic separation. HNG was monitored at a
wavelength of 200 nm using a Diode Array Detector. Gradient elution was performed with
solvent A (water with 0.05% trifluoroacetic acid) and solvent B (acetonitrile with 0.05%
trifluoroacetic acid). The gradient started at 30% solvent B with a ramp to 60% solvent B in
a period of 10 min. At 12 min, the gradients begin to return to 30% solvent B in 0.1 min.
The column was equilibrated from 12.1 min to 20 min at 30% solvent B (Table S1). The
flow rate was set to 1 mL/min, and 25 µL of the sample was injected into the column. The
column temperature was set at 40 ◦C.

2.5. High-Resolution Mass Spectrometry

The Waters® Acquity H-class ultra-performance liquid chromatography (UPLC) method
was run on a Waters BEH C4 column 300 Å, 1.7 µm, 50 mm × 2.1 using 25 min gradient at
0.3 mL/min from 97% A to 97% B, where A is 0.1% formic acid in water and B is 100% ACN
(Table S2). Mass spectrometric analysis was performed using a XEVO G2-XS Quadrupole
Time-of-Flight (QTof) mass spectrometer equipped with StepWave ion optics (Waters Corp.,
MA, USA). The positive electrospray ionization mode was utilized. Measurements were
conducted using an ion source desolvation temperature of 350 ◦C and a cone voltage
of 40 V. Argon was utilized as damping gas in the Collision-Induced Dissociation (CID)
experiments. A capillary transfer temperature of 300 ◦C and a spray voltage of 3.0 kV
were used to accomplish ionization. A resolution of 30,000 Full Width at Half Maximum
(FWHM) was used for a full scan experiment within a range of m/z 100–2000 in addition
to 15,000 FWHM with an isolation window adjusted to m/z 2.0 for Parallel Reaction
Monitoring (PRM) mode. The instrument was operated in MSE continuum mode, which
alternates low-energy (6 V) and high-energy (40 V) scans every 0.5 sec. Leucine Enkephalin
was used as a lock mass for nominal mass correction, and a CsNaI ladder was used for
detector calibration.

Mass to Charge Calculation Formula for Dimerized Form HNG and their Fragments.
The disulfide bridge causes a mass shift of −2 Da. The monoisotopic HNG molecular
weight (Mw) is 2657.3.

Mass to Charge Ratio =
Peptide 1 Mw + Peptide 2 Mw − Dimerization Mass Shi f t + Number o f Protonation

Charge State o f Dimer

Mass to Charge Calculation Formula for oxidized form HNG and their fragments.
Oxidation causes a mass shift of +16 Da. The monoisotopic HNG molecular weight (Mw)
is 2657.3.

Mass to Charge Ratio =
Peptide Mw + Oxidation Mass + Number o f Protonation

Charge State o f Oxidized Peptide

2.6. Data Analysis

Collected data were analyzed using MassLynx (version 4.2, 2016) and BiopharmaLynx
(version 4.0.27.10, 2015) software programs provided by the Waters Company (Milford,
MA, USA).
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3. Results

The molecular structure, molecular weights, charges, and amino acid sequences of
HNG peptides were characterized using UCSF Chimera software and the ExPASy Prot-
Param bioinformatics software tool (Figure 1).
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Figure 1. (A) The NMR structure of HNG peptide (PDB identifier 2GD3 Chain 8) is visualized using
the UCSF Chimera program. The length and width of HNG are ~4 nm and ~1.5 nm, respectively. The
sequence of full-length HNG is shown. (B) The diagram shows the net charge of HNG as a function
of pH. (C) Physiochemical properties of HNG.

In Figure 1A, the predicted structure of HNG shows the proposed length and width as
approximately 4.8 nm and approximately 1.8 nm, respectively. In Figure 1B, the isoelectric
point is 10. 1, indicating it is a basic peptide. The net charge of HNG peptide at pH 7 is
1.9, indicating it is a soluble peptide in neutral water. In Figure 1C, HNG has an Instability
Index of 91.33, suggesting it is an unstable peptide. The GRAVY value is 0.358, indicating a
hydrophobic property.

