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Abstract: Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation
in the liver. Clarifying the molecular mechanism of lipid metabolism is crucial for the treatment of
NAFLD. We examined miR-192-5p levels in the livers of mice in which NAFLD was induced via a
high-fat diet (HFD), as well as in mouse primary hepatocytes and human HepG2 cells treated with
free fatty acids (FFAs). MiR-192-5p inhibitor was administered to NAFLD mice and hepatocytes to
verify the specific function of miR-192-5p in NAFLD. We validated the target gene of miR-192-5p
and further illustrated the effects of this miRNA on the regulation of triglyceride (TG) metabolism.
We found that miR-192-5p was significantly increased in the livers of NAFLD mice and FFA-treated
hepatocytes. Inhibition of miR-192-5p increased the accumulation of hepatic TGs and aggravated
hepatic steatosis in NAFLD mice. In FFA-treated hepatocytes, miR-192-5p inhibitors markedly
increased TG content, whereas overexpression of miR-192-5p reduced TG levels. Yin Yang 1 (Yy1)
was identified as the target gene of miR-192-5p, which regulates TG synthesis via the YY1/fatty-
acid synthase (FASN) pathway. Our results demonstrated that miR-192-5p should be considered a
protective regulator in NAFLD that can inhibit hepatic TG synthesis by targeting Yy1.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder worldwide,
with an incidence rate of approximately 25% [1]. It is characterized by the accumulation
of fat in the liver and is strongly associated with obesity, insulin resistance, and metabolic
syndrome [2–4]. It represents a spectrum of liver disease that can be simplified into simple
steatosis, non-alcoholic steatohepatitis (NASH), and cirrhosis [5]. Simple steatosis (SS),
known as fatty liver, is commonly regarded as benign, and it might not cause significant
liver damage [3]. However, it can progress to more severe forms of NAFLD if left untreated.
NASH is a more advanced form of NAFLD and is characterized by inflammation and
liver cell damage in addition to fat accumulation [6]. NASH can lead to liver fibrosis,
cirrhosis, and even hepatocellular carcinoma (HCC) [5,6]. In the liver, Triglycerides (TGs)
are produced via the esterification of glycerol with fatty acids (FAs), which are chiefly
derived from dietary fat, adipose lipolysis, and de novo lipogenesis (DNL) [7–9]. In
individuals with NAFLD, the DNL rate is more than three times higher than in those
without, and the proportion of liver TGs produced by DNL—rather than from adipose
tissue lipolysis or dietary FAs—is twice as high [10]. DNL is mediated by three main
enzymes: acetyl-CoA carboxylase 1 (ACC1), which catalyzes the synthesis of malonyl-
CoA from acetyl-CoA; FA synthase (FASN), which produces palmitic acid and other fatty
acid synthesis products from malonyl-CoA; and stearoyl-CoA desaturase 1 (SCD1), which
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results in the conversion of saturated FAs to monounsaturated FAs [11,12]. DNL is generally
believed to play a key role in the progression of NAFLD [13], and therefore DNL inhibition
is a potential therapeutic strategy for this disease.

MicroRNAs (miRNAs) are a type of single-stranded non-coding RNAs (ncRNAs)
approximately 22 nt long that play a crucial role in the post-transcriptional regulation
of gene expression and are involved in multiple physiological processes [14]. Recent
investigations have shown that numerous miRNAs are involved in the regulation of hepatic
lipid metabolism, including miR-122, miR-33, and miR-125b [15–17]. These findings suggest
that miRNAs could be potential therapeutic targets in liver metabolic disorders. MiR-192-
5p, a highly expressed microRNA in the liver, has been found to regulate hepatocyte
differentiation and liver development [18,19]. Furthermore, miR-192-5p plays a significant
role in liver pathology, and its dysregulation has been implicated in several liver diseases,
including chronic hepatitis B, liver injury, and HCC [20–22]. Additionally, serum miR-
192-5p levels are significantly elevated in NAFLD patients [23]. However, the precise
mechanisms underlying the effects of miR-192-5p on liver lipid metabolism remain unclear.

