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Abstract: Epigenetic mechanisms and cell crosstalk have been shown to play important roles in the
initiation and progression of cardiac fibrosis. This review article aims to provide a thorough overview
of the epigenetic mechanisms involved in fibroblast regulation. During fibrosis, fibroblast epigenetic
regulation encompasses a multitude of mechanisms, including DNA methylation, histone acetylation
and methylation, and chromatin remodeling. These mechanisms regulate the phenotype of fibroblasts
and the extracellular matrix composition by modulating gene expression, thereby orchestrating the
progression of cardiac fibrosis. Moreover, cardiac fibrosis disrupts normal cardiac function by
imposing myocardial mechanical stress and compromising cardiac electrical conduction. This review
article also delves into the intricate crosstalk between cardiomyocytes and non-cardiomyocytes in the
heart. A comprehensive understanding of the mechanisms governing epigenetic regulation and cell
crosstalk in cardiac fibrosis is critical for the development of effective therapeutic strategies. Further
research is warranted to unravel the precise molecular mechanisms underpinning these processes
and to identify potential therapeutic targets.
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1. Introduction

Cardiovascular disease, such as ischemic heart disease and hypertension, remains
a leading cause of mortality worldwide [1]. Fibrosis is characterized by alterations in
extracellular matrix (ECM) components and the excessive deposition of proteins secreted
by cardiac fibroblasts (CFs), which represents a common pathological process in chronic
inflammatory diseases [2]. Extensive research has demonstrated that cardiac remodeling,
including the development of cardiac fibrosis, is a shared phenomenon in various heart
diseases [3]. On one hand, cardiac fibrosis can confer beneficial effects, such as facilitating
the repair of fibrotic scars subsequent to myocardial infarction (MI), which is crucial for
maintaining the structural integrity of the heart [4]. However, the sustained abnormal
activation of CFs can lead to disproportionate ECM deposition [5], resulting in reduced
cardiac compliance and mechanical dysfunction of the myocardium [6]. Furthermore, the
infiltration of a substantial number of CFs within the heart can disrupt normal electrical
conduction, as the deposition of secreted substances creates barriers and reduces the
electrical coupling among myocardial cells contributing to arrhythmias [7,8].

In clinical studies, the extent of cardiac fibrosis has been identified as an indicator of
unfavorable outcomes [9,10]. Despite the established role of fibrosis in heart failure, there
is a dearth of effective pharmacological interventions targeting this pathological process
in clinical practice. Notably, studies have highlighted the significant role of epigenetics in
the progression of cardiac fibrosis [11,12], suggesting that therapeutic strategies based on
epigenetic mechanisms may hold promise. Epigenetics refers to heritable modifications
in chromatins that do not involve alterations in the DNA sequence. In the cell nucleus,
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the nucleosome comprises approximately 146 base pairs of DNA and histone octamers.
The chemical modifications of both DNA and histones can either enhance or impede the
interaction between transcription factors and regulatory proteins, thereby influencing
gene transcription.

The proper functioning of cardiac myocytes relies on the regulation via non-myocytes [13],
and in turn, cardiac myocytes can also influence the phenotype of non-myocytes via
paracrine signaling or direct contact [14,15]. Intercellular crosstalk plays a crucial role in
the process of cardiac fibrosis, as various cell types within the heart interact and contribute
to its development.

It is noteworthy that most recent reviews on epigenetics and cardiac fibrosis have
primarily focused on DNA, histones, and RNA, with limited attention given to emerging
mechanisms such as chromatin remodeling. Our aim is to comprehensively elucidate the
epigenetic mechanisms of CFs in cardiac fibrosis, explore the impact of left ventricular
fibrosis on cardiac function, and summarize key aspects of intercellular crosstalk between
non-myocytes and cardiac myocytes within the heart. Fibroblasts, as crucial effector
cells in fibrosis, exhibit intricate epigenetic regulatory mechanisms that contribute to the
initiation and progression of cardiac fibrosis. Cardiomyocytes, being the predominant cell
type in the heart, play a pivotal role in mediating the interplay between cardiomyocytes
and non-cardiomyocytes, thereby influencing the phenotypic transformations in cardiac
fibrosis. This review article aims to provide a detailed insight into the epigenetic regulatory
mechanisms underlying fibroblasts in cardiac fibrosis while emphasizing the significance
of cellular interactions within the cardiac microenvironment (Figure 1). Additionally, we
explore the potential of utilizing cardiomyocytes as a bridge to establish the relationship
between non-cardiomyocytes and cardiac fibrosis.
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Figure 1. The development of cardiac fibrosis is a multifaceted process. Intercellular signaling
and interactions between cardiomyocytes and non-myocyte cells play a crucial role in precisely
coordinating various cardiovascular processes. This coordination is achieved via the generation of
bioactive factors and the regulation of cytokine secretion. CFs serve as the primary effector cells
involved in cardiac fibrosis regulated by epigenetic mechanisms. These two interconnected processes
ultimately influence the development of cardiac fibrosis. Ac, acetylation; CF, cardiac fibroblast; CM,
cardiomyocyte; Mø, macrophage; MC, mast cell; Me, methylation; MyoFB, myofibroblast.
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2. Epigenetic Regulations of CFs in Cardiac Fibrosis

CFs serve as the primary effector cells in cardiac fibrosis. Under physiological condi-
tions, the proportion of CFs to cardiomyocytes, endothelial cells, and immune cells remains
relatively stable [16]. The ECM network, secreted by CFs, plays a crucial role in main-
taining the structural integrity of the heart and ensuring normal cardiac conduction [17].
Following acute cardiac damage, such as MI, CFs respond to external signals by activating
and expressing genes associated with inflammation and fibrosis [18]. Fu et al., utilizing
lineage-tracing models and stage-specific gene profiling, demonstrated that CFs reach their
peak activation and proliferation rate within 2–4 days after injury. During this process,
they differentiate into myofibroblasts, secrete a substantial ECM, and express α-smooth
muscle actin (α-SMA) [19]. Studies have indicated that the activation of fibroblasts and the
expression of related genes are regulated via epigenetic mechanisms [20,21]. We aim to
review the role of fibroblasts in cardiac fibrosis by focusing on the epigenetic mechanisms.

2.1. DNA Methylation
2.1.1. Regulation of DNA Methylation

DNA methylation is one of the most extensively studied epigenetic modifications in
mammals. The dynamic changes in DNA methylation pattern involve two processes, de
novo DNA methylation and demethylation, which are carried out by a series of enzymes
that act as writers, readers, and erasers. Specifically, DNA methyltransferases (DNMTs) act
as writers by adding methyl groups to DNA, while methyl-CpG-binding proteins (MBPs)
interpret these modifications as readers. During the process of demethylation, several
enzymes listed in Table 1, such as ten-eleven translocation (TET) enzymes, act as erasers of
epigenetic marks by removing the methyl groups from DNA.