We used the ExPASy PeptideCutter bioinformatics software to predict potential cleave
sites, cleaving enzymes, and chemicals in the HNG peptide [30]. The functions, hydro-
pathicity, name of cleaving enzymes/chemicals, and properties of each amino acid of HNG
peptide are given in Table 1.

Table 1. Functions, hydropathicity, name of cleaving enzymes/chemicals and properties of each
amino acids of HNG peptide.

Pos. Amino Acid Function Hydropathicity Amino Acid Side
Chain Properties

Name of Cleaving
Enzymes/Chemicals
(Theoretical)

1 M Neuroprotection 1.900 Hydrophobic Chymotrypsin, Cyanogen
Bromide

2 A Neuroprotection 1.800 Hydrophobic Proteinase K

3 P* Neuroprotection −1.600 Hydrophobic N/A

4 R* Neuroprotection −4.500 Positive Charged
(Basic)

Trypsin, Arg-C proteinase,
Clostridiopeptidase B
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Table 1. Cont.

Pos. Amino Acid Function Hydropathicity Amino Acid Side
Chain Properties

Name of Cleaving
Enzymes/Chemicals
(Theoretical)

5 G* N/D −0.400 Hydrophobic Pepsin, Thermolysin

6 F*
IGFBP-3 binding,
Beta-Amyloid
Binding

2.800 Hydrophobic Chymotrypsin, Proteinase K

7 S*

Beta-Amyloid
Binding,
Beta-Amyloid
Protection,
Dimerization

−0.800 Polar 2-nitro-5-thiocyanobenzoic
acid

8 C*

Neuroprotection,
BAX, BAD, end tBID
binding, Disulfide
Bond for
dimerization

2.500 Polar Pepsin, Thermolysin

9 L*
Neuroprotection,
Secretion,
Dimerization

3.800 Hydrophobic Proteinase K, Pepsin,
Thermolysin, Chymotrypsin

10 L* Secretion 3.800 Hydrophobic Proteinase K, Pepsin,
Thermolysin, Chymotrypsin

11 L* Secretion 3.800 Hydrophobic Proteinase K, Pepsin,
Thermolysin, Chymotrypsin

12 L* Neuroprotection 3.800 Hydrophobic Proteinase K, Pepsin,
Chymotrypsin

13 T* Neuroprotection −0.700 Polar Proteinase K,

14 G* Neuroprotection −0.400 Hydrophobic Asp-N Endopeptidase

15 E* N/D −3.500 Negative Charged
(Acidic)

Proteinase K, Glutamyl
endopeptidase,
Staphylococcal peptidase I

16 I* N/D 4.500 Hydrophobic Proteinase K, Asp-N
Endopeptidase

17 D* N/D −3.500 Negative Charged
(Acidic) Formic acid

18 L* N/D 3.800 Hydrophobic Proteinase K, Pepsin

19 P* Beta-Amyloid
Protection, Secretion −1.600 Hydrophobic Thermolysin

20 V* Secretion 4.200 Hydrophobic Proteinase K, Peptidyl-Lys
metalloendopeptidase

21 K IGFBP-3 binding −3.900 Positive Charged
(Basic) Lysyl endopeptidase, Trypsin

22 R N/D −4.500 Positive Charged
(Basic)

Arg-C proteinase,
Clostridiopeptidase B, Trypsin

23 R N/D −4.500 Positive Charged
(Basic)

Thermolysin, Arg-C
proteinase,
Clostridiopeptidase B, Trypsin

24 A N/D 1.800 Hydrophobic N/A

* Neuroprotection core domains are shown in bold font. Pos.; Position, N/D; Not Determined, N/A: Not Available.
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3.1. Short-Term Stability of HNG Peptide in Different Conditions

