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Abstract: Serotonin effects on cardiac hypertrophy, senescence, and failure are dependent either on
activation of specific receptors or serotonin uptake and serotonin degradation by monoamine oxi-
dases (MAOs). Receptor-dependent effects are specific for serotonin, but MAO-dependent effects are
nonspecific as MAOs also metabolize other substrates such as catecholamines. Our study evaluates
the role of MAO-A in serotonin- and norepinephrine-dependent cell damage. Experiments were
performed in vivo to study the regulation of MAOA and MAOB expression and in vitro on isolated
cultured adult rat ventricular cardiomyocytes (cultured for 24 h) to study the function of MAO-A.
MAOA but not MAOB expression increased in maladaptive hypertrophic stages. Serotonin and nore-
pinephrine induced morphologic cell damage (loss of rod-shaped cell structure). However, MAO-A
inhibition suppressed serotonin-dependent but not norepinephrine-dependent damages. Serotonin
but not norepinephrine caused a reduction in cell shortening in nondamaged cells. Serotonin induced
mitochondria-dependent oxidative stress. In vivo, MAOA was induced during aging and hyperten-
sion but the expression of the corresponding serotonin uptake receptor (SLC6A4) was reduced and
enzymes that reduce either oxidative stress (CAT) or accumulation of 5-hydroxyindolacetaldehyde
(ALDH2) were induced. In summary, the data show that MAO-A potentially affects cardiomyocytes’
function but that serotonin is not necessarily the native substrate.

Keywords: oxidative stress; mitochondria; ageing

1. Introduction

Serotonin (=5-Hydroxytryptamin, 5-HT) is a phylogenetically old neurotransmitter
that is nearly ubiquitously expressed in all species [1]. In vertebrates, 5-HT affects blood
pressure, thrombosis, and central neurological functions such as sleep, appetite, nociception,
and spirit [2–7]. Effects of 5-HT on cardiomyocytes have long been described [8]. They
can be either rather specific or unspecific. Specific functions of 5-HT on cardiomyocytes
depend on activation of specific receptors., The receptors 5-hydroxytryptamine receptor
2B, encoded by the HTR2B gene, and 5-hydroxytryptamine receptor 2A, encoded by the
gene HTR2A, are best investigated in the cardiac field [9,10]. Nonspecific effects of 5-HT are
linked to 5-HT uptake via the serotonin transporter 5-HTT, encoded by the gene SLC6A4,
and serotonin metabolism by monoamine oxidases (MAO)s that metabolize 5-HT to 5-
hydroxyindolacetaldehyde. Two different isoforms of MAO are known, namely, MAO-A
and MAO-B. Both are located at the outer mitochondrial membrane. The isoforms differ
in substrate specificity. Among them, 5-HT and norepinephrine are considered as specific
for MAO-A and β-phenylethlyamine (PEA) for MAO-B. MAOs require flavin–adenin–
dinucleotid (FAD) as a cofactor that is reduced by the reaction and subsequently reoxidized
by O2 and H2O, generating hydrogen peroxide [11,12]. Hydrogen peroxide is subsequently
detoxified by catalase, encoded by the gene CAT whereas 5-hydroxyindolacetaldehyde
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is further metabolized to 5-hydroxyindolacetate. This reaction is catalyzed by aldehyde–
dehydrogenase, encoded by the gene ALDH2. MAO-A also metabolizes catecholamines,
such as norepinephrine. In case of norepinephrine, the substrate is taken up by an organic
cation transporter (OCT). It seems that 5-HT exerts specific (receptor-dependent) effects
at lower concentration of 5-HT and MAO-A-dependent intracellular effects at higher
concentration of 5-HT [13].

Cardiomyocytes contain 5-HT, 5-HT receptors, and MAOs [14,15]. Cardiomyocytes
from evolutionary near species such as rats and mice express different isoforms. The reason
for expression of different isoforms is not clear. In rat hearts, MAO-A is preferentially
expressed [16]. The function of MAO-A in rat cardiomyocytes remains to be established. On
the one hand, MAO-A affects substrate metabolism and improves the use of glucose [17]. In
this regard it is important that MAO-A is induced under conditions of cardiac hypertrophy
that goes along with a metabolic switch to preferential use of carbohydrates rather than
fatty acids. MAO-A shares these associations with other mitochondrial proteins, such as
uncoupling protein 2 (UCP2), a protonophore located at the inner mitochondrial membrane.
In the case of UCP2, which potentially reduces oxidative stress, a downregulation is
associated with metabolic shift to glucose consumption [18]. In both cases, upregulation of
MAO-A and downregulation of UCP2, oxidative stress may occur. This may trigger the
metabolic shift. A possible common target may be HIF1α, which can be activated in an
ROS-dependent way and affect the expression of glucose transporters [19,20]. On the other
hand, there are several reports that high MAO-A activity causes cellular damage related to
oxidative stress [21–24]. However, 5-HT can protect cardiomyocytes via receptor-dependent
signaling pathways [9].

