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Abstract: Heterotopic ossification (HO) is a debilitating pathology where ectopic bone develops in
areas of soft tissue. HO can develop as a consequence of traumatic insult or as a result of dysregulated
osteogenic signaling, as in the case of the orphan disease fibrodysplasia ossificans progressiva (FOP).
Traumatic HO (tHO) formation is mediated by the complex interplay of signaling between progenitor,
inflammatory, and nerve cells, among others, making it a challenging process to understand. Research
into the pathogenesis of genetically mediated HO (gHO) in FOP has established a pathway involving
uninhibited activin-like kinase 2 receptor (ALK2) signaling that leads to downstream osteogenesis.
Current methods of diagnosis and treatment lag behind pre-mature HO detection and progressive
HO accumulation, resulting in irreversible decreases in range of motion and chronic pain for patients.
As such, it is necessary to draw on advancements made in the study of tHO and gHO to better
diagnose, comprehend, prevent, and treat both.

Keywords: heterotopic ossification; fibrodysplasia ossificans progressiva; ectopic bone; ACVR2;
ALK2; trauma

1. Introduction

Heterotopic ossification (HO) is the development of ectopic bone in regions of soft
tissue, including joint spaces, tendons, and muscles around the appendicular joints. It is
a known consequence of traumatic events, such as burns or blast fractures, but can also
occur as a complication of surgical procedures like total hip arthroplasty [1], underlying
inflammatory conditions like dermatomyositis [2], or neurologic injury like traumatic
brain injury [3]. Studies conducted to better understand the mechanism behind traumatic
heterotopic ossification (tHO) have revealed tHO to be the result of a complex signaling
interchange between diverse cell types, including mesenchymal stem cells (MSCs), inflam-
matory cells, and nerves, among others. The heterogeneous cell population present in the
environment in which tHO develops has made clinical advancements in preventing and
treating tHO difficult.

In contrast to tHO, genetically mediated heterotopic ossification (gHO) includes
congenital diseases, such as fibrodysplasia ossificans progressiva (FOP) and progressive
osseous heteroplasia, where ectopic bone can form independently from trauma. Here, we
focus on FOP as a specific form of gHO. FOP is an ultra-rare disease with a prevalence
of 0.88 per million in the US, leading to its designation as an orphan disease recognized
by the National Organization for Rare Disorders [4]. Given the disabling and irreversible
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nature of gHO following FOP inflammatory flare-ups, studies have been conducted to
improve our understanding of the disease. Research on FOP has led to the development
of drugs that are being evaluated in clinical trials. Given the strides that have been made
in understanding both tHO and gHO in FOP, the goal of this review is to connect ideas
between the two fields to show how research of either condition can inform our ability to
diagnose, understand, prevent, and treat both forms of HO.

2. Clinical Picture of tHO and FOP

The clinical presentations of tHO and FOP have overlapping features. The mature
stage of HO manifests clinically as hard, palpable lesions of ectopic bone found in areas of
soft tissue throughout the body. Traumatic HO development results in severe pain, swelling,
warmth, and debilitating decreases in range of motion (ROM) at the affected site [5,6]
and can occur after burns blast injuries, amputations, and deep orthopedic surgeries
like total hip arthroplasty [1,5]. The locations of these bony lesions can determine the
impact that HO has on patients’ overall quality of life. For example, HO in the head
and neck can lead to difficulty with day-to-day tasks, including oral hygiene, eating,
swallowing, and speaking [7,8]. HO in the knee most often contributes to loss of flexion
at the joint [9], along with other patellofemoral complications, including instability and
patellofemoral tracking disorder [10]. Similarly, HO that occurs after hip arthroplasty
results in decreased ROM and, in more severe cases, can lead to sciatic nerve irritation
and femur dislocation [10]. HO in other sites markedly increases mortality, as seen with
thoracic HO, which compromises the airway. Mass effect from HO development in the
thoracic cavity results in thoracic insufficiency syndrome, ultimately leading to hypoxemia,
pneumonia, and heart failure [8,11]. In addition, masses near the surface of the body can
increase the risk of skin breakdown and pressure sores [12,13].

FOP leads to the development of early onset HO through genetically mediated mech-
anisms. This genetic form of HO presents with similar clinical symptoms as non-genetic
tHO—pain, swelling, and decreased range of motion—but with a much more pervasive
and progressive presentation. In addition to the increased occurrence of these bony lesions
at a young age, nearly all patients with FOP present with congenital bilateral hallux valgus
deformities [8], along with a malformed great toe due to structural abnormalities in the
first phalanx and metatarsal [5]. Osteochondromas at the proximal medial tibia and spinal
manifestations, including spinal fusions at the levels of C2 through C7 and scoliosis, are
also common in FOP. Individuals with FOP may also have elongated vertebrae, shortened
femoral necks, soft-tissue swellings at the scalp and other sites, along with thumb malfor-
mations [8]. The presence of skeletal malformations (especially in the great toes), migratory
swellings, and HO lesions should suggest the need for further work-up to evaluate for
and diagnose FOP quickly, before any biopsies or procedures are performed, as these can
trigger further HO formation [14].

3. Current Understanding of Mechanisms behind tHO and FOP

The formation of heterotopic ossification in both tHO and FOP relies on signaling
between numerous ligands and receptors. This combinatorial diversity contributes to the
different phenotypes of HO that are observed across the clinical spectrum and may explain
why some tissue regions are seemingly more predisposed to either of the different types of
HO (e.g., appendicular skeletal lesions with tHO and axial skeletal lesions with FOP) [5].
The complexity of these interactions has made understanding HO regulation a challenge.
Interestingly, many of the mechanisms found to govern tHO and gHO formation appear to
be shared. This is particularly true of the TGF-β superfamily of ligands and their associated
receptors, discussed in further detail below.