Yin Yang 1 (YY1) is a member of the glioma-associated oncogene (GLI)-Kruppel zinc
finger protein family [24,25]. It is a broadly expressed, multifunctional transcription factor
(TF) that activates or represses target gene expression at both the transcriptional and post-
transcriptional levels [26,27]. Aberrant expression of YY1 is closely associated with various
diseases, especially NAFLD. YY1 expression is upregulated in obese mice induced by a high-
fat diet (HFD) and in NAFLD patients; the gene promotes hepatic TG synthesis by activating
the expression of FASN [28,29]. In this study, we observed a significant upregulation of
miR-192-5p in the livers of HFD-induced NAFLD mice compared with those of mice fed
a chow diet (CD). However, knockdown of miR-192-5p expression aggravated hepatic
steatosis in HFD-induced NAFLD mice. By manipulating miR-192-5p levels in mouse
primary hepatocytes and HepG2 cells, we observed that miR-192-5p reduced TG synthesis
in hepatocytes. Finally, Yy1 was verified as a target gene of miR-192-5p via luciferase
assay and Western blotting. In summary, our study demonstrated that miR-192-5p acted
as a compensatory protector against dyslipidemia by regulating the YY1/FASN pathway,
suggesting that this miRNA could be a potential therapeutic target in NAFLD.

2. Materials and Methods
2.1. Animals

Eight-week-old male C57BL/6J mice were obtained from GemPharmatech Laboratory
(Nanjing, China) and maintained on a 12 h light-dark cycle with ad libitum access to food
and water. The animal experiment procedures were carried out in accordance with the
guidelines set by the Institutional Animal Care and Use Committee (IACUC) and were
approved by the Science and Technology Ethics Committee of Nanjing University (Nanjing,
China). Mice were subjected to a 16-week experimental period in which they were fed a
high-fat diet (HFD) (Cat# D12492, Research Diets, New Brunswick, NJ, USA) to induce the
development of non-alcoholic fatty liver disease (NAFLD). During this period, the control
group of mice was maintained on a normal chow diet (CD) (Cat# SWS9102, Jiangsu Xietong
Pharmaceutical Bioengineering, Nanjing, China).

2.2. Lentiviral (LV)-Anti-miR-192-5p Administration

The LV-Anti-miR-192-5p was designed and constructed by GenePharma (Shanghai,
China). In brief, Anti-miR-192-5p (GATCCGGCTGTCAATTCATAGGTCAGCGATGGCT
GTCAATTCATAGGTCAGTCACGGCTGTCAATTCATAGGTCAGTTTTTGAATT) was
cloned into the LV3 (H1/GFP&Puro) vector. The recombinant plasmid was transfected into
293T cells, and the culture medium was collected after 48 h to prepare lentivirus suspension.
Then the gradient-diluted lentivirus suspension was infected with 293T cells for 24 h, and
the virus titer was calculated according to the fluorescence cell and dilution multiple [30].
In the LV injection of mice study, 100 µL of 1 × 109 TU/mL LV-Anti-miR-192-5p or
LV-Anti-NC were intravenously (i.v.) injected into HFD-induced NAFLD mice according
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to instructions. During lentiviral administration, mice were continually fed a high-fat diet.
Two weeks after the injection, the mice were euthanized, and their blood and liver tissues
were collected. Liver toxicity was monitored by plasma alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) levels as determined by the ALT assay kit (Cat#
C009-2-1, Nanjing Jiancheng Bioengineering Institute, Nanjing, China) and the AST assay
kit (Cat# C010-2-1, Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Serum
triglyceride was determined using a triglyceride assay kit (Cat# A110, Nanjing Jiancheng
Bioengineering Institute, Nanjing, China).