We analyzed the stability of the HNG peptide stored in HPLC water (Figure 2A–I,
Left Panel) and MO formulation (Figure 2J–Q, Right Panel) at 4 ◦C and 37 ◦C using
HPLC at day 0, day 1, day 3, day 7, day 14, and day 28. The concentration of full-
length HNG decreases over time, while the concentration of the HNG products (HNG-Pd)
simultaneously increased (Figure 2A–R).
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Figure 2. Ion chromatogram results of HNG in HPLC-grade water (Left Panel) and MO formulation
(Right Panel). LEFT PANEL: HNG in Water. (A) Day 0 at RT; (B) 3rd day +37 ◦C; (C) 3rd day +4 ◦C;
(D) 7th day +37 ◦C; (E) 7th day +4 ◦C. (F) 14th day +37 ◦C; (G) 14th day +4 ◦C; (H) 28th day +37 ◦C;
(I) 28th day +4 ◦C. RIGHT PANEL: HNG in MO formulation. (J) Day 0 at RT; (K) 3rd day +37 ◦C;
(L) 3rd day +4 ◦C; (M) 7th day +37 ◦C; (N) 7th day +4 ◦C; (O) 14th day +37 ◦C; (P) 14th day +4 ◦C;
(R) 28th day +37 ◦C; (Q) 28th day +4 ◦C. RT, room temperature: HNG Humanin-G; Pd: Product.

Compared to the MO formulation, we found that the HNG peptide was sensitive to
storage temperature and duration. At 21 h after storage, the full-length HNG peptide level
in HPLC water stored at 4 ◦C was 90% compared to 67% at 37 ◦C (Figure 3). After 33 h of
storage, nearly half of the full-length HNG peptides (52%) was found at 37 ◦C in HPLC
water, indicating its half-life at body temperature (Figure 3). By day 28, the full-length
HNG stored in HPLC water was further declined to concentrations of 11% at 4 ◦C and 5%
at 37 ◦C (Figure 3).

When we evaluated the HNG stability stored in the MO formulation, remarkably, we
found that the full-length HNG peptide remained stable up to 95% at 4 ◦C on day 28. Even
at 37 ◦C, the full-length HNG peptide concentration was significantly higher when stored
in the MO formulation compared to HPLC water (67% versus 11%, respectively) (Figure 3).
These results show that the HNG peptide is highly unstable when stored in HPLC water,



Biomolecules 2023, 13, 515 7 of 21

and the stability of the HNG peptide can be successfully improved when stored in our
newly developed MO formulation.
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Overall, the stability of the full-length HNG peptide in HPLC water and MO formula-
tion was measured using HPLC at 4 ◦C and 37 ◦C over a 28-day period, and the results
showed that the full-length HNG peptide in HPLC-grade water is not stable at 4 ◦C and
37 ◦C. Based on the results of these HPLC studies, we saw indications, represented by the
other peaks in the graph, of unidentified amino acid sequences of the HNG products. To
identify the composition of HNG products that occurred in the three different solutions
(HPLC-grade water, PBS, and MO formulation), we performed experiments using UPLC-
HRMS. Collected UPLC-HRMS data were analyzed using the BiopharmaLynx program to
identify the peptide sequence of each peak (Figures 4–13, Tables S3 and S4).

3.2. Characterization of Full-Length HNG, Its Oxidized and Dimerized Forms

To characterize HNG products using UPLC-HRMS, we prepared a solution of HNG
peptide in HPLC-grade water, PBS and MO formulation. Using UPLC-HRMS, the full-
length HNG, singly oxidized full-length HNG (SOx-HNG), doubly oxidized full-length
HNG (Dox-HNG), singly oxidized dimerized HNG (SOx-DM-HNG) and doubly oxidized
dimerized HNG (DOx-DM-HNG) were identified.

The amino acid sequences and m/z ratio of full-length HNG, singly oxidized HNG,
doubly oxidized HNG in PBS on day 14 at 37 ◦C are represented (Figure 4). In Figure 4A,B,
multiple charged full-length HNG peptides (MAPRGFSCLLLLTGEIDLPVKRRA) were
observed at m/z 532.31 (z = 5), 665.13 (z = 4), and 886.50 (z = 3). In Figure 4C,D, multiple
charged singly oxidized (methionine) full-length HNG peptides (SOx-HNG) were observed
at m/z 535.50 (z = 5), 669.13 (z = 4), and 891.83 (z = 3). In Figure 4E,F, multiple charged
doubly oxidized (methionine and cysteine) full-length HNG peptides (Dox-HNG) were
observed at m/z 538.70 (z = 5), 673.13 (z = 4), and 897.17 (z = 3).