3.1. Transforming Growth Factor Beta (TGF-β) Superfamily Signaling

The TGF-β superfamily is a very large signaling family that includes type I and II
receptors that bind to various ligands, such as TGF-β, bone morphogenic protein (BMPs),
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activins, inhibins, and growth factor-β. Ligands show mixed affinity for type I and II
receptors located on the cell membrane, but ultimately, both receptors are recruited to
create tetrameric complexes that include two type I and two type II receptors [15]. Type II
receptors have constitutive kinase activity and phosphorylate type I receptors once com-
plexed by ligand binding [16]. Once phosphorylated, type I receptors can phosphorylate
different receptor-activated Smad proteins (Smad 1,2,3,5,8) located in the cytosol, which
are responsible for intracellular signaling. In Smad-dependent signaling, TGF-β and ac-
tivin ligands signal through Smad2/3 complexes, whereas BMP ligands signal through
Smad1/5/8 complexes. Both Smad2/3 and Smad1/5/8 complexes associate with Smad4
for translocation into the nucleus to regulate gene transcription. TGF-β superfamily intra-
cellular signaling can also occur through Smad-independent (non-canonical) pathways,
such as ERK [17], TAK1 [18], p38 MAP [19], and PI3K/AKT [20]. In summary, TGF-β
signaling occurs through the formation of tetrameric complexes, which include type I and
II receptors that can signal through Smad-dependent pathways (typically Smad2/3 for
TGF-β and Activins, or Smad1/5/8 for BMPs) or Smad-independent pathways.

3.1.1. TGF-β Ligands Regulating Traumatic HO

There are three isoforms of TGF-β ligands: TGF-β1, TGF-β2, and TGF-β3. TGF-β
ligands bind to TGF-βR1 (ALK5), TGF-βR2, or ALK1 and complexes initiating intracellu-
lar signaling via the phosphorylation of Smad2/3 complexes. Phosphorylated Smad2/3
further complexes with Smad4 to translocate to the nucleus to regulate gene expression.
TGF-β ligands have been shown to promote MSC recruitment [21,22] and proliferation (via
β-catenin) [23,24]. The independent inhibition of TGF-β1, TGF-β2, or TGF-β3 produces
skeleton malformations, demonstrating that all isoforms play a role in regulating normal
bone development [25–27]. Studies that inhibited or knocked out TGF-βR1 or 2 have
affected bone development [28,29], further supporting the role of TGF-β signaling in bone
development. TGF-β signaling has been associated with the early stages of chondrocyte
and osteoblast differentiation [30]. Interestingly, TGF-β signaling has been shown to inhibit
the later stages of osteoblast maturation and bone matrix formation, as measured by the
decreased expression of Runx2 and Ocn [29,31–33]. Excessive TGF-β signaling has been
implicated in diseases that create weaker bone structures, such as osteogenesis imper-
fecta [34] and osteoporosis [35]. Collectively, these studies suggest that TGF-β signaling
plays an important role in promoting early stages of chondrogenesis and osteogenesis
while inhibiting later stages.

TGF-β1, specifically derived from macrophages, has been shown to be an important
regulator in tHO formation [36,37]. TGF-β2 and TGF-β3 have not been thoroughly studied
in the context of tHO formation. While TGF-β signaling exists within MSCs, it can also occur
in other cell populations. Interestingly, the deletion of TGF-βR1/ALK5 in macrophages
inhibited tHO formation, whereas deletion in zeugopod-specific MSCs showed no effect on
tHO formation [38]. Together, this suggests that TGF-β signaling in macrophages, rather
than MSCs, plays a more important role in tHO formation.

3.1.2. BMP Ligands Regulating Traumatic HO

The BMP signaling family currently includes 15 ligands that can induce signaling
among several type 1 and 2 receptors that can form complexes with one another [39].
Given so many potential combinations, BMP signaling is a highly complex process that
researchers are continuing to investigate to better understand. In general, BMP ligands
bind to type 1 (ALK1, ALK2/ACVR1, ALK3/BMPRIA, ALK4/ACVR1B, ALK5/TGFBRI,
and ALK6/BMPRIB) and type 2 (BMPRII, ActRII, and ActRIIB) complexes, initiating
intracellular signaling [39]. Smad1/5/8 signaling is typically associated with the type
I receptors except for ALK4 and 5. BMP2, 4, 6, 7, and 9, have been shown to regulate
osteogenesis [40–43] and chondrogenesis [44] through Smad1/5/8 signaling. In addition,
BMP2 and 4 have been shown to promote chondrogenesis through the regulation of SOX9
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expression [44–47]. These BMPs affect different steps in osteoblast maturation as well as
bone matrix formation by upregulating RUNX2, OSX/SP7, OCN, and ALP [48–56].

BMP2, 4, 6, 7, and 9 have been shown to promote tHO formation [57–62]. In one study,
the individual knockout of type I receptors—ALK2, 3, and 6—resulted in no statistically sig-
nificant differences in tHO formation. Although not statistically significant (p-value = 0.09),
the knockout of ALK2 only resulted in a reduction in ectopic bone formation, suggesting
that ALK2 may still play a role in tHO. Interestingly, knockout of both ALK2 and 3 resulted
in a statistically significant reduction in tHO formation [63], suggesting that multiple BMP
ligands and receptors may regulate signaling. Other studies have investigated the efficacy
of anti-ALK2 and anti-ALK2/3 antibodies, which have resulted in statistically significant
reductions in tHO formation [64,65]. While pharmacological targeting of ALK2 and 3 re-
sulted in less tHO formation, it also delayed wound healing and led to methicillin-resistant
Staphylococcus metastatic infections, suggesting the isolated targeting of ALK 2 and 3 is
a poor clinical therapy [63,64]. However, targeting BMP ligands via a soluble ALK3-Fc
antibody resulted in reduced tHO formation with no notable side effects [63–65]. Together,
these data suggest that multiple BMP ligands and receptors regulate tHO formation, and
therapies targeting BMP ligands could provide a clinically effective method to reduce tHO
with minimal adverse side effects.

TGF-β activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase
family that can also regulate tHO formation [66,67]. TAK1 has been shown to activate
Smad1/5/8 and smad-independent signaling via p38/JNK/ERK MAP kinase [68,69]. TAK1
has been shown to promote the expression of chondrogenic (SOX9 [70]) and osteogenic
(OCN, ALP, RUNX2 [18]) genes. In addition to affecting Smad-dependent signaling, TAK1
regulates the stabilization and nuclear localization of YAP/TAZ [71], which have also been
shown to regulate tHO formation [72].