Similar to 5-HT, norepinephrine, another MAO-A substrate, can be taken up by
cardiomyocytes via OCT [24]. It has recently been suggested that upregulation of MAO-
A during heart failure will accelerate intracellular catecholamine degradation, thereby
inhibiting a direct stimulation of β-adrenergic receptors at the sarcoplasmatic reticulum
(SR). Such an interaction between β-adrenoceptors and sarcoplasmic reticulum was closely
linked to phospholamban phosphorylation and calcium filling of the SR [24]. It is currently
unclear whether this affects cell structure and function in cardiomyocytes exposed to
excessive catecholamines. Nevertheless, pharmacological inhibition of MAO-A should
increase the intracellular concentration of norepinephrine; thereby, the calcium content
of the SR should increase improving contractility. Furthermore, 5-HT and catecholamine-
dependent effects are further linked on the level of receptors as receptors for both ligands
can undergo heterologous receptor dimerization, linking the activation of β2-adrenoceptors
from Gαs- to Gαi-dependent pathways [25].

In this study, we tried to address some of the open questions that still occur concerning
the role of MAOs in cardiomyocytes. At first, we addressed the question of whether
MAO upregulation in the context of acute (experimental) pressure overload is specific for
MAOA, valid for the left and right ventricle, and whether potential effects of 5-HT can be
demonstrated in cardiomyocytes from right and left ventricles. Second, we addressed the
questions of whether MAO-A-specific substrates such as 5-HT favor oxidative stress and
whether this triggers the cell-damaging effects of high concentrations of 5-HT. Third, we
addressed the question of whether chronic pressure overload and ageing commonly affect
the expression of MAOs and proteins linked to uptake and metabolism of MAO substrates.
Finally, we compared findings with 5-HT to those with norepinephrine, as norepinephrine
metabolism by MAOs has most recently been linked to calcium handling in cardiomyocytes
and function. Supplementary Figure S1 gives an overview of the questions addressed here.

2. Materials and Methods
2.1. Ethical Concerns

All animals were maintained under conditions that conform to the Guide for the Care
and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1996). The study
was endorsed by the institutional animal care committee of the Justus-Liebig-University
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Giessen, and the approval of animal investigation was contracted by the local authorities
(RP Giessen, V54-19c2015h GI20/10 Nr. G 12/2018). For details for housing and testing of
the MAO-B mice, see [26]. Adult Wistar rats (males, 200–350 g) were ordered from Janvier
Labs (Le Genest Saintz Isles, France). Protocols for organ removal were approved by the
Justus-Liebig-University (permission number 666_M and 561_M). Analysis of MAO-A
and MAO-B expression in rat hearts with aortic banding and pulmonary artery banding
(n = 30 rats) was performed on tissue material derived from a previous study [27]. These
experiments were registered under number G14-2017.

2.2. Cell Isolation

Cardiomyocytes (adult rat ventricular myocytes, ARVM) were isolated from rats
(n = 4 rats) or mice hearts (n = 3 mice) as described in great detail in [28,29]. Briefly,
hearts were extracted from anaesthetized (isoflurane) rodents after cervical dislocation and
immediately transferred to a Langendorff system. The tissue was prepared for isolation
by calcium-free perfusion with collagenase, and subsequently minced and transferred to
calcium-containing buffer again. The remaining calcium-tolerant myocytes were attached
to culture dishes (Falcon, 3004) and maintained in serum-free CCT medium (M199 with
supplementation of creatinine, carnitine, and taurine).

2.3. Samples from Ageing and Hypertensive Rats

Samples from left ventricular tissue were used to quantify the expression of genes
related to 5-HT metabolism or signaling. These samples were obtained from rats previously
used for other studies as well [30–32]. For details of animal characteristics and blood
pressure, please see [27,31]. In total, 18 female normotensive rats were analyzed for the
ageing part and 12 female rats (normotensive or hypertensive) were analyzed in the
comparison between normotension and hypertension.