In Figure 5, the amino acid sequences and m/z ratio of intact homodimerized (cysteine-
cysteine disulfide bone) HNG (DM-HNG), singly oxidized homodimerized HNG, and
doubly oxidized homodimerized HNG in PBS on day 14 at 37 ◦C are represented. In
Figure 5A,B, multiple charged DM-HNG peptides were observed at 532.21 m/z (DM-
HNG 1-24, z = 10), 591.22 m/z (DM-HNG 1-24, z = 9), 665.01 m/z (DM-HNG 1-24, z = 8),
759.86 m/z (DM-HNG 1-24, z = 7), 886.33 m/z (DM-HNG 1-24, z = 6), and 1063.41 m/z
(DM-HNG 1-24, z = 5).
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Figure 4. (A) Amino acid sequence and m/z ratio of the full-length HNG are represented.
(B) Representative HRMS precursor ion mass spectra of HNG in PBS. (C) Amino acid sequence
and m/z ratio of SOX-HNG are represented. (D) Representative HRMS precursor ion mass spectra
of SOX-HNG in PBS. (E) Amino acid sequence and m/z ratio of DOX-HNG HNG are represented.
(F) Representative HRMS precursor ion mass spectra of DOX-HNG in PBS.

In Figure 5C,D, multiple charged homodimerized HNG with methionine oxidation
(singly oxidized homodimerized HNG, SOx-DM-HNG) were observed at 533.81 m/z (z = 10),
593.01 m/z (z = 9), 667.01 m/z (z = 8), 762.14 m/z (z = 7), 888.99 m/z (z = 6), and
1066.80 m/z (z = 5).
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Figure 5. (A) Amino acid sequence and m/z ratio of DM-HNG are represented. (B) Representa-
tive HRMS precursor ion mass spectra of DM-HNG in PBS. (C) Amino acid sequence and m/z
ratio of SOX-DM-HNG are represented. (D) Representative HRMS precursor ion mass spectra of
SOX-DM-HNG in PBS. (E) Amino acid sequence and m/z ratio of DOX-DM-HNG are represented.
(F) Representative HRMS precursor ion mass spectra of DOX-DM-HNG in PBS.

In Figure 5E,F, multiple charged homodimerized HNG with methionine oxidized and
cysteine disulfide bonds (doubly oxidized homodimerized HNG, DOx-DM-HNG) were
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observed at 532.30 m/z (z = 10), 594.77 m/z (z = 9), 669.01 m/z (z = 8), 764.43 m/z (z = 7),
891.67 m/z (z = 6), and 1069.80 m/z (z = 5).

HNG solutions were incubated at 37 ◦C and analyzed at day 1 (Figure 6), day 7
(Figure 7) and day 14 (Figure 8) using ultra-performance liquid chromatography coupled
with high-resolution mass spectrometry (Waters® Xevo G2-XS QTof). The presence of
full-length HNG and DM-HNG in PBS, HPLC-grade water and MO formulation at the
different time periods was analyzed (Figures 6–8). The retention time frames of full-length
HNG and DM-HNG ranged from 20.75 to 21.25 min and 22.50 to 23.25 min, respectively
(Figures 6–8).
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Figure 6. Ion chromatogram results of incubated HNG at 37 ◦C for 1 day in PBS (A), HPLC-grade
water (B), and MO formulation (C).