2.3. Cell Culture

HepG2 cells and HEK 293T cells were obtained from the Shanghai Institute of Bio-
chemistry and Cell Biology (Shanghai, China). The cells were cultured in DMEM (Cat#
25200072, Gibco, Waltham, MA, USA) containing 10% FBS (Cat# G11-70500, Genial, Denver,
CO, USA) and 1% Penicillin/Streptomycin (Cat# 15140148, Gibco, Waltham, MA, USA) at
37 ◦C and 5% CO2. Primary hepatocytes from mice were isolated by a two-step collagenase
perfusion according to the standard protocol as previously described [31]. Eight-week-old
mice were anesthetized with 1.25% tribromoethanol, and catheters were inserted into the
portal vein. The liver was perfused with 10 mL of perfusion solution (Cat# 17701038,
Gibco, Waltham, MA, USA) for 3 min, and then digested with 10 mL of digestion solution
containing collagenase IV (Cat# 17104019, Gibco, Waltham, MA, USA) for 3 min. After
digestion, cells were filtered with 70 µm filters, then centrifuged at 450 rpm for 5 min.
DMEM supplemented with 10% FBS and 1% Penicillin/Streptomycin was used for the
culture of mouse primary hepatocytes.

2.4. miRNA Transfection

Mouse primary hepatocytes or HepG2 cells were transfected with 50 nM miR-192-5p
mimics (RiboBio, Guangzhou, China) or 200 nM inhibitors (RiboBio, Guangzhou, China)
using Lipofectamine 2000 (Cat# 11668019, Thermo Fisher Scientific, Waltham, MA, USA).
Equal scrambled miRNA mimics or inhibitors were used as a negative control. 24 h later,
RNA was collected, and 48 h later, protein was collected.

2.5. Lipid Analysis in Cells

The lipid droplet in mouse primary hepatocytes, or HepG2 cells, was visualized by
staining with Nile Red (Cat# 72485, Sigma-Aldrich, St. Louis, MO, USA) as previously
described [32]. miR-192-5p mimics or inhibitors were transfected into cells, and after 6 h,
the cells were cultured with DMEM medium containing 0.4 mM FFAs (oleic acid: palmitic
acid = 1:1) or 0.5% BSA for 72 h. The cells were fixed for 30 min using 4% formaldehyde
and stained separately with Nile Red and DAPI (Cat# D9542, Sigma-Aldrich, St. Louis,
MO, USA) solutions for 10 min each. The fluorescence was measured using a confocal
microscope (TCS SP8-MP) (Leica, Heidelberg, Germany). The excitation wavelengths were
405 nm for DAPI and 562 nm for Nile Red. On the other hand, the levels of triglycerides in
cells were detected. Cells were homogenized with PBS, and the triglyceride was assayed
using a triglyceride assay kit.

2.6. Measurement of Triglyceride in the Liver

Triglycerides in the liver were extracted by chloroform and methanol [33]. Each gram
of liver tissue was homogenized with a 20-fold volume chloroform: methanol (2:1, V/V)
mixture. ddH2O was added, and the homogenate was stored on ice for 10 min. Then the
homogenate was subjected to centrifugation at a relatively low speed of 2000× g for 5 min.
This allowed the separation of the homogenate into two distinct phases, and the upper
phase was carefully removed and discarded. The organic phases were reextracted as above
and then dried using a nitrogen stream. Triglycerides were quantified using a triglyceride
assay kit.
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2.7. Luciferase Reporter Assay

The 3′-UTRs of human or mouse Yy1 containing binding sequences of the miR-192-
5p targets or the mutants (GenScript, Nanjing, China) were synthetically inserted into
the 3′-UTR region of the pMIR-report luciferase plasmid (Ambion, Waltham, MA, USA).
For transfection, reporter constructs (0.1 µg/well), β-gal plasmid (0.1 µg/well, Ambion,
Waltham, MA, USA) to normalize experiments for transfection efficiency, and either miR-
192-5p mimics (20 pmol/well) or inhibitors (100 pmol/well) were co-transfected into
HEK293T cells in 24-well plates. After 24 h, the cells were harvested and lysed using
Luciferase Cell Culture Lysis Reagent (Cat#E1531, Promega, Madison, WI, USA). The cell
lysates were subjected to three cycles of freezing and thawing in liquid nitrogen, followed
by centrifugation at 10,000× g for 10 min. Then, 10 µL of the supernatant was utilized to
quantify the luciferase activity using a luciferase assay kit (Cat# E1501, Promega, Madison,
WI, USA).