3.2. Genetic Mutations in ALK2/ACVR1 Causing gHO in Fibrodysplasia Ossificans Progressiva
(FOP)

FOP is associated with gain-of-function mutations, leading to an overactive activin-
like kinase 2 (ALK2) receptor, also called activin A receptor type 1 (ACVR1). ALK2 is a
serine/threonine kinase receptor classified as a bone morphogenic protein (BMP) type I
receptor and is a member of the larger transforming growth factor beta superfamily. ALK2
is ubiquitously expressed throughout the body, and the dysregulation of this receptor leads
to downstream effects in multiple tissue types [73].

ALK2 Signaling Is Dysregulated in FOP

The ALK2 receptor is composed of five main domains: a signaling peptide, a ligand
binding region, an intermembrane region, a glycine–serine (GS) rich region, and a protein
kinase region (Figure 1) [74]. Upon binding to a ligand, ALK2 associates with a BMP type
2 receptor (BMPR2), such that there are two ALK2 receptors and two BMPR2 receptors,
resulting in a tetrameric complex. The association with BMPR2 receptors allows ALK2 to
undergo a conformational change at the GS intracellular region, allowing for the release
of FKBP12. The release of FKBP12 serves as a regulator for the initiation of ALK2 kinase
activity and intracellular signaling [75–77].

Smad-dependent signaling pathways, particularly Smad1/5/8, are associated with os-
teogenic differentiation through ALK2. When ALK2 binds to a BMP ligand, intracellular
signaling is initiated through the phosphorylation of the protein complex Smad1/5/8. After
phosphorylation, Smad1/5/8 complexes with Smad4, allowing for translocation into the
nucleus to serve as a transcription factor. Through the Smad1/5/8 pathway, ALK2 serves as
an essential mediator in gastrulation [78], neuropathic pain [79], inflammation [80], chondro-
genesis [81,82], and osteogenesis [83]. When ALK2 binds to an activin ligand, intracellular
signaling is initiated through the phosphorylation of receptor-mediated Smad2/3. In sum-
mary, normal ALK2 intracellular signaling has both constitutive and ligand-dependent activity.
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The binding of the ALK2 receptor with BMPs initiates a Smad1/5/8 pathway that promotes
BMP pathway activation, whereas activins normally activate the Smad2/3 pathway.
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In patients with FOP, ALK2 has a mutation that gives it a novel and abnormal ability
to initiate pro-osteogenic Smad1/5/8 signaling upon binding by activin A. This effectively
allows ALK2-expressing cells to misinterpret activin A as a BMP. Approximately 95% of
patients with FOP have an activating mutation that results in a histidine replacing an
arginine at codon 206 (R206H) within the GS region of the ACVR1/ALK2 gene [84]. This
R206H mutation creates a conformational change in the GS region of ALK2 such that
FKBP12 has a reduced ability to bind to this region and inhibit the activity of the kinase
region [85]. Therefore, this mutation leads to increased and uncontrolled ALK2 signaling
(Figure 2). The R206H mutation results in increased responsiveness to BMP2, 4, 7, 9, and
10, as well as novel responsiveness to BMP15 and activins A, AB, AC, and B [86]. Activin
ligands form dimers—both homodimers (activin A and B) or heterodimers (activin AB and
AC). Using a monoclonal antibody specific to the activin A unit, ectopic bone formation
significantly decreased in mouse models with a R206H mutation in their ALK2 receptor,
suggesting that activin A is the primary ligand driving abnormal osteogenesis in MSCs [86].
Further experimentation has shown that activin A binding to the R206H mutated receptor
induces intracellular Smad1/5/8 signaling [86,87]. The Smad1/5/8 complex associates
with Smad4 to translocate into the nucleus. Once in the nucleus, this Smad1/4/5/8 complex
can be inhibited by retinoic acid receptor-γ, which inhibits ectopic bone formation [88].
In summary, the R206H mutation in ALK2 is common in FOP patients and results in
an increased and uncontrolled pro-osteogenic Smad1/5/8 (BMP) signaling induced by
activin A.

3.3. Understanding of FOP Mechanism Informs the Future of tHO Studies
3.3.1. Activin A and ALK2

As previously discussed, it is common in FOP to see increased BMP (Smad1/5/8)
signaling through a neofunction in the ALK2-R206H receptor upon binding with an activin
A ligand. Ectopic bone formation in FOP has been reported following spontaneous in-
flammatory flare-ups, injury, intramuscular immunization, viral infection, or overuse [89].
Given the inflammatory response that precedes ectopic bone formation in FOP [90], studies
have been conducted to better understand the role of the immune system in FOP. Previ-
ous research has demonstrated that mast cells and macrophages play an essential role
in the progression of gHO in FOP [91]. Interestingly, macrophages isolated from FOP
patients demonstrated increased activin A expression and pro-inflammatory cytokine
(IL-1a, TNF, IL-6, IFN-γ) release when compared to baseline M1 macrophages [92]. This
suggests that macrophages play a key role in sustaining a pro-inflammatory response
and serve as a source of activin A for gHO induction. Therefore, therapies aimed at in-
hibiting the immune response during FOP flare-ups may reduce activin A secretion from
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macrophages and inhibit ectopic bone formation. While targeting the immune system may
reduce macrophage-derived activin A, other cell populations can also contribute to activin
A secretion at sites of ectopic bone formation. In FOP mouse models, single-cell RNA
sequencing revealed fibroblasts with increased expression of Inhba (activin A) following
tamoxifen-induced gluteal muscle injury, suggesting that fibroblasts may be another source
of activin A in regions of gHO formation in FOP [65]. Still, it remains possible that activin A
may come from sources outside of the tissue region that forms ectopic bone. A recent study
demonstrated that serum activin A levels were not statistically elevated in untreated FOP
patients compared to healthy control subjects either during FOP flare-ups or remission [93].
Together, previous research suggests that the major source of activin A contributing to gHO
formation in FOP is from local cell populations, including macrophages and fibroblasts.
Given the complex nature of FOP flare-ups and large variation in anatomical regions where
gHO forms, further investigation is needed to better understand the spatial and temporal
contexts of activin A expression in cell populations at the site of ectopic bone formation
in FOP.
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clinical trials. Dark blue box indicates therapies targeted at genetic repair.