Concentrations of full-length HNG peptide declined over time with a corresponding
appearance of new peaks that increased over time (Figures 6–8). These new peaks were
identified as oxidized and/or dimerized HNG products. The DM-HNG was the dominant
HNG-Pd at all time points. We found that the full-length HNG peptide had oxidized
and dimerized at 37 ◦C in the PBS, the HPLC-grade water, and MO formulation at day 1
(Figure 6A–C), day 7 (Figure 7A–C) and day 14 (Figure 8A–C). The concentration of the DM-
HNG simultaneously increased over time, while the HNG stored in the MO formulation
remained mostly intact. (Figures 6–8).
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Figure 7. Ion chromatogram results of incubated HNG at 37 ◦C for 7 days in PBS (A), HPLC-grade
water (B), and MO formulation (C).

The full-length HNG, SOx-HNG and DOx-HNG were evaluated over time in PBS,
HPLC-grade water and MO formulation. In Figure 9A, at day 1, SOx-HNG and DOx-HNG
were detected in the HPLC-grade water as well as in the PBS and the MO formulation
at 37 ◦C. The highest intensities of full-length HNG, and SOx-HNG were detected in the
MO-formula, and next were those in the HPLC-grade water, with the lowest in the PBS.
The highest intensity of DOx-HNG was detected in the PBS solution, while that in the
HPLC-grade water was lower and that in the MO formulation was the lowest.

In Figure 9B, at day 7, higher intensities of SOx-HNG peptides and full-length HNG
were detected in the MO formulation, next were those in the HPLC-grade water and the
lowest were in the PBS at 37 ◦C. The highest intensity of DOx-HNG was detected in the
PBS, that in the HPLC-grade water was lower and that in the MO formulation was lowest.

In Figure 9C, on day 14 at 37 ◦C, higher intensities of full-length HNG peptides were
detected in the MO formulation, next were those in the HPLC-grade water and the lowest
were in the PBS at 37 ◦C. Higher intensities of SOx-HNG peptides were detected in the MO
formulation, next were those in the PBS and the lowest were in the HPLC-grade water. The
highest intensity of DOx-HNG was detected in the HPLC-grade water, that in the PBS was
lower and that in the MO formulation was the lowest.
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Figure 8. Ion chromatogram results of incubated HNG at 37 ◦C for 14 days in PBS (A), HPLC-grade
water (B), and MO formulation (C).

The homodimerized form of HNG, SOx-DM-HNG and DOx-DM-HNG were evaluated
over time in PBS, HPLC-grade water and MO formula at 37 ◦C. In Figure 10A, at day 1, a
lower intensity of DM-HNG was detected in MO formula than HPLC-grade water and PBS.

In Figure 10B, on day 7 at 37 ◦C, higher intensities of SOx-DM-HNG peptides and
DM-HNG were detected in the HPLC-grade water, next were those in the PBS and the
lowest were in the MO formulation at 37 ◦C. The highest intensity of DOx-DM-HNG
was detected in the HPLC-grade water, that in the PBS was lower and that in the MO
formulation was lowest.

In Figure 10C, on day 14 at 37 ◦C, higher intensities of SOx-DM-HNG peptides and
DM-HNG were detected in the HPLC-grade water, next were those in the PBS and the
lowest were in the MO-formula at 37 ◦C. The highest intensity of DOx-DM-HNG was
detected in the PBS, that in the HPLC-grade water was lower and that in the MO-formula
was lowest.

In Figure 11A, intensities of SOx-HNG peptides were evaluated at 37 ◦C in various
solutions at day 1, day 7 and day 14 using UPLC-HRMS. At days 1 and 7, higher intensity
of SOx-HNG were detected in the MO formulation, next were those in the HPLC-grade
water, with the lowest in the PBS. At day 14, higher intensities of SOx-HNG peptides were
detected in the MO formulation, next were those in the PBS and the lowest were in the
HPLC-grade water.
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In Figure 11B, intensities of Dox-HNG peptides were evaluated at 37 ◦C in various
solutions at day 1, day 7 and day 14 using UPLC-HRMS. At days 1 and 7, higher intensity
of DOx-HNG was detected in the PBS solution, that in the HPLC-grade water was lower
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and that in the MO formulation was the lowest. At day 14, higher intensities of DOx-HNG
peptides were detected in the HPLC-grade water, next were those in the PBS and the lowest
were in the MO formulation.
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Figure 11. Evaluation of intensity changes of SOx-HNG (A), DOX-HNG (B) at day 1, 7 and 14.