2.4. Mitochondria Isolation

For mitochondria isolation, the whole left ventricle was minced in isolation buffer
containing sucrose (250 mM), HEPES (10 mM), and EGTA (1 mM) and homogenized with
a 15 mL glass Potter as described before [26]. In total, four rats were used for mitochondria
isolation.

2.5. Detection of ROS

Hydrogen peroxide was detected by Amplex Ultra Red (A36006; Invitrogen, Waltham,
MA, USA) reagent. A total of 25 µg of freshly isolated mitochondria were used. Fluo-
rescence was measured continuously for ten minutes with excitation and emission wave-
lengths of 565 and 581 nm, respectively, in a Care Eclipse spectrophotometer (Agilent,
Santa Clara, CA, USA). Glutamate (5 mM) and malate (2.5 mM) were used as substrates for
complex I, as described before [26].

2.6. Cardiomyocytes Contraction

Cell shortening was analyzed as described before [33]. Basal contraction parameters
were analyzed at 2 Hz for one min at room temperature. Analysis of contraction was
performed using a cell-edge-detection system. Data were registered every 15 s and the mean
of these four measurements was used. Shortening of cells was calculated as shortening
amplitude (in µm) normalized to the diastolic cell length (in µm) and expressed as %.
Experiments are based on isolation of myocytes from 11 mice and 30 rats.

2.7. Cell Structure

Cultures were evaluated after 24 h by light microscopy. The number of rod-shaped
cells per area was counted. Round cells or cells with unusual appearance (for definition
see [34]) were not counted. Experiments are based on nine preparations.
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2.8. Western Blot

Tissues or cells were lysed in lysis buffer as described before in detail. Volumes of
equal (40 µg) proteins were separated by electrophoresis on 10% SDS gels and transferred
to nitrocellulose membranes. Western blots were performed using a standard protocol,
with specific primary antibodies against MAO-A (Ab126751, Abcam, Cambridge, UK),
MAO-B (#1821, SIGMA, St. Louis, MO, USA), and GAPDH (#5G4Mab6C5, Hy Test Ltd.,
Turku, Finland) and HRP-conjugated goat-anti-rabbit IgG. Immunoreactive bands were
detected using SuperSignal West Femto Maximum Sensitivity Substrate (Pierce, Rockford,
IL, USA). Protein bands were quantified by Quantity One software (Version 4.6.9; Bio-Rad
Laboratories, Hercules, CA, USA). GAPDH was used as loading control. Experiments are
based on analysis of four rats.

2.9. PCR Analysis

Total RNA from ventricular tissues was isolated using peqGOLD TriFast according to
the manufacturer’s protocol as described before [31]. DNAse was used to remove DNA
contamination. One µg of RNA was used to synthesize cDNA using Superscript RNase H
reverse transcriptase and oligo(dt) as primers. The sequences of the primers used in this
study are indicated in Supplement Table S1. Quantification (2−∆∆CT method) was analyzed
as described before [35]. Thresholds of the gene of interest were normalized to the mean
thresholds of three housekeeping genes (B2M, HRPT1, RPL32).

2.10. Statistics

Data are expressed as box-and-whiskers plots representing the full range of all samples
(whiskers) and the 25%, 50%, and 75% quartiles as boxes. Data were analyzed by two-
sided one-way ANOVA with Student–Newman–Keuls post hoc analysis or Kruskal–Wallis
test with Bonferroni post hoc analysis (correction for multiple testing). In cases where
two samples were compared, t-tests or Mann–Whitney U-tests were used. The use of the
different tests is indicated in the figure legends. Exact p-values are given. Direct comparison
between two groups is stated as effect size with 95% confidence interval based on Cohen’s
analysis.

3. Results
3.1. Effect of Pressure Overload on the Expression of MAOA and MAOB in Rats Hearts

At first, we addressed the question of whether MAOA or MAOB is induced by pressure
overload in left and right ventricles of rats. The analysis was performed on tissue samples
from rats used previously to study transcriptional adaptation at adaptive and maladaptive
hypertrophy [28]. Here, we added the analysis of MAOA and MAOB expression in left
and right ventricles. The data showed that MAOA but not MAOB is induced in the failing
state in both ventricles but not in the compensatory state (Figure 1). MAOA was induced
in the left ventricle of aortic banding rats in the decompensated state (effect size: 3.288;
95% confidence interval (CI: 1.234–5.261; p = 0.005) and in the right ventricle of pulmonary
artery banding rats in the decompensated state (effect size: 2.138; 95% CI: 0.489–3.712;
p = 0.010).