Studies have investigated the efficacy of targeting activin A and ALK2 receptors in
FOP. Anti-activin A antibodies have been shown to be effective in inhibiting Smad1/5/8
signaling and ectopic bone formation [86,94]. One study demonstrated that the overexpres-
sion of wild-type ALK2 served as an effective way to inhibit ectopic bone formation in FOP
mice [95]. Increasing the number of wild-type ALK2 receptors may reduce the opportu-
nity for activin A to bind to mutated ALK2-R206H receptors and decrease the subsequent
Smad1/5/8 signaling that has been implicated in ectopic bone formation. This suggests that
the targeting of activin A via an antibody (i.e., garetosomab) may be an effective therapy to
reduce gHO formation in FOP. With regard to targeting ALK2, one study demonstrated
that the treatment of FOP mice with an anti-ALK2 antibody unexpectedly resulted in the



Biomolecules 2024, 14, 349 7 of 27

activation of ALK2-R206H receptors, unlike wild-type ALK2 receptors, which resulted in
more ectopic bone formation [94]. Still, in another study and mouse model, saracatinib was
used to target ALK2 and effectively reduced ectopic bone formation while not impacting
neonatal growth [96]. While targeting activin A or ALK2 may serve as promising therapies
to prevent ectopic bone formation in FOP, ALK2 is expressed in various cells throughout
the body [97], and activin A has a role in proper skeletal development and regulating
immune system functioning [98–100]. Additionally, given that multiple different mutations
can lead to the development of FOP [84], future studies should investigate genetic repair
mechanisms aimed at restoring normal function to mutated ALK2 receptors. In summary,
targeting activin A and ALK2 may serve as effective therapies against gHO formation in
FOP, but future research should focus on repairing the gene itself to restore proper function
to the mutated ALK2 receptor.

Given the importance of activin A and ALK2 in FOP, researchers have studied both
in the context of tHO formation. Single-cell RNA sequencing experiments used on cells
isolated from a subcutaneous BMP-implant mouse model revealed mesenchymal progenitor
cells (MPCs) and, to a lesser extent, macrophages expressing Inhba (activin A) as the major
cell populations in tHO lesions [101]. In a burn/tenotomy (B/T) mouse model, Inhba was
primarily expressed by pericytes and smooth muscle cells following injury [65]. Together,
these studies reveal that the cell populations contributing to activin A are different between
tHO and FOP. Currently, there are conflicting data on the impact of activin A in tHO
formation. In experiments that used a subcutaneous or intramuscular BMP implant mouse
model, anti-activin A antibodies were shown to significantly but not completely inhibit
tHO formation [101]. Therefore, while activin A may contribute to tHO formation in these
models, there are likely other mechanisms that regulate its formation. Interestingly, in
the B/T model, the use of an anti-activin A antibody was not effective in inhibiting tHO
formation [65]. It is important to note that the BMP-implant and B/T models induce ectopic
bone formation in different anatomical regions with different and unique cell populations
(i.e., tenocytes in the B/T model). Coupled with the differences in the efficacy of anti-
activin A antibodies, it is likely that different mechanisms contribute to tHO formation
in different anatomical regions. With respect to ALK2, studies using the burn/tenotomy
mouse model revealed that anti-ALK2 antibodies significantly, but not completely, inhibit
tHO formation [65]. This further supports the idea that there are mechanisms outside of
activin A-ALK2 signaling that contribute to tHO formation. Together, this suggests that
while activin A-ALK2 signaling plays a role in driving tHO formation, there are likely other
mechanisms driving tHO formation that are different from FOP.

3.3.2. Hypoxia

Hypoxic conditions are present at injury sites following trauma and have also been
reported in FOP lesions [102] that are destined to form bone. Cytosolic hypoxia-inducible
factors (HIFs) have the ability to regulate gene expression based on oxygen levels. Under
normoxic conditions, HIF-1α complexes with VHL and is degraded [103]. Under hypoxic
conditions, HIF-1α is stabilized and able to translocate into the nucleus, where it complexes
with HIF-1β to regulate gene expression [104,105]. It has been demonstrated that pre-
chondrogenic FOP lesions are positive for HIF-1α, confirming that hypoxic conditions are
present with inflammation and early stages of tissue remodeling [102]. In vitro and in vivo
studies with HIF-1α knockout have demonstrated a reduction in pSmad1/5/8 signaling
cells, suggesting that hypoxic conditions promote BMP signaling [102]. It was further
demonstrated that in vivo knockout or pharmacological inhibition (imatinib, apigenin,
PX478, and rapamycin) of HIF-1α in FOP mice resulted in a significant reduction in ectopic
bone formation [102,106]. While these drugs inhibit HIF-1α, only PX478 directly targets
HIF-1α. It has been demonstrated that activin A-ALK2 signaling in FOP mice promotes
the mammalian target of rapamycin-1 (mTORC1) signaling, which is crucial in regulating
chondrogenesis and ectopic bone formation in FOP [107]. Given that rapamycin directly
targets mTORC1 and inhibits HIF-1α, these findings suggest that mTORC1 is upstream of
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HIF-1α [108,109]. Further investigations have found that mTORC1 is downstream of ENPP2
and the PI3KT/AKT axis. The expression of ENPP2, a gene that encodes for the secretory
enzyme autotaxin that produces lysophospholipid acid [110], was upregulated in MSCs
isolated from FOP mice following activin A induction, suggesting a possible mechanism
for increased mTOR signaling. It is still unclear what the exact mechanism connecting
activin A-ALK2 signaling with mTOR signaling in FOP; therefore, future investigations
are needed. Still, in one study, the stimulation of FOP cells with activin A demonstrated
increased mTOR signaling but no change in HIF-1α expression, indicating that HIF-1α may
be a mechanism independent of activin A [111]. Together, these studies demonstrate that
HIF-1α under hypoxic conditions contributes to ectopic bone formation in FOP, and further
studies are needed to understand the underlying mechanism.

In the context of tHO, HIF-1α has also been found to be upregulated following injury in
osteogenic regions. Similar to FOP studies, in vivo knockout, knockdown, or pharmacological
inhibition (directly by PX478 and indirectly by rapamycin) of HIF-1α in tHO mice resulted
in a significant reduction in ectopic bone formation [106,112]. Recent studies have shown
that vascular endothelial growth factor A (VEGFA), an angiogenic protein whose expression
is modulated by HIF-1α, is upregulated in MSCs as well as macrophages following injury,
suggesting that hypoxia may modulate tHO formation through cell populations other than
MSCs [36,113]. In another recent study, HIF-1α was shown to influence ectopic bone formation
by promoting M2 macrophage phenotypes and osteoclast formation following intramuscular
implantation of osteoinductive material [114]. Given that inflammation and hypoxia tend to
exist concurrently, more studies are warranted to better understand MSC-specific mechanisms
and other immune cell population contributions in FOP and tHO.