In Figure 12A, intensities of DM-HNG peptides were evaluated at 37 ◦C in various
solutions at day 1, day 7 and day 14 using UPLC-HRMS. At day 1, lower intensities of
DM-HNG were detected in MO formulation than HPLC-grade water and PBS. At day 7,
higher intensities of DM-HNG were detected in the HPLC-grade water, next were those in
the PBS and the lowest were in the MO formulation at 37 ◦C. At day 14, a higher intensity
of DM-HNG was detected in the HPLC-grade water, next was that in the PBS and the
lowest was in the MO formulation at 37 ◦C.
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Figure 12. Evaluation of intensity changes of homodimerized form of HNG (A), SOX-DM-HNG (B),
DOX-DM-HNG (C) at day 1, 7 and 14.

In Figure 12B, intensities of SOX-DM-HNG were evaluated at 37 ◦C in various solutions
at day 1, day 7 and day 14 using UPLC-HRMS. At day 1, SOX-DM-HNG was detected
in HPLC-grade water and PBS and not detected in MO formulation. At day 7, a higher
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intensity of SOx-DM-HNG was detected in the HPLC-grade water, next was that in the
PBS and the lowest was in the MO formulation at 37 ◦C. At day 14, higher intensities of
SOx-DM-HNG were detected in the HPLC-grade water, next were those in the PBS and the
lowest were in the MO formulation at 37 ◦C.

In Figure 12C, intensities of DOX-DM-HNG were evaluated at 37 ◦C in various so-
lutions at day 1, day 7 and day 14 using UPLC-HRMS. At day 1, a lower intensity of
DOX-DM-HNG was detected in MO formulation than HPLC-grade water and PBS. At
day 7, higher intensities of DOx-DM-HNG peptides were detected in the HPLC-grade
water, next were those in the PBS and the lowest were in the MO formulation at 37 ◦C.
At day 14, the highest intensity of DOx-DM-HNG was detected in the PBS, that in the
HPLC-grade water was lower and that in the MO formulation was the lowest.

3.3. Long-Term Stability of HNG Peptide in Different Conditions

We evaluated the long-term stability of HNG peptide in the HPLC water and MO
formulation stored at 4 ◦C for 11 months. Collected HRMS data were analyzed using
the BiopharmaLynx program to identify peptide sequences (Tables S3 and S4). Identified
peptide sequences and HRMS data collected from 11 months old HNG in HPLC water
(Table S3) and MO formulation (Table S4) show the full-length HNG peptide, its fragments,
and dimerized forms. Mass spectrometry analysis showed that the HNG peptide in HPLC
water degraded into multiple fragments (Figure 13B), while in MO formulation, HNG
remained mostly intact (Figure 13E). The retention time frames of 11-month-old DM-HNG
in HPLC water ranged from 24.2 to 24.6 min (Figure 13A,B, Upper Panel A) and 11-month-
old HNG in MO formulation ranged from 22.4 to 22.6 min (Figure 13D,E, Lower Panel B).
The 11-month-old HNG peptides in HPLC water showed multiple charged states 532.2 m/z
(homodimerized-HNG 1-24, z = 10), 591.0 m/z (DM-HNG 1-24, z = 9), 664.9 m/z (DM-
HNG 1-24, z = 8), 759.9 m/z (DM-HNG 1-24, z = 7), 886.2 m/z (DM-HNG 1-24, z = 6), and
1063.4 m/z (DM-HNG 1-24, z = 5) as shown in Figure 13C, Upper Panel A. Many fewer
multiple charged intact molecules of 11-month-old HNG peptides in MO formulation were
observed at m/z 532.3 (HNG 1-24, z = 5), 665.1 (HNG 1-24, z = 4), and 886.5 (HNG 1-24,
z = 3) (Figure 13F, Lower Panel B).