During methylation, the DNA methyltransferase family catalyzes the transfer of a
methyl group from S-adenosyl-L-methionine to the fifth carbon of cytosine, resulting in
the formation of 5-methylcytosine [22,23]. This modification occurs at sites near cytosine
nucleotides or CpG dinucleotides [24], with the majority of these sites located near the
promoter and exon regions of genes. DNA methylation reduces the binding of transcription
factors to these regions, inhibits the initiation of transcription, and consequently diminishes
gene expression. DNMT family members participate in catalyzing methylation as writers.
To date, five types of DNMT proteins have been identified, but only DNMT1, DNMT3a,
and DNMT3b possess catalytic activity for methyltransferase [25]. DNMT3a and DNMT3b
establish new methylation patterns on unmodified DNA, while DNMT1 maintains methy-
lation status by promoting DNA replication and transferring methylation patterns from
parent to daughter strands [26,27]. MBP family members act as readers in the methylation
process. MBPs contain a methyl-CpG-binding domain (MBD) that specifically binds to CpG
positions of methylated DNA, allowing them to enhance DNA methylation and suppress
gene transcription [28].

Currently, considerable evidence suggests a close relationship between DNA methyla-
tion and fibroblast activation and CFs, as shown in Table 1.

Table 1. The roles of DNA methylation modifiers in cardiac fibrosis and CF activation.

Subclass Modifier Target Function References

DNMTs DNMT1 SOCS3 Profibrotic, CF activation [29]

microRNA-152-3p Pro-fibrotic, CF activation
and proliferation [30]

RASSF1A, ERK1/2 Pro-fibrotic, CF
proliferation [31]

DNMT3a TRAAK Pro-fibrotic, CF activation [32]

Ras, ERK1/2 Pro-fibrotic, CF activation
and proliferation [33]

Patched1 Pro-fibrotic, CF
proliferation [34]

miR-200b Pro-fibrotic, CF autophagy [35]
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Table 1. Cont.

Subclass Modifier Target Function References

LncRNA NEAT1 Pro-fibrotic, CF activation [36]
DNMT3b HIF-1α Pro-fibrotic, CF activation [37]

Rasal1, Rassf1 Pro-fibrotic, CF activation [38]

RASSF1A, ERK1/2 Pro-fibrotic, CF
proliferation [31]

MBPs M2CP2 DUSP5 Pro-fibrotic [39]
RASSF1A, ERK1/2 Pro-fibrotic [40]

LncRNA GAS5 Pro-fibrotic, CF
proliferation [41]

TETs

TET2 Hspa1b Anti-fibrotic [42]
IFN-γ Anti-fibrotic [43]
IL-6 Anti-fibrotic [44]

TET3 BMP7 Anti-fibrotic, EndMT [45]

2.1.2. DNA Methylation in Cardiac Fibrosis

DNMTs. Cardiac fibrosis can occur in various conditions, such as ischemia, volume
overload, pressure overload, and hypoxia [46]. Hypoxia is a common pathological pro-
cess in these factors, and one possible epigenetic mechanism is DNA methylation within
cardiac fibroblasts, which causes the inactivation of tumor suppressor gene Rassf1a and
activates the ERK signaling pathway, resulting in an increase in the number of fibroblasts
and ultimately leading to cardiac fibrosis [33,37]. A study by Ayan et al. found that ex-
tracellular superoxide dismutase may significantly reduce Rassf1a gene methylation and
positively regulate the ERK1/2 signaling pathway, thereby alleviating hypoxia-induced
cardiac fibrosis [31]. Papait et al. also observed in their study that alterations in the DNA
methylation profile of the injured heart can trigger the phenotypic switching of endothelial
cells to an interstitial fibroblast-like phenotype, thereby contributing to cardiac fibrosis
via the aforementioned pathway [21]. Previous studies have found that hypoxia increases
using hypoxia-inducible factor-1α (HIF-1α), mediating the upregulation of DNMT1 and
DNMT3b, thus promoting myocardial fibrosis [37]. In their study, He et al. reported
that inhibiting the DNMT1-mediated methylation of the α-sma promoter DNA has the
potential to suppress the differentiation of CFs and prevent fibrosis [47]. Likewise, Tian
et al. found that treatment with monocrotaline-induced DNMT1-HIF-1α-PDK-mediated
chamber-specific metabolic memory in right ventricular fibroblasts promotes the synthesis
of collagen protein and the development of fibrosis [48]. Therefore, DNMT1 represents a
promising therapeutic target for anti-fibrotic treatment. However, it is unclear whether
DNMT3a plays a role in hypoxia-induced cardiac fibrosis. Recently, a study has shown
that by inhibiting the HIF-1α/DNMT3a signaling pathway mediated in the TRAAK chan-
nel, the activation of cardiac fibroblasts and the expression of fibrosis-related proteins are
significantly reduced, confirming the role of DNMT3a in cardiac fibrosis [49]. In addition,
Zhao et al. also found that DNMT3a can regulate the autophagy of fibroblasts and control
cardiac fibrosis by controlling the level of miR-200b [35].

MBPs. Regarding MBPs, current research has found that methyl-CpG binding protein
2 (MeCP2), as a protein containing MBD, participates in the regulation of cardiac fibroblast
proliferation and fibrosis via its ability to bind methylated DNA. In the transverse aortic
constriction (TAC) mouse model, inhibiting MeCP2 activates fibroblasts and aggravates
cardiac fibrosis [50], while the overexpression of MeCP2 alone shows lower levels of
fibrosis and good cardiac repair [51]. Tao et al.’s research on the mechanism of MeCP2
action showed that the use of MeCP2 inhibitors to treat cardiac fibroblasts can increase the
expression of dual-specificity phosphatase 5 (DUSP5), and DUSP5 negatively regulates the
ERK signaling pathway, thus promoting myocardial fibrosis [39]. Currently, apart from
MeCP2, the regulation of other MBPs on CFs and their mechanisms in cardiac fibrosis
have not been studied, which may be an important direction for future treatment of
cardiac fibrosis.
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2.2. Histone Modification
2.2.1. Histone Acetylation in Cardiac Fibrosis

The seminal work by Allfrey et al. unveiled the significance of histone acetylation
modifications in elucidating the intricate mechanisms governing gene expression [52].
Acetylated histones exert their influence by impeding chromatin condensation, thereby
facilitating the access of transcription factors to chromatin and promoting gene expres-
sion [53]. Analogous to DNA methylation, histone acetylation necessitates the involvement
of writers, readers, and erasers. Among them, histone acetyltransferases (HATs) and hi-
stone deacetylases (HDACs) emerge as pivotal enzymes responsible for regulating the
extent of histone acetylation [54]. HATs catalyze the transfer of acetyl groups from acetyl-
CoA to the N-terminal lysine ε-amino acid group. Michael et al. have categorized these
enzymes into five families [55], with particular emphasis on the p300/CBP HATs due to
their close association with cardiac fibrosis [56]. Conversely, HDACs generally impede
gene expression and have been classified into four families by Annemieke et al.: I, II, and
IV encompass zinc-dependent HDACs, while class III necessitates nicotinamide adenine
dinucleotide (NAD+) for enzymatic activity [57]. HDAC I and HDAC II are deemed crucial
in the intricate mechanisms of myocardial fibrosis [58]. Table 2 provides a comprehensive
listing of the main HDACs, their targets, and their functions. Multiple signaling pathways
converge upon HATs and HDACs, intricately regulating the expression of fibrosis-related
genes and mediating the process of cardiac fibrosis [59].