3.2. Cardiac Expression of MAO-A and MAO-B in Rats and Mice

In contrast to other tissues, such as the liver, the rat heart and ARVM express nearly
exclusively MAO-A (Figure 2A). The levels of protein expression are accompanied by a
similar profile of MAOA and MAOB expression in cardiac tissue (Figure 2B). The expression
level of MAOB in nonmyocytes accounted for only 8 ± 3% (p < 0.001; n = 4) of that of MAOA
in myocytes. When cardiomyocytes were exposed to PEA, a substrate preferentially utilized
by MAO-B and inducing oxidative stress in mice myocytes [27], this did not affect load-free
cell shortening in mice myocytes, a surrogate parameter of cardiomyocytes’ contractility
(Figure 2C). Mouse myocytes were previously positive-tested for MAO-B expression [26].
There was a small tendency to reduced cell shortening levels in presence of PEA (effect
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size 0.277; 95% confidence interval (CI): −0.382–0.932) that was nullified by selegiline,
an MAO-B inhibitor (Figure 2C); however, increasing the concentration of PEA did not
exert a significant effect (controls: ∆L/L (%): 9.32 ± 3.82 (n = 17, N = 3); PEA (1 mM:
9.33 ± 3.10 (n = 38, N = 3; p = 0.990). As expected from the expression profile, PEA did not
affect load-free cell shortening in ARVM (Figure 2D). In summary, molecular (protein and
mRNA) and functional data exclude a relevant role for MAO-B in ARVM.
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Figure 1. Expression of MAO isoforms in rat hearts exposed to pressure overload by aortic banding
(AOB) and pulmonary artery banding (PAB). (A) Expression of MAOA in the left ventricle in hearts
from AOB and PAB rats with still normal cardiac function (compensated state). (B) Expression
of MAOA in the left ventricle in hearts from AOB and PAB rats with reduced cardiac function
(decompensated state). (C) Expression of MAOA in the right ventricle in hearts from AOB and PAB
rats with still normal cardiac function (compensated state). (D) Expression of MAOA in the right
ventricle in hearts from AOB and PAB rats with reduced cardiac function (decompensated state).
(E) Expression of MAOB in the left ventricle in hearts from AOB and PAB rats with still normal
cardiac function (compensated state). (F) Expression of MAOB in the left ventricle in hearts from
AOB and PAB rats with reduced cardiac function (decompensated state). (G) Expression of MAOB in
the right ventricle in hearts from AOB and PAB rats with still normal cardiac function (compensated
state). (H) Expression of MAOB in the right ventricle in hearts from AOB and PAB rats with reduced
cardiac function (decompensated state). Data are full ranges (whiskers) with median and 25 and 75%
quartiles (boxes) (n = 5 hearts each). a, p = 0.000077 in two-sided ANOVA with AOB > Sham and PAB
in Student–Newman–Keuls post hoc analysis; b, p = 0.002 in two-sided ANOVA with PAB > Sham
and AOB in Student–Newman–Keuls post hoc analysis; p > 0.05 (two-sided ANOVA) for all (A–H).
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did only minimally affect load-free cell shortening of mice myocytes at the highest 
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Importantly, this response was attenuated in myocytes isolated from MAO-B knockout 
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Figure 2. Expression of MAO isoforms in rat heart and myocytes and effect of MAO-B activation on
mouse and rat myocytes. (A) Western blot indicating the expression of MAO-A and MAO-B in the
liver (L), left ventricle (LV), and cardiomyocytes (CM) from rat hearts. GAPDH was used as loading
control. (B) mRNA expression in rat hearts of the genes (MAOA; MAOB) encoding for MAO-A and
MAO-B. The data are normalized to beta-2-microglobulin (b2m) as a housekeeping gene. The mean
of MAOA expression is set as 1. (C) Load-free cell shortening is expressed as % shortening amplitude
(dL) normalized to the diastolic cell length (L). Data are full ranges (whiskers) with median and
25 and 75% quartiles (boxes). Cells (isolated ventricular myocytes from mice) were incubated with
selegiline (Sel; 1 µM; n = 26), β-phenylethylamine (PEA, 250 µM; n = 18), or combinations thereof
(n = 27) for 24 h. Untreated controls (n = 18) were used to control the quality of the preparation. Cells
were stimulated at 2 Hz and cell shortening was monitored by a line camera. (D) Similar experiment
to C, but with rat myocytes (ARVM; n = 36 each).