As seen in Figure 13, the HNG peptides without a stabilizing formulation were
oxidized and dimerized continuously in the HPLC-grade water while the peptide oxidation
and dimerization were much slower in the MO formulation. The HNG peptides were
stored in the HPLC water (Table S3) and MO formulation (Table S4) over 11 months, and
many dimers and oxidized products were identified in both solutions. However, the
highest intensities of full-length HNG were found in MO formulation (Table S4), suggesting
the potential of the MO formulation for general use in enhancing peptide stability and
preventing peptide oxidation.

In summary, our results show that the full-length HNG peptide (24 amino acids) is
highly susceptible to chemical modification when placed in HPLC water and PBS at either
4 ◦C or 37 ◦C. For example, when placed in HPLC water for 28 days at 4 ◦C, less than
11% was found in the full-length HNG peptide form (Figure 3), but the HNG peptide was
stabilized when placed in the MO formulation (67% and 95% remained full-length HNG
at 37 ◦C or 4 ◦C, respectively). Using UPLC-HRMS, the full-length HNG was found in
both the singly oxidized and doubly oxidized forms (Figure 4); the ionized mass spectra
of the SOX-HNG and DOX-HNG showed multiple charged states (Figure 4). The ion
chromatography of the full-length HNG incubated for 1 to 14 days in PBS, HPLC-grade
water or the MO formulations showed increasing loss in the full-length HNG in the PBS and
HPLC-grade water, but surprisingly, the full-length HNG in the MO formulation remains
mostly stable (Figure 6). Finally, when the full-length HNG was stored for 11 months
in HPLC-grade water at 4 ◦C, we found full-length HNG, along with dimerization and
degradation products of HNG, which included three different HNG fragments and four
different dimerized forms of HNG fragments (Table S3). When the full-length HNG was
stored for 11 months in the MO formulation at 4 ◦C, there were the full-length HNG, SOX-
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HNG, DOX-HNG and degradation products of HNG, which includes 28 different HNG
fragments and 64 dimerized forms of HNG fragments (Table S4). These data demonstrate
that the full-length HNG is fragmented and modified chemically in HPLC-grade water and
the MO formulation. Future studies will investigate the biological features of the HNG
fragments, the dimerized HNG and oxidized HNG, since these forms may have signaling
functions, reflecting increased mitochondrial DNA damage and/or perhaps a positive,
rescuing effect for damaged cells.
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Figure 13. Measurements of HNG in HPLC-grade water (Upper Panel A) and MO formulation
(Lower Panel B) at 4 ◦C for 11 months using HRMS. UPPER PANEL A, (A) Amino acid sequence and
m/z ratio of dimerized form HNG is represented; (B,C) Representative ion chromatogram and HRMS
product ion mass spectra of HNG in HPLC water, respectively. LOWER PANEL B, (D) Amino acid
sequence and m/z ratio of HNG is represented; (E,F) Representative ion chromatogram and HRMS
product ion mass spectra of HNG in MO formulation.

4. Discussion

Despite the promising results that demonstrated the key cellular protective role of
HNG, the in vitro and in vivo stability and half-life properties of HNG peptide have not
been well studied, and the majority of the reported studies investigating the role of HNG
were mostly limited to in vitro cell cultures. Therefore, determining and enhancing the
molecular stability properties of HNG is essential to better translate to proper in vivo
therapeutic studies. Understanding the stability properties of full-length HNG peptide
can help us more accurately determine the dosing and frequency for HNG administration
in in vivo animal studies and for possible future clinical studies investigating its role in
physiology and disease.
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Water and moisture have many effects on peptide degradation [31]. A 28-amino acid
Vasoactive Intestinal Peptide, a 29-amino acid peptide Glucagon, vaso-active intestinal
peptide and a tricyclic glycopeptide Vancomycin are unstable in aqueous solutions [32–35].
Knoop et al. have reported the instability of the MOTS-c peptide, another mitochondria-
derived peptide, in the human plasma [36]. Consistent with those findings, our results
showed that HNG in HPLC water is unstable at 37◦C, reaching 50% concentration at approx-
imately 33 h. When stored in HPLC water at 4◦C, then 54% of the HNG peptide remained
stable at day 7, indicating peptide instability even in cold storage conditions in HPLC water.
Therefore, researchers investigating the effects of the HNG peptide should consider this
newly identified short half-life when determining treatment doses and frequency in cell
cultures or in vivo administration to the systemic circulation.