Table 2. The roles of histone deacetylation modifiers in cardiac fibrosis [60–65].

Class Modifier Target Function

I HDAC 1 Histone, ATM, p53 Pro-fibrotic, CF activation, and myocardial hypertrophy
HDAC 2 Histone, GATA, α-SMA Pro-fibrotic, CF activation, and myocardial hypertrophy
HDAC 3 Histone, GATA, STAT3, FOXP3 Pro-fibrotic, collagen accumulation, and myocardial hypertrophy
HDAC 8 p38-MAPK, Hsp70, SMC3 Pro-fibrotic, cell proliferation

IIa HDAC 4
N.A. 1 (weak catalytic activity, may act as

scaffolding proteins)
Pro-fibrotic, hypertrophyHDAC 5

HDAC 7
HDAC 9

IIb HDAC 6 α-tubulin, Ku70, cortactin,
tau Cell mobility, repair of protein misfolding, and pro-fibrotic

HDAC 10 Histone, Akt, Hsp70 DNA repair, autophagy, and immunoregulation

III Sirtuins 1–7 Including but not limited to histone,
SOD2, cytochrome c Mainly in DNA repair and oxidative stress

IV HDAC 11 BRD2, NLRP3 Immunoregulation, DNA replication

1 N.A., not applicable.

Histone acetylation modifications are recognized by specific proteins, and Dhalluin
et al. have reported the bromodomain-mediated recognition of acetylated Lys residues [66].
Bromodomains (BRDs) exist in various types of nuclear proteins, including HATs, methyl-
transferases, helicases, and BET protein families [67]. Additionally, the YEATS domain
has been identified as another domain with selectivity for binding acetylated histones [68].
Further research holds promise for the discovery and elucidation of additional readers of
histone acetylation in the future.

HATs. The acetylation of lysine residues in the histone tail is catalyzed via HATs, which
impacts gene expression by inhibiting chromatin aggregation and providing binding sites
for proteins with acetylated lysine recognition domains. Extensive studies have focused
on p300, revealing its involvement in dysregulated stress signals such as hypertrophy and
fibrosis in cardiac cells. It has been observed the recruitment of p300 to genes associated
with hypertrophy and fibrosis, as well as the regulation of their expression [69]. This
pathway also involves the acetylation of the transcription factor GATA4 and the acetylation
of histones H3K9 and H3K27 at the Gata4 promoter. The activation of endothelin-1 and
atrial natriuretic factor promoters in this pathway drives the genomic stress response and
contributes to cardiac fibrosis [70].
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In 2008, Morimoto et al. found that curcumin could disrupt the p300/GATA4 complex
in rat cardiac cells, inhibiting cellular hypertrophy induced via agonists and p300 [71].
Curcumin has also demonstrated improvement in the cardiac contractile function in the
Dahl salt-sensitive hypertensive rat model and the MI rat model. It reduced collagen depo-
sition and inhibited the proliferation and migration of fibroblasts in the MI mouse [71–73].
However, caution is warranted when interpreting these experimental results, considering
that curcumin is involved in other pathophysiological processes, such as inflammation and
oxidative stress in the heart [74]. The discovery and application of two p300 small-molecule
inhibitors, L002 and C646, further confirmed the role of p300 in cardiac fibrosis [75,76].
However, these inhibitors seem to lack a certain degree of selectivity and efficacy [77].
Recently, the development of A485, a highly selective small-molecule inhibitor for p300
and CBP, may provide better insights into the role of HATs in myocardial fibrosis and
demonstrate the potential of HATs inhibitors in clinical applications. However, its appli-
cation in the field of cardiac fibrosis has not been reported yet. CBP30 and CBP112 are
small-molecule inhibitors that target the bromodomain of p300/CBP. They prevent HATs
from binding correctly to acetylated histone marks on chromatin without affecting the
catalytic function of p300/CBP [78,79]. In the future, the discovery of highly selective and
potent inhibitors targeting the bromodomain and catalytic domain of HATs will further
elucidate the role of HATs in controlling cardiac fibrosis and their potential to block cardiac
fibrosis remodeling.

HDACs. HDACs catalyze the deacetylation of lysine residues on histone proteins,
which contrasts the function of HATs. However, emerging evidence suggests HDACs are
also involved in the complex network of fibrotic and anti-fibrotic factors in cardiac fibrosis.

In 2002, HDAC II was shown to inhibit cardiac hypertrophy by suppressing the
activity of MEF2 [80]. Since then, the involvement of HDACs in cardiac fibrosis has
gained increasing recognition. Studies have demonstrated that class I HDACs can activate
fibroblasts and act as regulatory factors in cardiac fibrosis [12]. They likely achieve this by
inhibiting the transcription of anti-fibrotic genes [81], mediating pathological processes such
as mitochondrial overactivation and calcium overload in human CFs [82], and promoting
fibroblast proliferation and migration [83]. Other class I HDACs have also been implicated
in the occurrence and development of cardiac fibrosis [84–86].

HDAC inhibitors (HDACis) have shown a potential to inhibit cardiac fibrosis by
targeting the function of HDACs. For instance, the representative compound vorinos-
tat/suberoylanilide hydroxamic acid has demonstrated the ability to inhibit cardiac fibrosis
in preclinical models such as MI and TAC [87]. It received FDA approval in 2006 for the
treatment of cutaneous T-cell lymphoma. Another compound, ITF2357/givinostat, has
shown improvement in cardiac diastolic function in the murine models of hypertension-
or aging-induced diastolic dysfunction with preserved ejection fraction, with no signifi-
cant fibrosis observed [88]. However, hidden fibrosis was detected in this model using
quantitative mass spectrometry and atomic force microscopy, but it was still inhibited by
ITF2357/givinostat [89], indicating that the compound effectively halted the progression
of early cardiac fibrosis. In recent years, selective HDACis have been discovered, offering
a promising approach for precise intervention in histone acetylation modifications. For
example, RGFP966, a selective HDAC3 inhibitor, has demonstrated significant efficacy in
improving cardiomyocyte hypertrophy and interstitial fibrosis in a mouse model of diabetic
cardiomyopathy through the DUSP5-ERK1/2 pathway, while also reducing oxidative stress
in the heart [84]. Krüppel-like factor 4 (KLF4) is a zinc finger-containing transcription factor
that regulates cell growth and differentiation [90]. The inhibition of class I HDAC with
SK-7041 leads to histone acetylation in the promoter region of Klf4, resulting in the upregu-
lation of its expression and the suppression of Nppa promoter activity, counteracting the
cell size increase induced via norepinephrine [91]. In a study conducted by Patel et al., the
selective inhibition of HDAC2 using sodium butyrate in a rat model of cardiac hypertrophy
induced by partial abdominal aorta constriction (PAAC) resulted in a reduction in collagen
levels between myocardial cells and an enhancement in mitochondrial DNA concentration,
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although the underlying pathway was not proposed [92]. Notably, Jebessa et al. revealed
that the abhydrolase domain containing 5 (ABHD5) acts as a serine protease, cleaving
HDAC4 and generating an N-terminal peptide (HDAC4-NT) both in vitro and in vivo. The
gene delivery of Hdac4-nt, using AAV9 as a vector, improved cardiac hypertrophy and
fibrosis without altering the level of cardiac lipid deposition. The transfer of Hdac4-nt not
only normalized the expression of NPPB but also influenced the expression levels of the
downstream Mef2 gene, Xirp2, and nerve growth factor IB (Nr4a1). These findings suggest
that the ABHD5-mediated expression of Hdac4-nt is sufficient to inhibit the activation of the
classical fibrotic pathway induced by Mef2, unveiling the potential of endogenous cardiac
fibrosis inhibitors targeting epigenetic regulation [93].