2.8. Western Blotting

Proteins were extracted from cells or tissues using lysis buffers (Cat#P0013B, Beyotime,
Shanghai, China) containing protease and phosphatase inhibitors (Cat#P1048, Beyotime,
Shanghai, China). About 20 µg of denatured proteins were loaded onto a SDS-PAGE gel
and separated based on their size. The proteins were transferred from the gel onto a PVDF
membrane. The transferred membrane was blocked with 5% non-fat milk to prevent non-
specific binding of antibodies. Then primary antibodies were diluted in a blocking buffer
and incubated with the blocked membrane. After a washing step in TBST, the secondary
antibody was added. The membrane was then washed with TBST and detected using ECL
(Cat# E412-02, Vazyme, Nanjing, China). The primary antibodies were used: anti-β-ACTIN
(1:2000, Cat# 8457S, CST, Danvers, MA, USA), anti-FASN (1:1000, Cat# 3180S, CST, Danvers,
MA, USA), anti-YY1 (1:1000, Cat# SC-7341, SANTA, Dallas, TX, USA), anti-ACC1 (1:1000,
Cat# 4190S, CST, Danvers, MA, USA), and anti-SREBP1 (1:1000, Cat# SC-13551, SANTA,
Dallas, TX, USA). The protein bands were analyzed using Image J v1.8.0 software (National
institute of health, Bethesda, MD, USA).

2.9. RNA Isolation and Real-Time Quantitative PCR

Total RNA was extracted from livers and cultured cells using RNAiso Plus (Cat#
9109, Takara, Tokyo, Japan). cDNA was synthesized from total RNA using HiScript III
RT SuperMix (Cat# R323, Vazyme, Nanjing, China) and was subjected to quantitative
real-time PCR (qPCR) amplification using SYBR Green (Cat# 31000, Biotium, Hayward,
CA, USA). β-actin was used to normalize mRNA levels. For miR-192-5p analysis, RT-PCR
was performed following a miRNA First Strand cDNA Synthesis Kit (Cat# MR101, Vazyme,
Nanjing, China). qPCR was performed with the TaqMan miR-192-5p probe (Cat# 000491,
Applied Biosystems, Waltham, MA, USA). U6 snRNA was used to normalize the miR-192-
5p level (Cat# 001973, Applied Biosystems, Waltham, MA, USA). Primer sequences are
shown in Supplementary Table S1.

2.10. Histology

Liver tissues were collected and fixed in 4% formaldehyde overnight at 4 ◦C. Subse-
quently, the tissues underwent embedding in paraffin and were then sliced into sections
of 4 µm thickness for H&E staining. For Oil Red O staining, frozen liver tissues were cut
into sections with a thickness of 10 µm. Following this, the sections were rinsed with 60%
isopropanol for a duration of 2 min and subsequently stained with an Oil Red O solution for
5 min. After staining, the sections were again rinsed with 60% isopropanol for a duration of
30 s. The staining images were performed with an Olympus VS120 microscope (Olympus,
Tokyo, Japan).
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2.11. Statistics

The data were reported as the mean ± standard error of the mean (SEM). To compare
statistical differences between two groups, the Student’s t-test was employed. For com-
paring differences among multiple groups, a one-way analysis of variance (ANOVA) was
performed. p < 0.05 was considered statistically significant, denoted as * p < 0.05, ** p < 0.01,
and *** p < 0.001. All statistical analyses were conducted using GraphPad Prism 8 software
(GraphPad, La Jolla, CA, USA).