3.3. Effect of 5-HT on Load-Free Cell Shortening in Mouse Myocytes and ARVM

In contrast to PEA, 5-HT is preferentially metabolized by MAO-A. As expected, 5-
HT did only minimally affect load-free cell shortening of mice myocytes at the highest
concentration tested here (100 µM; effect size 0.740 (CI: 0.389–1.088); Figure 3A). Importantly,
this response was attenuated in myocytes isolated from MAO-B knockout mice (effect size
0.221 (CI: −0.107–0.549); Figure 3B). These data confirm that 5-HT is a minor substrate for
MAO-B. However, isolated myocytes from knockout mice had a lower basal contractility
(Figure 3A,B). In contrast, high MAO-A expressing ARVM showed a strong functional
impairment at already 30 µM (effect size: 1.341 (CI: 0.765–1.885); Figure 3C). This effect was
attenuated by clorgyline, an MAO-A-specific inhibitor (effect size: 0.108 (CI: −0.159–0.375);
Figure 3D). In summary, molecular (protein and mRNA) and functional data support a
relevant role for MAO-A in rat but not mouse heart.
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Figure 3. Effect of 5-HT on load-free cell shortening. (A–C) Concentration–response curves for
myocytes from MAO-B expressing mice myocytes (MAO-B+/+, n = 54–72), MAO-B knockout my-
ocytes (MAO-B−/−, n = 65–72), and ARVM (n = 28–45). Cells were exposed to 5-HT for 24 h and cell
shortening was subsequently analyzed as in Figure 1. (D) Effect of clorgyline (Clorg, 1 µM), 5-HT
(100 µM), and combinations thereof (n = 45–108). Data are full ranges (whiskers) with median and 25
and 75% quartiles (boxes). *; p < 0.05 vs. control; Kruskal–Wallis test with Bonferroni (correction for
multiple testing) post hoc analysis.

3.4. Effect of 5-HT on Structural Integrity of ARVM

MAO-A-dependent effects have been linked to oxidative stress because the transforma-
tion of 5-HT to 5-hydroxyindolacetaldehyde generates hydrogen peroxide as a byproduct.
MAOs are located at the outer mitochondrial membrane. Therefore, stimulation of either
MAO-A or MAO-B should generate H2O2 that can be analyzed by Amplex Ultra Red. In
isolated mitochondria from rat hearts, 5-HT concentration dependence increased the slope
of Amplex Ultra Red fluorescence, indicating the production of reactive oxygen species
(ROS) (Figure 4). More important, the effect of 5-HT on ROS production was attenuated by
copresence of the MAO-A inhibitor clorgyline (Figure 4). To further investigate whether
H2O2 is part of the MAO-dependent effect on cell shortening, we used tempol, a superoxide
dismutase mimeric that generates H2O2 by detoxifying superoxide [36]. We found that
exposure of cardiomyocytes to tempol for 24 h reduced cell shortening by 11.0% (Figure 4B;
effect size 0.744 (CI: 0.352–1.132).
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Overnight exposure of ARVM to 5-HT damaged the cells, as visualized by a strong
decrease in the amount of rod-shaped cells (Figure 5). Again, this effect was attenuated by
clorgyline (Figure 5).
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Figure 5. Effect of 5-HT on cell structure. (Top) Original photographs obtained from cultures exposed
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(boxes). *; p < 0.05 vs. control; Kruskal–Wallis test with Bonferroni (correction for multiple testing)
post hoc analysis.
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3.5. Effect of 5-HT on ARVM Isolated from Either the Right or Left Ventricle

Differences in ROS scavenging contribute to stress adaptation between the left and
right ventricle. Therefore, we analyzed the expression of MAO-A in both ventricles and
the responsiveness of myocytes isolated from both ventricles to 5-HT. Although MAOA
is constitutively expressed in left and right ventricles, the expression of MAOA in right
ventricles was lower than that of the left ventricle (43 ± 12%; p = 0.041, n = 7–8; effect size:
1.196 (CI: 0.065–2.289).