Despite the promising findings, the clinical approval of these compounds for the
treatment of cardiac fibrosis is currently unavailable due to their potentially unknown
molecular mechanisms. The role of different HDACs in the process of cardiac fibrosis is not
consistent [94], which introduces certain risks when utilizing pan-HDACi for the treatment
of cardiac fibrosis treatment. Furthermore, the targets of HDACs beyond histones in cellular
contexts remain incompletely elucidated, and the use of pan-HDAC inhibitors may result
in lethal cytotoxicity by inhibiting key HDACs. Additionally, the development of specific
inhibitors that selectively target different cells and types of HDACs is challenging due to
the shared structural domains among class I, II, and IV HDACs [94].

As a key enzyme in epigenetic regulation, the impact of HDACs on cardiac fibrosis
has consistently been a matter of great concern. Therefore, it is imperative to acquire a
more comprehensive understanding of the functions and targets associated with different
classes of HDACs. Consequently, the design of drugs that specifically target various cells
and types of HDACs becomes essential.

Bromodomain Extraterminal Protein. Bromodomains are extensively studied proteins
involved in recognizing ε-N-acetylated lysine motifs using their BRDs, which serve as
protein interaction modules [95]. Among them, BRD4, a member of the BET family, has
been implicated in the activation of CFs, myocardial hypertrophy, and cardiac fibrosis [96].
BRD4 facilitates binding to acetylated histones via its BD1 and BD2 BRDs and activates
RNA polymerase II to initiate gene transcription via its carboxy-terminal domain in a com-
plex with a positive elongation transcription factor [97]. Additionally, BRD4 contributes
to the formation of dynamic cell state-specific enhancers, called super-enhancers (SEs). In
activated fibroblasts, the TGF-β signaling pathway induces BRD4 to bind to enhancers in a
p38-dependent manner [98]. For instance, BRD4 binds to an enhancer element located 65 kb
downstream of the Meox1 gene, which encodes a homeobox transcription factor, forming a
SE. The SE then loops back to the Meox1 promoter, promoting Meox1 expression and initiat-
ing a cascade of pro-fibrotic gene expression [99]. Moreover, BRD4 promotes pro-fibrotic
gene expression in cardiomyocytes by forming SEs and facilitating fibroblast activation via
cell–cell contact or paracrine signaling, ultimately leading to fibrotic remodeling [100].

Researchers have discovered that JQ1, an acetyl-lysine mimic, can displace BRD4 from
chromatin binding in cardiac fibrosis. In the mouse models of TAC and Plnr9c mutation-
induced dilated cardiomyopathy (DCM), JQ1 has demonstrated the ability to improve
cardiac contractile dysfunction, reduce cardiomyocyte hypertrophy, and attenuate cardiac
fibrosis [101]. Moreover, JQ1 inhibits the expression of Meox1 induced by SEs in CFs [99].
Clinical studies of apabetalone, a selective inhibitor of the BD2 domain of BRD4, have
shown that the treatment group experienced a reduced number of hospitalizations for heart
failure associated with type 2 diabetes and recent acute coronary syndrome compared to
the control group. Furthermore, apabetalone exhibited good tolerability, suggesting that
BRD4 may serve as a potential effective therapeutic target for cardiac fibrosis [102].

However, recent studies have provided evidence suggesting the involvement of BRD4
in maintaining the homeostasis of mitochondrial function in cardiomyocytes, thereby
preserving normal cardiac function [103]. These findings underscore the importance of
further investigating the functions of BET proteins and the molecular mechanisms regulated
by BET inhibitors. Such investigations are crucial for enhancing drug-targeting strategies
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and mitigating potential unknown risks associated with BET inhibition in the context of
cardiac fibrosis.

2.2.2. Histone Methylation in Cardiac Fibrosis

In addition to acetylation, histone methylation has emerged as another histone mod-
ification associated with cardiac fibrosis. Histone methylation is catalyzed via histone
methyltransferases (HMTs), which include lysine methyltransferases (KMTs) and arginine
methyltransferases (RMTs), depending on the specific site of modification. Lysine demethy-
lases (KDMs) can reverse this modification [104]. The impact of histone methylation on
gene expression is site specific, where the methylation of H3K4, H3K36, and H3K79 is
typically linked to transcriptional activation, while the methylation of H3K9 and H3K27
leads to transcriptional repression [105].

Over 90% of KMTs possess a SET (su(var)3–9, an enhancer of zeste, and trithorax)
domain. Among them, the EZH2 (an enhancer of zeste homolog 2) family, which includes a
SET domain, has been identified to regulate H3K27 methylation in cardiac fibrosis [106,107].
Studies have revealed the elevated EZH2 expression in the atrial myocytes and fibroblasts
of patients with atrial fibrillation, accompanied by atrial fibrosis and enhanced differen-
tiation of the atrial fibroblasts. The inhibition of EZH2 using the inhibitor GSK126 has
been shown to attenuate Ang-II-induced atrial enlargement and fibrosis [108]. Another
study demonstrated that EZH2 mediates the H3K27 methylation of the Mir-30d promoter,
leading to the suppression of miR-30d expression and contributing to pathological cardiac
hypertrophy [109]. Ge et al. discovered that the lncRNA NEAT1 recruits EZH2 to the Smad7
promoter region via physical binding, resulting in the suppression of Smad7 expression and
the exacerbation of cardiac fibrosis progression [110]. Furthermore, Yuan et al. reported
that the inhibition of the function of Wdr5, which catalyzes the trimethylation of lysine 4 on
histone H3, could induce cell cycle arrest in CFs and alleviate cardiac fibrosis by activating
the Mdm2/p53/p21 pathway [111].

Currently, KDM is primarily categorized into two subfamilies: lysine-specific demethy-
lases (LSDs) and JMJC domain-containing family (JMJD) [104]. Within the LSD1/KDM1
subfamily, a pivotal role in cardiac fibrosis is attributed to the regulation of H3K4 and H3K9
methylation. In a rat model of TAC, cardiac fibrosis was mitigated via muscle-specific LSD1
knockout, resulting in the inhibition of the TGF-β signaling pathway and the attenuation
of systolic dysfunction, cardiac hypertrophy, and fibrosis [112]. KDM3A, another member
of this subfamily, can bind to the Timp1 promoter and enhance its transcription. TIMP1, a
marker of cardiac fibrosis, can activate CFs and induce fibrosis, which can be counteracted
by the pan-KDM inhibitor JIB-04 [113]. Notably, our recent study unveiled a significant
reduction in JMJD4 levels in patients with DCM. Augmenting the abundance of JMJD4
can uphold the metabolic homeostasis of myocardial cells and mitigate cardiac fibrosis by
reducing histone methylation. JMJD4 holds promise as a novel target for future therapeutic
interventions in heart diseases and bears significant clinical translational value [114].