3. Results
3.1. MiR-192-5p Was Dramatically Increased in the Livers of NAFLD Mice

To investigate the biological effects of miR-192-5p in NAFLD, we first constructed
a mouse model of NAFLD via HFD feeding for 16 weeks. As shown in Figure 1A, the
body weight of NAFLD mice was significantly higher than that of control mice fed a
chow diet (CD). H&E staining along with Oil Red O staining revealed enlargement of
hepatocellular volumes and increased lipid accumulation in the liver tissues of NAFLD
mice compared to CD mice (Figure 1B). As expected, the liver weight and triglycerides (TG)
were increased in NAFLD mice (Figure 1C,D). Notably, NAFLD mice exhibited elevated
serum TG levels (Figure 1E). Furthermore, alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels were increased, which acts as an indicator of intensified liver
damage in NAFLD mice (Figure 1F,G). Next, we examined multiple hepatic DNL-related
genes such as sterol regulatory element binding TF 1 (Srebf1), Acc1, Fasn, and Scd1 in the
livers of NAFLD and CD mice using RT-qPCR. As shown in Figure 1H, expression levels of
DNL-related genes increased. Then, we identified miR-192-5p expression levels in mouse
liver tissues. Expression of miR-192-5p was significantly and visibly upregulated in the
fatty livers of NAFLD mice versus the livers of CD mice (Figure 1I). Taken together, these
results indicated that miR-192-5p expression was increased and was strongly associated
with regulation of hepatic TG metabolism in mice with NAFLD.

3.2. Inhibition of miR-192-5p Aggravated Hepatic Steatosis in NAFLD Mice

To further understand the biological function of miR-192-5p in hepatic lipid
metabolism, we infected HFD-induced NAFLD mice with a lentivirus (LV)-miR-192-5p
inhibitor or an LV-negative control (NC) via the tail vein (Figure 2A). Two weeks after
injection, expression levels of miR-192-5p in mouse livers were detected using RT-qPCR.
As shown in Figure 2B, the level of miR-192-5p in livers in the anti-miR-192-5p group
was markedly lower than that in the anti-NC group, suggesting that the LV-miR-192-5p
inhibitor had a high infection efficiency. Surprisingly, the repression of miR-192-5p in
NAFLD mice resulted in aggravated liver steatosis and elevated accumulation of TG
despite no significant difference in body weight (Figure 2C–E). Consistent with these
findings, the liver weight and TG levels were increased in the anti-miR-192-5p mice
(Figure 2F,G). Meanwhile, serum TG, ALT, and AST levels were further increased after
LV-miR-192-5p inhibitor infection in NAFLD mice (Figure 2H–J). In addition, expression
of Fasn, a key DNL enzyme, was increased in miR-192-5p inhibitor-treated NAFLD
mice (Figure 2K,L). In summary, these results suggested that knockdown of miR-192-5p
promoted an imbalance of TG metabolism caused by excess nutrients and aggravated
hepatic steatosis in NAFLD mice.