Consistent with common findings, isolated myocytes from the right ventricle displayed
a smaller load-free cell shortening than those of the left ventricle (Figure 6). However, 5-HT
reduced load-free cell shortening in both ventricles, although the effect was stronger in
myocytes isolated from the right ventricle (Figure 6; effect size left ventricle: 0.689; CI:
0.299–1.076; p = 0.00055); effect size right ventricle: 1.082 (CI: 0.505–1.650; p = 0.000217)).
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Figure 6. Effect of 5-HT on cell shortening of cardiomyocytes isolated from right (RV) or left (LV)
ventricle. Cells (n = 27 (RV or 54 (LV) were exposed to 5-HT (100 µM) for 24 h and cell shortening
was subsequently analyzed as in Figure 1. Data are full ranges (whiskers) with median and 25 and
75% quartiles (boxes). One-way ANOVA with Student–Newman–Keuls post hoc analysis. Different
letters indicate group differences with p < 0.05.

3.6. Effect of Ageing and Hypertension on the Expression of MAOA and Genes Required for 5-HT
Metabolism

The aforementioned experiments with myocytes from right and left ventricles indicate
that a higher expression of MAOA alone is not sufficient to indicate a stronger effect of 5-HT
on the myocardium. Therefore, in normotensive rats, we analyzed the effect of ageing on
the expression of MAOA and genes linked to 5-HT metabolism and 5-HT receptors. Ageing
induced the expression of MAOA (Figure 7A) but did not affect the expression of MAOB
(Figure 7B). Although this induction suggests more oxidative stress in hearts from aged
myocytes via MAO-A-dependent degradation of 5-HT, it is unlikely that this really occurs.
First, the expression of the 5-HT uptake transporter (SLC6A4) decreased (Figure 7C), as well
as that of CAT required for detoxification of hydrogen peroxide (Figure 7F). Second, the
expression of semicarbazide-sensitive amine oxidase (SSAO = AOC3), an enzyme that may
alternatively degrade 5-HT, declines (Figure 7G). Third, the expression of HTR2A declines
during ageing (Figure 7D), whereas the expressions of HTRB2 and ALDH2 remained
unchanged (Figure 7E,H).
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Figure 7. Age-dependent regulation of left ventricular mRNA expression of genes involved in 5-HT
metabolism or signaling ((A): MAOA, (B): MAOB; (C): SLC6A4; (D): HTR2A; (E): HTR2B; (F): CAT;
(G): SSAO; (H): ALDH2). Left ventricular tissue was dissected from rats at the age of 1.5, 7.5, or
11.5 months (n = 6 each). Data are full ranges (whiskers) with median and 25 and 75% quartiles
(boxes). One-way ANOVA with Student–Newman–Keuls post hoc analysis or Kruskal–Wallis test
with Bonferroni (correction for multiple testing) post hoc analysis where appropriate. * p < 0.05 vs.
1.5 months old.

Similarly, the induction of hypertension (SHR vs. Wistar rats) displayed the same
pattern of regulation, except for the regulation of 5-HT receptors (Figure 8).
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Figure 8. Hypertension-dependent regulation of left ventricular mRNA expression of genes involved
in 5-HT metabolism or signaling ((A): MAOA, (B): MAOB; (C): SLC6A4; (D): HTR2A; (E): HTR2B;
(F): CAT; (G): SSAO; (H): ALDH2). Left ventricular tissue was dissected from normotensive rats
(WIS) or spontaneously hypertensive rats (SHR) at the age of 7.5 months (n = 6 each). T-tests or
Mann–Whitney U-tests where appropriate. * p < 0.05 vs. WIS.