The precise role and impact of histone methylation in cardiac fibrosis remain inade-
quately understood. Therefore, conducting more comprehensive investigations focusing on
specific subtypes of enzymes is imperative to unravel the intricate involvement of histone
methylation in cardiac fibrosis.

2.3. Chromatin Remodeling
2.3.1. Regulation of Chromatin Remodeling

Chromatin remodeling refers to the molecular mechanisms that alter the packaging
state of chromatin, including histones in nucleosomes and corresponding DNA molecules
during processes such as gene expression, replication, and recombination [115]. A large
portion of the genome is inaccessible, which necessitates chromatin remodeling for gene
expression, and this process is closely related to the function of chromatin remodeling
complexes [116]. Chromatin remodeling complexes aid in constructing the initial state of
chromatin and use ATP hydrolysis energy to catalyze the transition of chromatin structure
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to alternative states, making DNA regulatory sequences accessible to transcriptional ma-
chinery. Meanwhile, mediating the activation or inhibition of target gene transcription by
transcription factors [117].

2.3.2. Chromatin Remodeling in Cardiac Fibrosis

Currently, chromatin remodeling complexes are divided into four major families
based on their primary sequence and ATPase subunit structure: the SWI/SNF family, the
imitation SWI family, the chromodomain-helicase-DNA-binding family, and the INO80
complex family [117,118]. Among these, only the SWI/SNF complex family has been
clearly reported to be closely related to cardiac fibrosis.

SWI/SNF. The SWI/SNF chromatin remodeling complex was first discovered in yeast
cells [119]. However, its high-resolution structure had not been reported until 2019 when
cryo-electron microscopy was used to reveal the high-resolution structures of the yeast
SWI/SNF complex family and human BAF/PBAF complexes [120–122]. The research
progress on the specific mechanisms by which SWI/SNF affects chromatin remodeling
has also accelerated. With further research, its subtypes BAF (BRG1-associated factors)
and PBAF (polybromo-associated BRG1-associated factors) have been confirmed to be
associated with cardiac fibrosis.

BAF. BAF can actively participate in the process of cardiac fibrosis by affecting ubiqui-
tination modification. In mice with cardiac-specific Baf155 knockout treated with Ang II,
the Ang II-induced heart dysfunction, cardiac hypertrophy, and fibrosis were significantly
reduced, while the overexpression of Baf155 showed mild cardiac hypertrophy and aggra-
vated vascular thickening and fibrosis induced by Ang II [123]. In addition, Zhang N et al.
found that BAF155 regulates the downstream target poly (ADP-ribose) ylation (PARylation)
by controlling PARP1 ubiquitination and degradation, affecting the process of cardiac
fibrosis [123]. Similarly, in mice with Wwp2 knockout, the level of PARP1 ubiquitination
modification in the heart was significantly reduced, which could promote cardiac fibrosis
by enhancing downstream target PARylation [124]. Therefore, Baf155 may modulate car-
diac fibrosis by controlling the ubiquitination level of PARP1 and regulating the level of
downstream targets’ PARylation. Sun et al. found that the intrinsic deficiency of BAF60C
may regulate the processes related to cardiac fibrosis by affecting the MEF2/SRF co-factor
myocardin target [125]. Additionally, BAF57, BAF180, BAF200, and others have all been
shown to be associated with cardiac remodeling and fibrosis [126–128]. In summary, the
BAF chromatin remodeling complex is closely related to myocardial fibrosis, and BAF155
may become a potential therapeutic target for the future treatment of cardiac fibrosis.

PBAF. The mechanism of action of PBAF in cardiac fibrosis is not yet clear, but several
studies have reported a close association between PBAF and cardiac fibrosis. Zhou et al.
found that KDM2B interacts with Brg1 to promote the chromatin accessibility of the Il-6
promoter via non-canonical functions independent of its demethylase activity [129]. BRG1
can also activate the stress overload-induced 3β pathway by inhibiting Hdac2, affecting
cardiac hypertrophy and fibrosis [130]. In addition, Brg1 defects can prevent the aggregation
of neutrophils around endothelial cells [131], and Brg1 has also been shown to play an
important role in cardiac embryonic development [132]. These effects of Brg1 may have
an impact on cardiac fibrosis. In the future, as research on PBAF deepens, it may provide
different perspectives for the treatment of cardiac fibrosis.

3. The Impact of Cardiac Fibrosis on Cardiac Function

Cardiac fibrosis refers to the changes in the quantity and quality of the interstitial
myocardial collagen network produced via the heart in response to ischemic injury, systemic
diseases, drugs, and other harmful stimuli that affect the cardiovascular system or the
heart itself. Previous studies have shown that cardiac fibrosis can alter the structure
of the myocardium, leading to an impaired contraction and relaxation function of the
heart [133]. Additionally, cardiac fibrosis can induce arrhythmias and contribute to the
development of heart failure [134]. Overall, the impact of fibrosis on cardiac function is
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predominantly negative and can result in decreased myocardial contraction and relaxation
functions, arrhythmias, and conduction block, altered cardiac structure and morphology,
and disrupted cardiac metabolic function, among other issues. Therefore, investigating
the specific mechanisms by which fibrosis affects cardiac function is significant for the
treatment and prevention of cardiovascular diseases.

The left ventricle is the primary pump of the heart, responsible for pumping oxy-
genated blood into the aorta for distribution to the body while returning lower PaCO2
blood to the lungs for oxygenation. Previous studies have shown that the left ventric-
ular function significantly affects the right ventricular contraction, with approximately
20% to 40% of the right ventricular systolic pressure and volume output derived from
the left ventricular contraction [135]. Therefore, the left ventricular function is critical
for maintaining the metabolic needs of various tissues and organs in the body. Existing
evidence suggests that the degree of cardiac fibrosis in human patients and various cardiac
disease models is closely associated with adverse outcomes in the left ventricle. Therefore,
investigating left ventricular fibrosis is currently an important direction for studying the
impact of cardiac fibrosis.

Currently, most studies indicate that left ventricular fibrosis has a negative impact
on contractile function via several mechanisms. Firstly, it may disrupt the coordinated
action of excitation–contraction coupling in the myocardium, thereby affecting excitation–
contraction coupling [136]. Secondly, fibrosis can interfere with myocardial cell perfusion
by inducing microvascular dysfunction, leading to inadequate oxygen and nutrient supply
to the myocardium and impairing left ventricular contraction function [136,137]. Thirdly,
collagen deposition in fibrotic areas can activate proteinase-dependent pathways, leading to
the degradation of original fibrous collagen and destruction of the linkage between sarcomere
contractile units and the ECM, resulting in impaired left ventricular contraction function [136].
Fourthly, certain types of fibrosis may lead to an increased secretion of mediators that inhibit
cardiac contraction function by activating immune cells in the cardiac interstitium [138,139].
Therefore, understanding the mechanisms by which fibrosis affects left ventricular function is
crucial for developing effective treatments for cardiovascular diseases.