3.3. Knockdown of miR-192-5p Promoted Lipid Deposition in Hepatocytes

Next, we investigated the effects of miR-192-5p on lipid metabolism to confirm the
functional contribution of decreased miR-192-5p to NAFLD. Consistent with the phenotype
of the NAFLD mouse model, FFA treatment for 72 h increased the expression level of
miR-192-5p in both mouse primary hepatocytes and HepG2 cells (Figure 3A,D). However,
miR-192-5p inhibition significantly increased TG levels in both types of cells in the presence
of FFAs (Figure 3B,E). Meanwhile, Nile Red staining results showed that lipid accumulation
was induced by miR-192-5p inhibitors in mouse primary hepatocytes and HepG2 cells
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treated with FFAs (Figure 3C,F), while mRNA levels of the Fasn gene were increased by
miR-192-5p inhibition compared with NC in these cells (Figure 3G,H). Overall, knockdown
of miR-192-5p promoted lipid deposition in hepatocytes that had undergone FFA treatment.
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Figure 1. MiR-192-5p was dramatically increased in the livers of NAFLD mice. (A) Body weight of
high-fat diet (HFD)-induced NAFLD mice and chow diet (CD)-fed control mice (n = 10). (B) H&E
staining (top) and Oil Red O staining (bottom) of liver tissues (Scale bar: 100 µm). (C) Weight of
livers. (D) Hepatic triglyceride (TG) levels. (E) Serum TG levels. (F) Serum alanine aminotransferase
(ALT) levels. (G) Serum aspartate aminotransferase (AST) levels. (H) Relative expression levels of de
novo lipogenesis (DNL)-related genes in livers were measured by qRT-PCR. (I) Relative expression
levels of miR-192-5p in liver tissues. The data are presented as the mean ± SEM. * p < 0.05, ** p < 0.01,
*** p < 0.001.
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Figure 3. Knockdown of miR-192-5p promotes lipid deposition in hepatocytes. (A–H) Mouse primary
hepatocyte (MPH) and HepG2 cells were transfected with miR-192-5p inhibitors or NC inhibitors
and incubated with 0.4 mM free fatty acids (FFA, palmitic acid: oleic acid = 1:1) for 72 h (n = 3). The
hepatocytes were treated with 0.5% bovine serum albumin (BSA) as a control (A–F). (A,D) The levels
of miR-192-5p in MPH (A) and HepG2 cells (D). (B,E) TG levels in MPH (B) and HepG2 cells (E).
(C,F) Lipid droplets stained with Nile Red (red) in MPH (C) and HepG2 cells (F) and DAPI (blue) for
cell nuclei (Scale bar: 5 µm). (G,H) Relative expression levels of DNL-related genes in MPH (G) and
HepG2 cells (H). The data are presented as the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.4. Overexpression of miR-192-5p Decreased Lipid Accumulation in Hepatocytes

To further confirm that the function of miR-192-5p was to decrease lipid deposition
in hepatocytes, we induced ectopic expression of miR-192-5p by transfecting miR-192-5p
mimics into mouse primary hepatocytes and human HepG2 cells (Figure 4A,D). As shown
in Figure 4B,E, miR-192-5p overexpression decreased TG levels in both cell types when
treated with FFAs. Meanwhile, Nile Red staining of mouse primary hepatocytes and HepG2
cells showed that lipid deposition was remarkably lower in cells treated with miR-192-5p
mimics compared to the control group. (Figure 4C,F). Furthermore, Fasn expression was
decreased in both mouse primary hepatocytes and HepG2 cells upon overexpression of
miR-192-5p. (Figure 4G,H). These data indicated that miR-192-5p overexpression decreased
lipid accumulation in hepatocytes.



Biomolecules 2024, 14, 34 9 of 16Biomolecules 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 
Figure 4. Overexpression of miR-192-5p decreased lipid accumulation in hepatocytes. (A–H) MPH 
and HepG2 cells were transfected with miR-192-5p mimics or NC mimics and incubated with 0.4 
mM FFA for 72 h (n = 3). (A,D) The levels of miR-192-5p in MPH (A) and HepG2 cells (D). (B,E) TG 
levels in MPH (B) and HepG2 cells (E). (C,F) Lipid droplets stained with Nile Red (red) in MPH (C) 
and HepG2 cells (F) and DAPI (blue) for cell nuclei (Scale bar: 5 µm). (G,H) Relative expression 
levels of DNL-related genes in MPH (G) and HepG2 cells (H). Data are showed as mean ± SEM. * p 
< 0.05, ** p < 0.01, *** p < 0.001. 

  

Figure 4. Overexpression of miR-192-5p decreased lipid accumulation in hepatocytes. (A–H) MPH
and HepG2 cells were transfected with miR-192-5p mimics or NC mimics and incubated with 0.4 mM
FFA for 72 h (n = 3). (A,D) The levels of miR-192-5p in MPH (A) and HepG2 cells (D). (B,E) TG levels
in MPH (B) and HepG2 cells (E). (C,F) Lipid droplets stained with Nile Red (red) in MPH (C) and
HepG2 cells (F) and DAPI (blue) for cell nuclei (Scale bar: 5 µm). (G,H) Relative expression levels of
DNL-related genes in MPH (G) and HepG2 cells (H). Data are showed as mean ± SEM. * p < 0.05,
** p < 0.01, *** p < 0.001.