To overcome the low stability issue of the HNG peptide, we developed a special
solution (MO formulation) to improve the stability of the molecule. The MO formulation
has an acidic property to stabilize the HNG peptide structure. Our proprietary solution
demonstrated significant efficiency resulting in 95% full-length HNG peptides after 28 days
of storage at 4 ◦C. Moreover, the MO formulation could provide a 95% stable HNG peptide
concentration for up to 7 days at 37 ◦C. Hence, the MO formulation may significantly
improve the efficacy of HNG treatment, and it could reduce administration frequency
and costs as well. The increased stability with the MO formulation may provide further
processing opportunities such as infusion of HNG and/or potentially other MDPs such as
small humanin-like peptides into microspheres for various applications.

Oxidative mechanisms play critical roles in aging and age-related diseases such as
ischemia, atherosclerosis, Alzheimer’s disease, cataracts, and AMD [37–39]. Peptide ox-
idation decreases enzymatic activity, accumulates with age, and is related to numerous
diseases [38]. Cysteine, methionine, histidine, and tryptophan amino acids are most suscep-
tible to oxidation [38]. Oxidation causes a mass shift of +16 Da. HNG includes methionine
and cysteine amino acids, which are susceptible to oxidation. Cysteine oxidation in HNG
is responsible for the dimerization of HNG fragments via disulfide bridges. The disulfide
bridge causes a mass shift of −2 Da and produces stable, covalently bonded dimers. The
high-resolution tandem mass spectrometer provides highly sensitive and accurate results
that can identify oxidation sites and disulfide bridges in peptides and dimerized peptides.

Finally, there is a lack of knowledge regarding the degradation products of HNG pep-
tide and their oxidized and dimerized forms. Our study demonstrates that HNG fragments
formed homodimers and heterodimers via disulfide bridge interactions (Tables S3 and S4).
In the long-term study, our results show that dimerization provides increased stability for
the intact HNG and its fragments (Figure 13D,F, Lower Panel B). Consistent with the other
studies, several proteins have been shown to increase stability and have functions in dimer-
ized forms, such as human IgG antibody [40], HLA-G dimers on cell surfaces [41], human
superoxide dismutase enzymes [42], and glial cell line-derived neurotrophic factor [43].
Disulfide bonds contribute to the structure, functionality stability, and dimerization of
peptides and proteins [40–43].

5. Conclusions

For the first time, the short- and long-term stability properties of HNG peptide and
its oxidation and degradation products have been analyzed in detail using advanced
HPLC and HRMS technologies. Our findings may provide insight for understanding key
features in the HNG peptide sequence that define its stability via disulfide bonds. It is
currently unknown whether dimerized HNG fragments possess any biological activity.
Additionally, we have identified various HNG fragments that may possess different cellular
functionalities and/or receptor activities. Future studies will investigate whether there are
any such biological functions of these HNG fragments. We also developed a new chemical
solution that significantly improves the stability of the HNG peptide in both 4 ◦C and 37 ◦C
media conditions for up to 28 days. Our results may help researchers design better in vitro
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and in vivo experimental parameters to further understand the critical role of Humanin
and HNG in physiological conditions and human diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13030515/s1, Table S1: Represent HPLC gradient run
for stability assay. Table S2: Represent UPLC gradient for identification of Humanin-G product.
Table S3: Amino acid sequences and mass spectrometric analytical properties of HNG in HPLC
water at 11 months. Dimerized HNG and dimerized HNG fragments are ordered by intensity
(counts). Table S4: Amino acid sequences and mass spectrometric analytical properties of HNG
in MO formulation at 11 months. Dimerized HNG and dimerized HNG fragments are ordered by
intensity (counts).
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