4. Identification and Diagnosis of HO
4.1. Traumatic HO

Diagnosis of tHO relies on a combination of clinical picture, serum markers, and
radiographic findings. Neurogenic HO (nHO), a subset of tHO, can occur after spinal
cord injury (SCI), resulting in significant morbidity and compromised quality of life [115].
The timing of tHO, whether neurogenic in nature or otherwise, starts within 1–3 weeks of
contractures around the appendicular skeleton. However, current X-ray techniques are not
able to reliably detect HO prior to 6 weeks [5,6]. Some prognostic factors used in clinical
measures are assessments of clinical signs (e.g., contractures), serum biomarkers (e.g.,
alkaline phosphatase [ALP], C-reactive protein [CRP], and creatine phosphokinase [CPK]),
radiographic imaging assessments (e.g., X-ray, computer tomography), and questionnaires
(e.g., International Spinal Cord Injury Musculoskeletal Basic Data Set). The timelines of
current clinical diagnostic tests for tHO following SCI are listed in Table 1.

Table 1. Timelines of traumatic HO detection methods following spinal cord injury. (CPK = creatine
phosphokinase; CRP = C-reactive protein; PGE2 = prostaglandin E2; ALP = alkaline phosphatase).

Parameter Postinjury Time

Transient ↓ in serum Ca2+ 1 week

↑ CPK and CRP 1 week

↑ Urinary PGE2 1 week

↑ serum ALP level 2 weeks

+ve triple phase bone scan 3 weeks

+ve radiograph 4–6 weeks

The current classification schemes for assessing tHO include the planar projection of min-
eralization using a four-level radiological classification [116] or checkerboard-like patterns
within the muscle regions observed via computer tomography (CT). These radiographic-
based assessments involve global estimates of the degree of soft tissue mineralization [117],
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but they do not effectively detect pre-mature bone formation, limiting its use to monitoring
the progress of tHO and implementing early-stage diagnosis and timed therapeutic strate-
gies at the bedside. Figure 3 shows an example of radiographic imaging from our prior
case with massive bilateral HO in an immobilized patient with SCI [118]. Furthermore,
tHO is associated with elevated serum ALP, CPK, C-reactive protein (CRP), erythrocyte
sedimentation rate (ESR), and prostaglandin E2 (PGE2) [119], which are reliable and sensi-
tive indicators of the tHO formation process following spinal cord injury. Elevated levels
of serum CPK are an indicator of HO severity, while the stabilization of ALP is contradic-
tory with HO maturation [120,121]. Table 2 shows the lab test characteristics of tHO and
non-tHO patients. Despite the fact that the differences observed in serum biomarker levels
in these studies suggest their ability to aid in HO diagnosis, further exploration into their
clinical use will be important for solidifying our understanding of their utility.
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an immobilized patient with SCI [118].

Table 2. Serum lab test characteristics of tHO and non-tHO patients.

Lab Tests tHO Group Non-tHO Group

Alkaline phosphatase (ALP) >130 U/L 20–130 U/L

C-reactive protein (CRP) 10–100 mg/L <1.0 mg/L

Creatine phosphokinase (CPK) 1–10 mg/L <1 mg/L

Erythrocyte sedimentation rate (ESR) 16–100 mm/h <15 mm/h

The current standard of care only detects HO after irreversible functional deficits have
already occurred. Imaging of tHO lesions like those shown in Figure 3 often leads to their
misdiagnosis as bone tumors, obviating the need not only to detect but also to diagnose
tHO [122]. Radiographic modalities lead to inconsistent and inaccurate diagnoses and
fail to guide treatment initiation or duration. These limitations have kept clinicians from
establishing precision/personalized medicine approaches to SCI-induced HO. Although
triple-phase bone scans detect HO activity before calcification becomes apparent on plain
X-ray and CT imaging (Table 1), this technology requires an injected radioactive tracer
and has yet to be effectively developed for clinical use [123]. Traumatic HO can also be
confirmed with diagnostic ultrasound [124] and magnetic resonance imaging [125]. These
modalities can be used as a screening tool if there is a high index of suspicion of tHO but
should then be confirmed by one of the tests listed below (Table 3).
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Table 3. Advantages, risks, and limitations of current clinically available diagnostic modalities
and available research tools for HO detection.

X-ray CT Scan Triple Phase Bone
Scan MRI Diagnostic

Ultrasound

Advantages

Cost-effective,
reliable, and

sensitive for HO
diagnosis

Comprehensive,
reliable, and

sensitive for HO
diagnosis

Early detection
before calcification

Comprehensive and
reliable to indicate

HO formation

Portable, sensitive,
and cost-effective

to indicate HO
formation

Risks Light ionization
radiation exposure

Moderate
ionization

radiation exposure

Contrast agent
required and

moderate radiation
exposure

Not applicable to
those with implant,

pacemaker, and
intracranial

aneurysm clips

No measurable
risks but may

introduce
non-measurable

bias

Limitations

Qualitative and
unable to detect

pre-HO soft tissue
mineralization

Qualitative
Limited access in

some regions.

Limited access in
regions with less

resourceful
healthcare.

Qualitative,
expensive, and not
commonly used for
HO early detection.
Limited access in

some regions.

Subjective and
qualitative
measures

Timing of HO
diagnosis after

SCI
4–6 weeks 4–6 weeks 2–3 weeks 2–4 weeks 1–2 weeks

4.2. Fibrodysplasia Ossificans Progessiva (FOP)

Currently, the diagnosis of FOP is made by clinical presentation (presence of 1st digit
malformations like toe malformations, with migratory swellings/inflammation) combined
with genetic testing for ACVR1 mutations. However, our ability to diagnose whether new
HO formation will occur in FOP remains poor. As such, advancements made in diagnostic
modalities traditionally used for tHO may be applicable to gHO, allowing for earlier
recognition of HO development in FOP patients. Furthermore, individuals with early
onset recurrent HO, bilateral congenital hallux valgus malformations, and other features
suggestive of FOP can undergo confirmatory genetic testing in the form of single-gene
testing targeting the gain of function mutations in ACVR1 [8]. In addition to testing for
mutations in ACVR1, clinicians can also implicate other genes whose aberrant activity
causes clinical pictures that overlap with FOP using more comprehensive genomic exome
sequencing or a skeletal dysplasia panel, which tests for mutations in ~20 genes, including
EXT1/2, GNAS, PTPN11, and ROR2 [8].