The current prevailing view is that left ventricular relaxation function impairment is
mainly caused by deposition of perimysial and intramyocardial fibrous tissue [140], which
increases the degree of cross-linking between the original fibrous components and leads
to increased left ventricular stiffness [141,142]. Echegaray et al. evaluated the myocardial
collagen volume fraction and Young’s modulus of type I and III collagen in 40 patients with
preserved ejection fraction and heart failure symptoms. They found a significant positive
correlation between the content of type I collagen and the stiffness of the ECM, as well as
the severity of left ventricular relaxation function impairment [143].

In addition to impairing left ventricular contraction and relaxation function, fibrosis
can also interfere with left ventricular electrical signal conduction, leading to severe arrhyth-
mias. The current theory is that the effect of fibrosis on left ventricular conduction function
is mainly due to the interaction between CFs generated by fibrosis and neighboring cardiac
cells after establishing gap junction connections. This interaction generates pro-arrhythmic
electrical stimuli [144,145]. Rubart et al. found in a mouse MI model that when fibroblasts
electrically coupled with border zone cardiomyocytes, the voltage ECM in low cell-density
area, leads to the interruption of left ventricular impulse conduction and impaired left
ventricular conduction function [146]. Therefore, understanding the impact of fibrosis on
left ventricular electrical signal conduction is essential for developing effective treatments
for arrhythmias associated with cardiovascular diseases.

4. Crosstalk between Myocytes and Non-Myocyte Cells in Cardiac Fibrosis

Cardiac fibrosis is a complex physiological process involving various stages of cell
transcriptional expression, proliferation, differentiation, and morphological changes [147].
Among these stages, the intercellular signaling and tissue interactions between myocytes
and non-myocyte cells play a critical role in precisely coordinating diverse cardiovascular
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processes. This coordination is achieved via the regulation of cytokine secretion and
bioactive factor production, ultimately influencing the development of cardiac fibrosis.
Extensive research has been dedicated to understanding the crosstalk between fibroblasts
and cardiomyocytes, revealing numerous cytokines and signaling pathways associated with
cardiac fibrosis [148,149]. Moreover, literature reports have highlighted the significance of
crosstalk between T cells, macrophages, mast cells, and cardiomyocytes in influencing the
occurrence of cardiac fibrosis [150–152]. Investigating the process of intercellular crosstalk
between myocytes and non-myocyte cells is crucial for enhancing our understanding of the
underlying mechanisms of cardiac fibrosis and may yield novel therapeutic targets. In this
section, we will primarily focus on discussing the importance of crosstalk between T cells,
mast cells, macrophages, fibroblasts, and finally, cardiomyocytes.

4.1. Crosstalk between CFs and Cardiomyocytes

As the predominant cell types in the heart [153], CFs and cardiomyocytes play crucial
roles in cardiac physiology and pathology. In end-stage chronic heart disease, cardiac
fibrosis often coexists with heart failure [140], indicating the presence of communication and
interaction between cardiomyocytes and CFs. Understanding the crosstalk between these
two cell types can shed light on the relationship between cardiac dysfunction and fibrosis,
and harnessing their interaction may impede the progression of chronic heart disease.

On one hand, under stress conditions, cardiomyocytes can activate fibroblasts via
phenotypic transformation [154,155]. Conversely, activated CFs synthesize excessive colla-
gen fibers that deposit in the ECM, thereby influencing the phenotype of cardiomyocytes
and the mechanical microenvironment they inhabit [156]. The impact of fibrosis in the left
ventricle on cardiac function has been discussed in Section 3 of this review. Additionally,
CFs and cardiomyocytes can sense mechanical stress via mechanosensitive channels, inte-
grins, calcium-related signaling, and other pathways, leading to changes in gene expression
and cellular remodeling [157]. Current research suggests that these two types of cells
can interact via paracrine signaling (including exosomes), modifications in the ECM, and
metabolic regulation.

4.1.1. CFs Alter the Phenotype of Cardiomyocytes

CFs engage in communication with cardiomyocytes via the secretion of cytokines
such as IL-1, IL-6, TNF-α, TGF-β, and IGF-1 [158]. This regulatory mechanism may have
both beneficial and detrimental effects. For example, IL-11 secreted by CFs can lead to
cardiomyocyte dysfunction and ventricular injury [159]. Conversely, IL-33, also secreted by
CFs, can mitigate myocardial hypertrophy induced by Ang II and adrenaline, as well as
pressure overload-induced myocardial fibrosis [160]. CFs are also capable of secreting Ang
II [161], which is associated with left ventricular reactive hypertrophy, reduced coronary
blood flow reserve, interstitial fibrosis, decreased capillary density in the heart [162], and
pro-arrhythmic effects [163]. Fibroblast growth factor-2, predominantly secreted by CFs,
not only acts on receptors on the surface of cardiomyocytes to promote hypertrophy but
also stimulates CFs to secrete additional cytokines via autocrine signaling [164].

Paracrine signaling mediated via exosomes derived from CFs establishes communi-
cation with cardiomyocytes. Bang et al. discovered that CF-secreted miR-21-3p induces
cardiomyocyte hypertrophy by inhibiting Sorbin and SH3 domain-containing protein 2
and PDZ and LIM domain 5, and pharmacological inhibition can reverse this patholog-
ical process [165]. Similarly, miR-27a is believed to cause cardiomyocyte hypertrophy
through the same pathway [166]. In a study on myocardial ischemia-reperfusion injury,
CFs upregulated miR-423-3p, which increased the survival rate of cardiomyocytes via
exosomes [167].

CFs are recognized as the primary source of ECM proteins, including collagen, elastin,
and fibronectin, and they transmit signals via integrin receptors on their cell surface [168]. In
1994, Fisher et al. demonstrated the crucial role of collagen in maintaining the differentiated
phenotype of cardiomyocytes in the ECM [169]. Therefore, the ECM can be considered
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an intermediary between CFs and cardiomyocytes. Under conditions of altered load,
the normal balance of ECM collagen subtypes in the heart is disrupted, leading to an
increase in the proportion of type I collagen [170]. Creemers et al. observed that mice
deficient in TIMP-1 exhibited increased matrix metalloproteinase (MMP) activity and more
severe myocardial hypertrophy in a mouse model of MI, resulting in a significant loss
of interstitial collagen fibers [171]. Recent studies have shown that MMP9, an enzyme
that extensively degrades ECM [172], regulates cardiomyocyte autophagy, and inhibiting
MMP9 increases autophagic flux, thereby preventing congestive heart failure after MI [173].
ECM deposition is often considered detrimental to cardiac function. Interestingly, Russo
et al. discovered that activated CFs with TGF-β/Smad3 activation can preserve the ECM
network by inhibiting matrix-degrading proteases in a TAC mouse model, thereby reducing
damage to cardiomyocytes [174]. Notably, our research team has found that the inhibition of
fibroblast activation protein (FAP) leads to increased peri-infarct vascularization, promoting
ECM deposition and the arrangement of CFs, which prevents their excessive activation
and reduces cardiac fibrosis. Furthermore, through Fap knockdown or inhibition in Nppb
(encoding pre-pro BNP) and Npr1 (encoding BNP receptor) deficient mice, we observed
that the cardioprotective effect of Fap inhibition was lost. Inhibiting Fap stabilizes BNP
to reduce cardiac fibrosis and promote cardiac repair. Targeted drugs related to FAP may
become a focal point in the future heart disease treatment [175].