3.7. Effect of MAO-A on Norepinephrine-Dependent Cell Damages

Similar to 5-HT, excessive norepinephrine decreased the number of rod-shaped cells
(Figure 9A; effect size 3.640 (CI: 1.160–6.037; p = 0.002). However, in contrast to 5-HT,
inhibition of MAO-A by clorgyline did not protect cells against norepinephrine-dependent
damaging (Figure 9A; effect size 2.751 (CI: 0.648–4.760; p = 0.008). In contrast, atenolol
protected against norepinephrine-dependent cell damage (Figure 9A; effect size: 1.018
(−0.513–2.479; p = 0.200). The remaining nondamaged myocytes showed an improved
load-free cell shortening in the presence of norepinephrine (Figure 9B; effect size 0.760
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(CI: 0.493–1.025); p < 0.0001). This effect was not affected by clorgyline either (Figure 9B).
However, inhibition of β-adrenoceptors by atenolol reduced the norepinephrine effect on
load-free cell shortening (Figure 9C; effect size: 0.547 (CI: 0.279–0.814; p = 0.000061).
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Figure 9. Effect of norepinephrine on cell structure and load-free cell shortening. (A) Original
photographs obtained from cultures exposed to clorgyline (1 µM), norepinephrine (NOR, 10 µM),
atwenolol (10 µM), or combinations thereof for 24 h (n = 4 each). For better visibility of rod-shaped
and round cells see Supplementary Information. Data are expressed as the number of rod-shaped
cells per mm2. Data are full ranges (whiskers) with median and 25 and 75% quartiles (boxes).
One-way ANOVA with Student–Newman–Keuls post hoc analysis. Equal letters indicate no group
differences. (B) Load-free cell shortening (see Figure 1 for details) for cells exposed to clorgyline
(1 µM), norepinephrine (NOR, 10 µM), or combinations thereof for 24 h (n = 119–123). One-way
ANOVA with Student–Newman–Keuls post hoc analysis. Equal letters indicate no group differences.
(C) Load-free cell shortening (see Figure 1 for details) for cells exposed to atenolol (Ate, 10 µM),
norepinephrine (NOR, 10 µM), or combinations thereof for 24 h (n = 97–121). One-way ANOVA with
Student–Newman–Keuls post hoc analysis. Equal letters indicate no group differences.
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4. Discussion

This study was performed to improve our understanding about the contribution of
the 5-HT metabolizing enzyme MAO-A to cardiac hypertrophy and function. Induction of
MAOA has been shown before in several studies as a response to hypoxia, volume load,
ageing, or pressure load [37–42]. Similarly, 5-HT has been associated with myocardial
hypertrophy and heart failure. However, as outlined in the introduction, the contribution
of 5-HT to heart failure is challenging to understand. Several authors suggest that low
concentrations of 5-HT improve cardiac function via 5-HT receptor activation, whereas
high concentrations of 5-HT contribute to heart failure via activation of MAO-A [11,13].
Similarly, MAO-B contributes to heart failure [8,26]. However, both isoforms show species-
dependent differences in the cardiac expression [16,43]. There are still open questions: Is
MAOA upregulated before the transition of cardiac hypertrophy to heart failure? Is MAOA
upregulated similarly in both ventricles? Can upregulation of MAOB in rats occur due to
pressure overload as part of a fetal reprogramming? These questions were addressed in
this study.

Initially we investigated, in left and right ventricular models (AOB, PAB), whether
MAOA and MAOB are differentially regulated. The new finding of our study is that in both
cases, MAOA is specifically upregulated at the time of decompensation, whereas MAOB
expression is not affected (results are reported in Figure 1). These data suggest that MAOA
but not MAOB plays an important role in heart failure. This hypothesis was tested next. We
first confirmed the lack of MAOB expression in rat myocardium. Subsequently, we showed,
by using an MAO-B-specific substrate (PEA), that MAO-B activation neither induces cell
dysfunctions in cardiomyocytes from mice nor from rats (results reported in Figure 2). In
contrast, experiments using an MAO-A-specific substrate (5-HT) showed a small effect on
cardiomyocytes from mice at very high concentrations that was absent in MAOB knockout
cells. This suggests that the small effect requiring high 5-HT concentrations in mice is
mediated by MAOB to which 5-HT has a low affinity. The data are consistent with former
experiments in which deletion of MAOA in mice increased the plasma concentration of
5-HT, leading to excessive myocardial hypertrophy [44]. However, the MAOA-specific
substrate 5-HT strongly reduced cell shortening in rat myocytes with high expression of
MAOA. This conclusion is remarkable as the effect was already seen at 5-HT concentrations
that are in the range of plasma 5-HT concentrations of rodents (i.e., 24 µM reported by [44]).
Furthermore, the effect was attenuated by copresence of an MAO-A inhibitor (clorgyline;
results reported in Figure 3). The new aspect that these experiments add to the current
standing of the literature is that we show chronic effects of 5-HT on myocytes that allow a
mechanistic link between the aforementioned speculation that MAO-A contributes to heart
failure because it is induced in the decompensated phase, and the functional effect.