5. Progenitor Cell Populations in tHO and FOP

Genetic HO formation in FOP is attributed to a mutation in the ACVR1 gene that
disrupts cell signaling pathways involved in bone formation while preserving typical endo-
chondral ossification in bones [84,126]. These disruptions induce alterations in surrounding
microenvironmental factors that trigger the development of chondral and osteogenic cell
lineages, ultimately resulting in ectopic bone formation and changes in cell fate deter-
mination [87,127,128]. The primary cells impacted by these environmental changes are
progenitor cells, which have remarkable potential to differentiate into specialized cell types
such as lymphocytes, myocytes, osteoblasts, osteoclasts, and adipocytes. Their capability to
differentiate has led progenitor cells to play a pivotal role in tissue injury and subsequent
HO formation.

Progenitor cells are pluripotent stem cell descendants that have the ability for self-
renewal and expansion, particularly in response to trauma, disease, and aging. Identifi-
cation of progenitor populations involved in FOP has given insight into the underlying
mechanisms of and potential cell-specific therapeutic approaches for this disease. The
exploration of progenitor populations has been significantly facilitated by using animal
models. In particular, the development of the Acvr1 knock-in mouse line, representative of
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human FOP, has been instrumental in advancing FOP research [86,129]. Subsequent studies
using animal models and various Cre drivers have developed researchers’ ability to assess
progenitor cells’ osteogenic capacity and provided insight into the diverse progenitor cell
lineages directly involved in HO formation (Table 4).

Table 4. Progenitor cell types in heterotopic ossification (HO).

Progenitor Cell
Type Disease Findings Model (Lineage

Tracing Marker) Study

Hematopoietic
Stem Cells (HSCs)

FOP/
tHO

HSCs give rise to cells that contribute to
early inflammatory and

fibroproliferative stage of HO
Hematopoiesis evidence found in

patient excised tHO

Human Gannon et al. (1998) [130]
Davis et al. (2013) [131]

Endothelial
Progenitor Cells

(EPCs)
FOP/tHO

Tie2+ EPCs contribute to every stage of
HO formation

Chondrocytes and osteoblasts express
endothelial markers, suggesting

endothelial-to-mesenchymal transition
(EndMT) in FOP-HO

lesionsAngiogenesis drives HO
formation in FOP; inhibition of

angiogenesis attenuates HO progression
in tHO

Mouse (Tie2-Cre)
Lounev et al. (2009) [132]
Medici et al. (2010) [133]

Lin et al. (2022) [134]

Mesenchymal Stem
Cells (MSCs) FOP

MSCs increase osteochondrogenesis in
FOP

Nfatc1+ cells induce spontaneous HO
lesions with increased osteogenic

potential

Human
Mouse (Nfatc1-Cre)

Hino et al. (2015) [87]
Agarwal et al. (2015) [135]

Muscle Stem Cells FOP
Muscle stem cells exhibit enhanced
osteogenic and chondrogenic fate
following muscular injury in FOP

Human Barruet et al. (2021) [136]

Fibro/Adipogenic
Progenitor Cells

(FAP)
FOP Activin A drives osteogenesis in FAPs,

leading to spontaneous gHO formation
Mouse (MyoD-
iCre/Tie2-Cre)

Lees-Shepard et al.
(2018) [137]

Tendon
Stem/Progenitor

Cells
FOP/tHO

Scx+ cells induce spontaneous HO
formation and are capable of
chondrogenic and osteogenic

differentiation involved in both gHO
and tHO

Tppp3+ cells contribute to
chondrogenesis and osteogenesis after

trauma

Mouse
(Scx-Cre/Tppp3+)

Dey et al. (2016) [138]
Agarwal et al. (2017) [139]

Yea et al. (2023) [140]

5.1. Hematopoietic Stem Cells

Hematopoietic stem cells (HSCs) are quiescent cells in the bone marrow, which are
capable of multi-lineage differentiation into all blood cell types and self-renewal through
hematopoiesis [141]. There are limited research studies investigating HSCs’ involvement in
HO, and those that are available have provided conflicting evidence of HSC involvement.
Several clinical case studies have shown evidence of trilineage hematopoiesis in excised
tHO bone [131,142–145]. Although these case studies indicate the presence and involvement
of HSCs in the HO site, there is insufficient evidence to indicate that these cells are involved
in the process of osteogenesis in HO formation. Some research studies have suggested that
HSCs are involved in the regulation of osteoblasts for bone formation [146–148]. However,
one study found that HSCs do not contribute to osteogenesis in tHO formation [149].
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Further research is necessary to confirm and elucidate the mechanism by which HSCs
contribute to HO formation.

While HSCs’ direct involvement in HO formation is yet to be understood, there is
evidence highlighting the intricate roles of hematopoietic lineage cells derived from HSCs
in this process. HSCs have the ability to differentiate into immune cells from both the
myeloid and lymphoid lineages [150]. While inflammation is a normal physiological
response to injury, FOP studies have suggested that chronic inflammation induced by
the disease engenders a prolonged and hyperactive immune system, which is regulated
through hematopoietic lineage cells, which promotes HO development. Myeloid lineage
cells can further differentiate into granulocytes and monocytes, while lymphoid lineage
cells can differentiate into T cells, B cells, and natural killer (NK) cells [151,152]. There
has been evidence showing HSC involvement through lymphocyte infiltration and mast
cell destruction of skeletal muscle during the early stages of FOP flare-ups [130,153–155].
Subsequent studies have shown that monocytes are required to trigger HO formation
through the release of osteogenic factors in transgenic mice [156]. Additionally, it has been
found that fibroproliferative tissues developed after injury show active immune and mast
cells, giving insight into the involvement of immune cells in tissue remodeling during HO
formation [129,153].