Furthermore, during the differentiation of CFs into myofibroblasts, the nutritional and
mechanical conditions of surviving cardiomyocytes may further deteriorate, exacerbating
the severity of fibrosis. Wang et al. conducted a study revealing that GSK-3β mediates the
activation of NLRP3 inflammasomes and the production of IL-1β in CFs after MI, leading to
increased expression of caspase-3 and N-GSDMD in ischemic myocardial cells. This process
also results in an elevated Bax/Bcl-2 ratio, thereby exacerbating myocardial apoptosis [176].
Additionally, Zou et al. demonstrated that under conditions of pressure overload, CFs
exhibit an increased secretion of Wnt5a or Wnt11, which promotes myocardial apoptosis
and fibrosis via the activation of the FZD5 and EGFR signaling pathways [177]. In summary,
the intercellular signaling pathways between CFs and cardiomyocytes in the context of
fibrosis are diverse and hold potential as research directions for future treatment targets.

4.1.2. Cardiomyocytes in Pathological State Mediate Activation of CFs

Cardiomyocytes have the ability to synthesize cytokines and hormones, which enables
them to exert a paracrine influence on the phenotype of neighboring fibroblasts. Transform-
ing growth factor is synthesized and released via cardiomyocytes in response to mechanical
stretch, thereby activating fibroblasts [178,179]. Cardiomyocytes also produce leukemia
inhibitory factor (LIF), which inhibits the differentiation of CFs into myofibroblasts. This
action partially counteracts the pro-fibrotic effect of TGF-β, thus slowing down the pro-
gression of cardiac fibrosis and remodeling [180]. Another notable paracrine signal is atrial
natriuretic peptide (ANP), secreted by atrial myocytes. ANP affects fibroblast proliferation
and the secretion of ECM proteins. In patients with persistent atrial fibrillation, the myocar-
dial levels of ANP were found to be only 1/6 of those in the control group. This decrease
was accompanied by the loss of ANP receptors on fibroblast membranes. Restoring ANP
levels in these patients may have a beneficial effect on atrial fibrillation [181].

Datta et al. conducted a study demonstrating that cardiomyocyte-derived exosomes
containing Hsp90 and IL-6 are transferred to fibroblasts during cardiac hypertrophy, leading
to a change in the phenotype of fibroblasts via the activation of the STAT3 pathway [182].
Furthermore, increased levels of Hsp20 within cardiomyocytes have been found to re-
lease protective exosomes in diabetic mice, resulting in reduced cardiac hypertrophy and
fibrosis [183].

SIRT2, an NAD+-dependent histone deacetylase, plays a crucial role in various physi-
ological processes and heart-related diseases [179]. Tang et al. revealed that overexpression
of Sirt2 specifically in the heart has been shown to alleviate aging-related cardiac dysfunc-



Biomolecules 2023, 13, 1382 13 of 24

tion and reduce Ang II-induced cardiac hypertrophy and fibrosis. These beneficial effects
are likely mediated via epigenetic mechanisms [184].

The interaction and underlying mechanisms between CFs and cardiomyocytes are
crucial factors in maintaining heart function and understanding the development of heart
disease. However, the precise details of this crosstalk remain unclear. As described
above, investigating the role of MMP and the ECM network in pathological conditions can
provide insights into the crosstalk between these cell types. Such understanding will aid in
identifying new targets and developing novel strategies for the prevention and treatment
of heart disease.

4.2. Crosstalk between Macrophages and Cardiomyocytes

In the context of cardiac fibrosis, crosstalk between macrophages and cardiomyocytes
holds significant importance. Resident macrophages are unevenly distributed in various
tissues of the human body, and their specific functions vary depending on the microenvi-
ronment of each tissue [185]. Within the heart, resident cardiac macrophages are closely
situated near cardiomyocytes, and even direct cell-to-cell contact can occur [15,186]. In
the fibrotic heart, macrophages release a range of cytokines and proteins, thereby alter-
ing the microenvironment surrounding cardiomyocytes. This spatial arrangement and
resulting microenvironmental changes form the basis for structural and functional crosstalk
between macrophages and cardiomyocytes. The primary modes of interaction and influ-
ence between macrophages and cardiomyocytes in cardiac fibrosis include intercellular
communication, matrix remodeling, growth and proliferation, phenotype switching, and
mitochondrial dysfunction [15,187–190].

Current studies have revealed that macrophages can influence cardiomyocytes via vari-
ous paracrine pathways, thereby participating in the occurrence and development of cardiac
fibrosis. In the diabetic mouse model, the elevated levels of NLRP3 activate macrophages
to secrete IL-1β. This secretion induces a decrease in potassium current and an increase in
calcium current in cardiomyocytes by prolonging the action potential duration, ultimately
promoting cardiac fibrosis [191]. In addition to simply promoting fibrosis, macrophages can
exhibit different fibrotic effects at different stages; in the inflammatory model of the heart,
the increased secretion of MMP9 by macrophages enhances the expression of Mer tyrosine
kinase in the early stage of inflammation. This process leads to the decomposition of the
ECM in the damaged heart and the clearance of dying cardiomyocytes, thereby reducing
cardiac fibrosis [192]. However, in the late stage of inflammation, the elevated levels of
MMP-9 can promote the transformation of fibroblasts and the deposition of collagen in the
myocardial interstitium by upregulating the expression of pro-inflammatory genes, thus
increasing cardiac fibrosis [193,194]. Additionally, Zlatanova et al. found that the lack of
hepcidin can increase the number of CCR2+ macrophages, which, in turn, release IL-4 and
IL-13 by enhancing the expression of phosphorylation activator of STAT3, thereby promot-
ing cardiomyocyte renewal and affecting cardiac fibrosis [195]. Furthermore, macrophages
can also influence cardiac fibrosis by impacting the mitochondria of cardiomyocytes. In
cardiac fibrosis, the increased presence of macrophages causes mitochondrial damage in
cardiomyocytes and triggers the release of danger-associated molecular patterns (DAMPs).
These DAMPs can bind to formyl peptide receptor 1 and Toll-like receptors, respectively,
activating the inflammatory signaling pathway and leading to the production of various
chemokines. Consequently, these chemokines increase the recruitment of neutrophils, mast
cells, and other cells, thereby exacerbating the release of inflammatory factors associated
with cardiac fibrosis and worsening fibrosis [187,196].