Detrimental effects of MAO-A activity are often explained by oxidative stress [12,21,22,45].
We therefore addressed the question of whether MAO-A activity is associated with ox-
idative stress in rat myocardium, too. First, we measured hydrogen peroxide production
of isolated mitochondria exposed to 5-HT and confirmed such an effect as previously
shown [11]. Importantly, the concentration–response curve (Figure 4) fits the detrimental
effects shown on cardiomyocytes in our study. Furthermore, when cells were exposed to
tempol, an SOD mimetic that produces hydrogen peroxide, a similar time-dependent effect
on cell shortening was obtained as well. The data support the view that MAO-A activity
contributes to heart failure via oxidative stress. Interestingly, although PEA induces ROS
formation in isolated mitochondria from mouse hearts [26], PEA did not affect load-free
cell shortening in mice myocytes, as found by selective stimulation of MAO-A.

Our own data (Figure 1), as well as previous studies performed by others, shows a
similar upregulation of MAOA in left and right ventricles due to pressure overload in the
decompensated phase [40,41]. However, we have shown before that both ventricles differ
in their oxidative stress defense strategy [46]. Therefore, it is important not only to show
that MAOA is induced in both ventricles but also to show that cardiomyocytes from both
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ventricles behave similarly when exposed to 5-HT. These new findings (Figure 6) indicate
that there are no differences between both ventricles with respect to 5-HT responsiveness.

Induction of MAO-A during ageing has been shown before [47]. Here, we confirmed
such findings on the gene level. In extension to previous studies, we compared the reg-
ulation of MAOA with that of other genes encoding proteins involved in 5-HT biology.
The most interesting observation is that the expression of the 5-HT transporter SLC6A4 is
reduced during ageing (data shown in Figure 7). Similarly, we found the same expression
profile in spontaneously hypertensive rats in comparison to normotensive rats (data shown
in Figure 8). This suggests that alterative substrates other than 5-HT are metabolized by
MAO-A under such conditions. An attractive alternative are catecholamines. Therefore,
we finally investigated whether norepinephrine exerts MAO-A-dependent effects in adult
cardiomyocytes. Recently, MAO-A upregulation was identified as part of β-adrenoceptor
desensitization by reducing the intracellular concentration of norepinephrine needed for
interaction between β-adrenoceptors and the phospholamban/SERCA2a complex at the
SR [24]. Norepinephrine damaged ARVM, as indicated by loss of rod-shaped structure.
However, unlike the effect on 5-HT, this effect was not blunted by pharmacological MAO-A
inhibition (data shown in Figure 9). The remaining nondamaged myocytes displayed an
improved load-free cell shortening in contrast to nondamaged 5-HT treated myocytes,
which displayed a reduced cell shortening. Again, this effect of norepinephrine was not
attenuated by clorgyline, the MAO-A inhibitor. However, administration of a β-blocker
(atenolol) normalized partly cell shortening of nondamaged myocytes. These data clearly
show that norepinephrine acts via receptor-dependent pathways, whereas 5-HT acts via
MAO-A.

5. Conclusions

Our study couples the expression of MAOA in the decompensated phase of myocardial
hypertrophy to direct damaging effects of MAO-A activity. Using 5-HT as a more or less
specific MAO-A substrate, we showed that high activity of MAO-A reduces cell function
(load-free cell shortening) and leads to structural damages in cells (loss of rod-shaped
morphology). We also showed that norepinephrine induces structural damage but in
a receptor-dependent and not MAO-A-dependent way. Norepinephrine does not affect
cell shortening under these conditions. Finally, we showed that MAO-A activity induces
hydrogen peroxide and that a hydrogen-peroxide-forming molecule induces a comparable
effect. This suggests that the MAO-A-dependent effects seen here with 5-HT are performed
via oxidative stress. The open questions that require future studies are: Why do genetically
related species such as mice and rats express different MAO isoforms? What are the main
substrates of MAO-A in stressed hearts, if neither 5-HT metabolism (as suggested by
decreased expression of SLC6A4 and increased expression of CAT) nor norepinephrine
(an alternative substrate of MAO-A) are proper candidates? How is MAO-A linked to
glucose metabolism, and is there a linkage with other molecules of the inner mitochondrial
membrane, such as UCP2? Future studies are required to shed light on these open questions.
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