Biomolecules 2024, 14, 34 10 of 16

Taken together, these results suggest that the increased expression of miR-192-5p
in the liver during the development of NAFLD is a protective mechanism of the liver
against lipotoxicity. Overexpression of miR-192-5p decreased hepatic triglyceride levels,
consequently reducing lipid droplet accumulation.

3.5. Yy1 Was a Potential Target of miR-192-5p in Hepatocytes

To investigate the molecular mechanism underlying miR-192-5p’s involvement in TG
metabolism, we took an in silico approach using TargetScan [34] to screen target genes of
miR-192-5p. Yy1 was identified as a potential one. As shown in Figure 5A, there was one
putative binding site for miR-192-5p in the 3′-untranslated region (UTR) of human Yy1
mRNA and three such sites in the 3′-UTR of mouse Yy1 mRNA. To investigate the potential
regulation of Yy1 by miR-192-5p, we first examined the impact of miR-192-5p on YY1
protein level in mouse primary hepatocytes and HepG2 cells. As anticipated, the protein
level of YY1 was significantly reduced by the introduction of miR-192-5p mimics in both
types of cells (Figures 5B and S1A), whereas miR-192-5p inhibitors notably augmented the
level of YY1 protein. (Figures 5C and S1B). Then, to determine the level at which miR-192-
5p regulated Yy1 expression, we also examined the expression of Yy1 mRNA. Intriguingly,
our finding revealed that overexpression of miR-192-5p did not affect mRNA levels of
Yy1 in mouse primary hepatocytes or HepG2 cells (Figure 5D). These data suggested that
miR-192-5p specifically regulated YY1 protein expression at the post-transcriptional level.
To ascertain whether miR-192-5p directly regulated Yy1 expression by binding with the Yy1
3′-UTR, the 3′-UTR of human or mouse Yy1 containing presumed miR-192-5p binding sites
was fused downstream of the firefly luciferase gene in reporter plasmids, which were then
independently transfected into 293T cells along with a transfection control plasmid (β-gal)
and miR-192-5p mimics or inhibitors. As anticipated, overexpression of miR-192-5p resulted
in a reduction of luciferase reporter activity by approximately 20%, whereas inhibition
thereof increased reporter activity 1.2-fold compared with cells transfected with control
inhibitors (Figure 5E,F). Furthermore, we mutated the corresponding complementary sites
in the 3′-UTR of Yy1 to disrupt miR-192-5p binding. The mutated luciferase reporter was
unaffected by miR-192-5p mimics or inhibitors. In conclusion, these results demonstrated
that miR-192-5p inhibited Yy1 expression by binding to the 3′-UTR of Yy1.

3.6. MiR-192-5p Inhibited Hepatic Triglyceride Synthesis in NAFLD Mice by Regulating the
YY1/FASN Pathway

It has been reported that YY1 promotes hepatic lipogenesis by activating the expres-
sion of FASN [28]. In order to investigate whether miR-192-5p decreased lipid accumulation
in hepatocytes by regulating the YY1/FASN pathway, we further examined protein levels
of FASN in both mouse primary hepatocytes and HepG2 cells after expressing miR-192-
5p ectopically. The results show that miR-192-5p downregulated FASN protein levels
(Figures 6A and S1A), while miR-192-5p inhibition resulted in increased FASN expression
in both cell types (Figures 6B and S1B). In vitro, inhibition of miR-192-5p led to increased
YY1/FASN protein expression levels in hepatocytes treated with FFAs (Figures 6C,D and
S1C), while overexpression of miR-192-5p significantly reduced their protein expression
(Figures 6E,F and S1D). Furthermore, YY1 and FASN protein levels in the livers of NAFLD
mice were further increased after LV-miR-192-5p inhibitor infection (Figure 6G). In sum-
mary, these results indicated that miR-192-5p inhibited hepatic TG synthesis in NAFLD
mice by regulating the YY1/FASN pathway.
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4. Discussion

NAFLD is commonly linked to dysfunction in lipid metabolism [1]. However, the
precise molecular mechanisms responsible for this association have not been fully under-
stood. Recent studies have found that miRNAs are important regulators involved in the
development of NAFLD [35–37]. In this study, we demonstrated that miR-192-5p inhibited
hepatic fatty acid synthesis by targeting Yy1, thereby reducing TG accumulation in NAFLD.
Our findings will provide new insight into therapy for NAFLD.