Cardiomyocytes have the ability to secrete various cytokines and growth factors
through autocrine pathways, which can impact neighboring macrophages and contribute
to the occurrence and development of cardiac fibrosis. In their study, Liu et al. found that
in the TAC model, MRTF-A could potentially regulate macrophage trafficking and induce
cardiac hypertrophy by activating Itgb2 transcription [197]. In the experimental models of
MI and myocardial hypertrophy, the expression of TGF-β secreted by cardiomyocytes is
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significantly upregulated, which can activate Smad3 in macrophages. Through the SMAD3-
dependent pathway, TGF-β mediates the phenotypic transformation of macrophages,
leading to the increased production of anti-inflammatory cytokine IL-10 and VEGF, thereby
promoting the differentiation of myofibroblasts and ECM synthesis and accelerating cardiac
fibrosis [198,199]. Cardiac myocytes can secrete various secretory factors, which can affect
cardiac fibrosis through multiple pathways such as influencing macrophage phenotype
switching and enhancing activation. In patients with DCM, the heightened expression of
PAI-1 in cardiomyocytes is involved in the polarization of M2 macrophages in the heart.
M2 macrophages can enhance the secretion of inflammatory factors associated with cardiac
fibrosis. Thus, cardiomyocytes can influence cardiac fibrosis by impacting the polarization
of M2 macrophages [190,200]. Additionally, the secretion of VEGF, TNF-α, IL-1β, and
other factors via cardiomyocytes can stimulate the activation and cytokine secretion of
macrophages, further promoting the progression of cardiac fibrosis [138].

In summary, the interaction between macrophages and cardiomyocytes plays a cru-
cial role in the development of cardiac fibrosis. Gaining a deeper understanding of these
interactions can aid in the development of novel treatment strategies for cardiac fibrosis.
Modulating the interaction between macrophages and cardiomyocytes may offer new
therapeutic approaches to prevent the progression of cardiac fibrosis and improve car-
diac function, including inhibiting specific cytokines, regulating macrophage polarization,
reducing inflammation, promoting intercellular communication, and regulating matrix
remodeling processes to restore normal cardiac structure. However, future research is still
required to gain more experimental evidence to determine the effectiveness and safety of
these interventions.

4.3. Crosstalk between T Cells and Cardiomyocytes

As a crucial component of humoral immunity, the role of T cells in cardiac fibrosis
has gained recognition. Certain subsets of T cells may directly activate fibroblasts or
indirectly stimulate macrophages [6]. The role of regulatory T cells in cardiac fibrosis
appears to be contradictory [201,202]. Currently, the precise interaction between T cells
and cardiomyocytes remains largely unknown. Rieckmann et al. discovered that the
release of myosin heavy chain α by dying cardiomyocytes could potentially trigger the
activation of T helper cells, contributing to the pathogenesis of experimental autoimmune
myocarditis [203]. Another study revealed that cytotoxic T cells are activated after MI and
can recognize and eliminate non-ischemic neonatal cardiomyocytes in vitro [204]. Liao
et al. observed that a specific subset of T cells, such as γδT cells, induce cardiomyocyte
apoptosis by secreting IL-17A [205]. However, T cells can also exhibit a protective effect
on cardiomyocytes. In 2009, a study found that the transfer of CD4+CD25+ regulatory T
cells effectively improved cardiac injury and reduced cardiac fibrosis induced by Ang II in
hypertensive mice [206].

Further investigation is necessary to elucidate the interaction between T cells and
cardiomyocytes. With the advent of CAR-T therapy, it may be possible to target specific
cells (e.g., fibroblasts) to mitigate the progression of cardiac fibrosis in the near future.
However, potential side effects such as cytokine release syndrome should be minimized as
much as possible.

4.4. Crosstalk between Mast Cells and Cardiomyocytes

The proliferation of mast cells may relate to the development of cardiac fibrosis. Ex-
perimental data have demonstrated that mast cell expansion plays a pivotal role in fibrotic
pathogenesis by influencing fibroblast transformation and the production of macrophage-
related MMPs [207–209]. As important constituent cells of the heart, cardiomyocytes also
play a critical role in cardiac disease [210]. Therefore, crosstalk between mast cells and car-
diomyocytes may represent a significant mechanism underlying cardiac fibrosis, although
the direct interaction between the two cell types remains largely unknown. Investigating
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the mechanisms of interaction between mast cells and cardiomyocytes in cardiac fibrosis
may offer new therapeutic targets.

Currently, mast cells can indirectly impact the function of cardiomyocytes via the
secretion of various bioactive molecules, contributing to the development of cardiac fi-
brosis. For instance, mast cells can release TNF during degranulation [211], promoting
cardiac fibrosis by inducing cardiomyocyte apoptosis and MMP-9 production [212]. During
piecemeal degranulation, mast cells produce IL-1β [213], which affects cardiomyocytes in a
similar manner to TNF, thereby promoting cardiac fibrosis remodeling [214]. Wang et al.
discovered that blocking TNF and IL-1ß can reduce subsequent fibrosis remodeling and
cardiomyocyte apoptosis in a model of hypertension-induced heart disease [215]. While a
substantial body of evidence suggests that mediators derived from mast cells contribute
to fibrosis by impacting cardiomyocytes, promoting the generation of fibroblasts, and
facilitating collagen deposition in the interstitium, there are also experimental studies
indicating that mast cell-derived mediators can counteract the development of cardiac
fibrosis by indirectly influencing the survival or expression profile of growth factors in
cardiomyocytes [216].

In summary, the crosstalk between mast cells and cardiomyocytes in cardiac fibrosis
does not necessarily promote the development of fibrosis, and this effect may vary depend-
ing on the microenvironment changes. With further investigations into this mechanism, it
might be possible to target specific pathways for the treatment of cardiac fibrosis. How-
ever, it is crucial to avoid potential side effects, such as an excessive secretion of systemic
inflammatory factors secretion, during this process.

5. Conclusions and Prospects

Epigenetic regulation and cell crosstalk play crucial roles in the initiation and progres-
sion of cardiac fibrosis. Although multiple regulatory mechanisms have been identified in
the process of cardiac fibrosis, the interplay between these mechanisms remains elusive.
Moreover, JMJD4 and BNP exhibit significant clinical translational value and may serve
as critical therapeutic targets in future heart disease, deserving consideration in clinical
practice. Future research should delve into the specific effects of epigenetic regulatory
mechanisms in cardiac fibrosis, extending beyond CFs alone. However, the current tech-
nological limitations pose challenges in investigating the precise epigenetic behavior of
individual cell types. When implementing interventions on specific cell types under “co-
culture” conditions, there is a high likelihood of inducing phenotype and state changes in
other cells, thereby influencing the outcomes of epigenetic studies. Similarly, achieving
a precise targeting of cells and molecules in animal and clinical experiments has always
been a challenging issue, raising concerns about the accuracy of data derived from animal
studies and clinical research. Nevertheless, with the advancement of research techniques
and the discovery of new biomarkers, we anticipate that these challenges can eventually
be overcome.

Additionally, it is essential to elucidate the crosstalk between different cell types within
the heart. Epigenetic regulation and cell crosstalk offer potential avenues for targeted
therapies at the molecular, cellular, and organ levels. However, careful attention must
be paid to the potential toxic side effects of these drugs on the heart and other organs,
while also striving to enhance drug efficacy by minimizing these side effects. Additionally,
due to individual variations, the relative contributions of different mechanisms to cardiac
fibrosis may vary among individuals. Therefore, personalized and precise treatment
approaches should be pursued, utilizing techniques such as gene sequencing and other
relevant methods.
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