5.2. Endothelial Progenitor Cells

Using lineage tracing and transgenic mice, endothelial progenitor cells expressing Tie2
have been found to be major contributors to and present in all stages of HO formation.
Several studies have shown Tie2-expressing cells contributing to the fibroproliferative, chon-
drogenic, and osteogenic stages of HO formation [132,133]. However, Tie2 is not specific to
endothelial cells; the gene is also expressed in platelet-derived growth factor α (PDGFRα)
receptors and fibro/adipogenic progenitors, potentially indicative of mesenchymal and
muscle origin instead [157]. Recent studies have suggested an endothelial-to-mesenchymal
transition (EndMT) in HO formation. This transition was revealed to be caused by muta-
tions with ALK2 activation in FOP. EndMT was further validated with the observation of
endothelial markers in the chondrocytes and osteoblasts of HO lesions [133].

Additionally, endothelial progenitor cells are directly involved in angiogenesis, giving
rise to blood vessel sprouting. In FOP patients, there is an increase in vascular endothelial
growth factor (VEGF) following inflammatory stimuli compared to control. Increased
expression of VEGF promotes the infiltration of angiogenesis, driving HO formation [158].
There have been further studies describing vascular leakage and edema in HO lesions from
patients with FOP, further supporting endothelial and angiogenic interplay in FOP [159].

5.3. Mesenchymal Stem Cells

Mesenchymal stem cells are pluripotent cells that have the potential to differentiate
into osteogenic, chondrogenic, adipogenic, and myogenic lineages [160,161]. HO formed in
FOP involves the replacement of cartilage with bone, orchestrated by osteoclasts derived
from HSCs and osteoblasts of the MSC lineage [135]. While MSCs have the potential to
differentiate into chondrogenic and osteogenic lineages alone, the environmental changes
induced by FOP promote MSC differentiation into chondrocytes, osteoblasts, and osteocytes
through osteoblastic maturation [162,163]. Specifically, the ACVR1 mutation in FOP leads to
the aberrant activation of BMP signaling in response to activin A, a normal ligand involved
in the TGF-β signaling pathway, which induces the chondrogenesis of MSCs [87].

5.4. Muscle Stem Cells

Muscle injury is known to trigger tHO formation and exacerbate disease flare-ups in
FOP, suggesting the involvement of aberrant skeletal muscle regeneration in HO formation.
Muscle stem cells, also known as muscle satellite cells, reside in skeletal muscle tissue
and are responsible for muscle repair and regeneration following muscle injury [164,165].
In vitro studies have shown that satellite cells exhibit osteogenic activity in response to
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BMPs [166,167]. Consequently, a recent investigation explored the impact of ACVR1
mutation on skeletal muscle repair by collecting human FOP satellite cells. These cells
exhibited deficiencies in muscle repair and regeneration capabilities through increased
ECM and osteogenic markers compared to control satellite cells. This suggests that satellite
cells contribute to HO through reprogramming towards an osteogenic environment [136].
In a subsequent in vivo study using a FOP mouse model, they found that muscle injury
induced muscle tissue to reprogram towards chondrogenesis in FOP mice but not in wild-
type mice [168]. These studies suggest that the ACVR1 mutation in FOP induces muscle
stem cells to reprogram towards an osteogenic fate. While muscular injury can lead satellite
cells down an osteogenic fate in FOP, it does not always lead to tHO formation in the context
of trauma. Further research is needed to understand the role and underlying mechanism of
satellite cells, specifically in tHO.

5.5. Fibro/Adipogenic Progenitor Cells

Fibro/adipogenic progenitor cells (FAPs) are mesenchymal stromal cells that reside in
the skeletal muscle, distinct from satellite cells. They are key regulators of skeletal muscle
regeneration and contribute to the pathologic differentiation of skeletal muscle into fibrob-
lasts and adipocytes [169–171]. Previous research has demonstrated that FAPs undergo
reprogramming towards an endochondral lineage [138,172]. In a FOP (ACVR1-R206H)
mouse model, osteogenic differentiation was induced in FAPs through the activin ligand
activation of BMP signaling in both injury-induced and spontaneous HO models [137]. It
was further revealed that FAPs impacted the myogenic activity of satellite cells, which sug-
gests that the coordination between FAPs and satellite cells is important for HO formation
in FOP [172].

Identifying progenitor cell populations involved in gHO formation in FOP has allowed
us to understand the underlying pathophysiology of this disease. It has also provided us
with greater insight into understanding tHO formation mechanisms and opportunities
for potential therapeutics as they both undergo endochondral ossification. Through the
identification of progenitor cell populations in FOP, several studies have found potential
therapeutics and have proven their efficacy in mouse models [173]. While there is substan-
tial evidence of overlapping progenitor populations such as HSCs, EPCs, and MSCs, there
is also evidence of distinct progenitor populations between gHO in FOP and tHO.

5.6. Tendon Stem/Progenitor Cells

Tendon stem/progenitor cells (TSPCs) reside in the peritenon of the tendon [174]. Us-
ing two different injury animal models, it was recently discovered that TSPCs contributed to
both cartilage and bone formation in tHO formation through osteochondral differentiation
following trauma [140].

The identification of progenitor cells associated with gHO in FOP has advanced our
understanding of the underlying mechanism of this disease. In FOP, the development
of an accurate genetic model resembling human FOP has been paramount in identifying
the pathological mechanisms behind this disease. Despite the importance of various
animal lineages and injury models to current research, the translatability of conclusions
drawn from these models to clinical applications remains unclear. The exact mechanisms
behind tHO are debated and less understood. Further investigation is needed to validate a
robust model and identify pathological HO formation, with the aim of discovering specific
cell-therapeutic targets for the prevention and treatment of HO.

6. Inflammatory Control of HO

Inflammation plays a key role in both the gHO found in FOP and tHO, and the
immune system is a vital component of both normal and abnormal bone formation. In
normal bone, osteoclasts are thought to derive from monocyte precursors [175]. Osteoblasts,
while differentiating from MSCs, have been shown to show significant impairment in
macrophage-deficient mice [176]. Additionally, osteal tissue-resident macrophages, also



Biomolecules 2024, 14, 349 14 of 27

known as osteomacs, are known to play a role in anabolic bone formation [177]. While
vital to normal ossification, the inflammatory process may play a more crucial role in the
abnormal formation of bone, specifically in the case of HO. Studying the inflammatory cells
and pathways in FOP is instrumental in guiding and understanding HO in both its genetic
and traumatic forms.