MiR-192-5p is abundant in the liver [19]. Our study found that miR-192-5p expression
levels were significantly elevated in NAFLD mice and FFA-treated hepatocytes. This
finding is in agreement with previous studies that have shown a significant increase in
miR-192-5p levels in both the serum and livers of individuals with NAFLD compared to
healthy individuals [23,38]. However, the exact impact and mechanisms of miR-192-5p in
the development of NAFLD are not well understood. To investigate its role in NAFLD,
we suppressed miR-192-5p expression in the livers of NAFLD mice by administering an
LV that overexpressed anti-miR-192-5p. Interestingly, inhibition of miR-192-5p resulted in
increased accumulation of hepatic TGs and aggravated hepatic steatosis in NAFLD mice.
In vitro, inhibiting miR-192-5p also increased lipid droplet accumulation in hepatocytes.
Moreover, overexpressing miR-192-5p reduced TG levels. Taken together, our findings
indicated that hepatic miR-192-5p, a protective miRNA, was adaptively elevated and
thereby reduced hepatic lipid accumulation during NAFLD development.

An increase in DNL, the process by which the hepatic non-lipid metabolite acetyl-CoA
is synthesized into FAs, is a major pathogenic mechanism of NAFLD [39,40]. In this study,
the expression levels of genes involved in DNL, including Srebf1, Acc1, Fasn, and Scd1,
were evaluated. We observed significantly increased FASN expression levels in NAFLD
mice and FFA-treated hepatocytes after inhibition of miR-192-5p. Moreover, miR-192-5p
overexpression led to a reduction in FASN levels in hepatocytes. FASN has been recognized
as an appealing therapeutic target for NAFLD [41]. Several effective FASN inhibitors have
been reported for potential utility in metabolic disease [42–45]. Our findings suggested that
miR-192-5p regulates FA synthesis via FASN. We attempted to find miR-192-5p binding
sites within the Fasn gene using TargetScan; however, none were identified. This suggested
that miR-192-5p regulated FASN expression in indirect ways, possibly involving TFs.

YY1 is a widely distributed TF in mammalian cells, with dual roles as a transcriptional
activator and repressor [24,46]. It has been reported that YY1 expression is markedly
increased in patients with NAFLD and directly promotes hepatic steatosis via activation
of hepatic FA synthesis [29]. In our NAFLD mouse model, the YY1 expression level in
the liver tissues of mice fed with HFD was significantly higher than that of mice fed
with CD (Figure S2). Transcriptome sequencing analysis of Yy1 knockout HepG2 cells
revealed that downregulated genes are associated with various lipid metabolism processes,
including FA metabolism, lipid synthesis, lipid transport, steroid synthesis, and cholesterol
metabolism [47]. Moreover, YY1 has been found to directly promote the expression of
FASN by binding to its promoter region [28]. In this study, we used the miRNA target
prediction software to screen Yy1 as a target gene of miR-192-5p. Moreover, miR-192-
5p has been reported to inhibit the growth of bladder cancer cells by targeting YY1 [48].
However, it remains unclear whether miR-192-5p/YY1 is involved in regulating hepatic
lipid metabolism. By inhibiting miR-192-5p, we observed an increase in the expression
of YY1 and FASN in NAFLD mice. In vitro, miR-192-5p decreased the expression of
YY1/FASN and improved the accumulation of lipid droplets in hepatocytes.

5. Conclusions

In the present study, we provided new evidence that miR-192-5p was involved in
the pathogenesis of NAFLD and that it regulated hepatic lipogenesis by targeting the
YY1/FASN pathway. Our findings emphasized that promoting miR-192-5p expression
favored the maintenance of hepatic lipid metabolic homeostasis, thus providing a promising
therapeutic modality for the treatment of NAFLD.
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