FOP is associated with inflammatory lesions that occur after flare-ups that can lead
to significant HO formation. As previously discussed, FOP is primarily caused by activat-
ing mutations in ACVR1, which lead to abnormal BMP signaling in response to activin
A [126]. However, ACVR1 mutations leading to FOP do not explain the flare-ups or in-
flammatory nature of gHO, suggesting the involvement of other inflammatory factors and
processes [178].

Multiple immune cell types have been showed to be involved in gHO formation [129].
In early fibroproliferative lesions from FOP patients, researchers found BMP4 upregula-
tion in lymphoblastoid cell lines [179]. Similar studies in mouse models have shown that
hematopoietic stem cells play a role in the early inflammation phases of BMP4-induced
HO [180]. Using mouse hematopoietic stem cell transplants, researchers found that trans-
plantation of normal bone marrow alone did not attenuate FOP progression; however,
immunosuppression of these mice led to decreased HO formation [180]. Other studies have
shown the involvement of monocytes, macrophages, and mast cells at the sites of abnormal
bone formation in FOP [90,129]. When HO lesions were investigated in FOP patients,
mast cells were present at every stage of development, with early FOP lesions showing
the presence of perivascular inflammatory infiltrates [91,102,153]. In a conditional mouse
knockout model of mast cells, the HO volume was reduced by 50% in mice with ACVR1
mutations, revealing an essential role of mast cells in HO [91]. Furthermore, monocyte and
macrophage lineages also appear to play a significant role in the inflammatory process
of FOP, as BMP receptors are robustly expressed on monocytes and tissue macrophages
involved in HO formation [102,181]. Monocytes isolated from FOP patients have also
shown evidence of increased DNAM-1 expression, which plays a role in monocyte mi-
gration, leading to the thought that monocytes play a role in the early activation of FOP
flare-ups [182].

In addition to these inflammatory cells, human blood samples have demonstrated
significantly increased cytokine levels and inflammatory pathways in FOP patients. When
monocytes collected from FOP patients were stimulated with lipopolysaccharide (LPS), they
showed the prolonged activation of NF-κB, suggesting its role in FOP inflammation [37].
These and other findings have shown that ACVR1 activity causes a pro-inflammatory state
through increased NF-κB [183]. Additionally, transforming growth factor beta (TGF-β),
a cytokine released by monocytes and macrophages, is increased in FOP patients and
has been shown to attenuate HO formation in FOP mouse models when systemically
suppressed [37,118]. This implicates TGF-β as a potential inducer and promoter of HO [37].
As TGF-β is linked to tissue repair macrophages, it also implicates myeloid cells’ role in
FOP HO formation during early inflammatory phases.

In a similar manner to FOP, tHO has shown to be at least in part driven by inflamma-
tory processes, many of which overlap with FOP inflammatory mechanisms. Like FOP
patients, individuals with tHO have shown evidence of increased immune cell presence as
well as increased inflammatory cytokines such as IL-3, IL-6, IL-10, and MCP-1 following
blast and penetrating combat injuries [184–187]. Burn/tenotomy HO mouse models have
also shown early increased levels of IL-6 and IL-1α in mice that form HO [187]. Recent
studies have shown that the NF-κB signaling pathway plays an important role in tHO;
when the NF-κB cascade was blocked, HO formation significantly decreased [188]. Similar
to TGF-β pathways implicated in FOP, a recent study in a burn mouse model revealed
that TGF-β1-producing macrophages are associated with HO, and a systemic reduction in
macrophage-produced TGF-β levels helped to ameliorate HO [186]. Overall, these studies
illustrate that both gHO and tHO are heavily influenced by inflammatory cells and path-
ways. While inflammatory cells such as macrophages, mast cells, and adaptive immune
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cells play roles in the development of HO, how they trigger the activation of HO formation
remains to be fully elucidated. Continuing to study the link between inflammation in FOP
and tHO can lead to synergistic advancements of knowledge in both fields and hopefully
lead to new potential treatments for all patients with HO.

7. Nervous System Involvement in HO

FOP and tHO both cause increased levels of pain. Patients suffering from FOP experi-
ence moderate to severe pain at baseline as well as during flare-ups [189,190]. Traumatic
HO patients often endure pain at the injury or surgical site during ectopic bone formation
as well as months and years after HO has matured [3,145,191]. HO tissue excised from
patients has been previously shown to be highly innervated, which may contribute to the
pain experienced by patients [192]. Because of these reports, researchers have investigated
the role of the peripheral nervous system in ectopic bone formation.

Following a burn/tenotomy model of HO, peptidergic and sympathetic autonomic
nerves innervate the tendon injury site. The inhibition of nerve signaling, either by sciatic
neurectomy or pharmacologic blockage of nerve growth factor (NGF) or its receptor TrkA,
reduced neural ingrowth and HO formation [192]. Neurectomy ultimately reduced HO
formation by altering chondrogenic differentiation [192]. Interestingly, nerves recruit new
blood vessels through the secretion of pro-angiogenic factors, similar to the role of nerves
in endochondral ossification during normal bone development [193,194]. BMP2 induction
models of HO, where BMP2 is injected into muscle, resulting in HO development, show
peripheral nerve involvement [195]. The neurogenesis found in these models was associated
with increased levels of mast cell infiltration and degranulation at the BMP2 induction
site. Cromolyn inhibition of this degranulation reduced HO formation, suggesting a
neuroinflammatory role in HO [195].

Neurogenic forms of tHO have been documented after insults to the central ner-
vous system. Cerebral vascular accidents have been implicated in the development of
nHO [196,197], and both traumatic brain injury (TBI) and SCI have been reported to sig-
nificantly increase the risk of nHO [3,198,199]. Additionally, patients suffering from TBI
with concurrent fractures report increased fracture healing rates [200], suggesting a pro-
osteogenic effect following nervous system injury. While there is limited research on the
effect of TBI or SCI on ectopic bone formation, elegant studies have described the effect of
the adrenergic nervous system on macrophage phenotype switching to M2, which increases
osteogenesis [201]. Further work will need to be performed to elucidate whether these
factors or others are at play in nHO.

The peripheral nervous system provides pro-osteogenic niches in tHO, recruiting
critical factors for chondrogenic and osteogenic differentiation. The neurogenesis following
injury may contribute to the increased pain experienced by patients; however, it remains
unclear whether reducing neural ingrowth also reduces HO-related pain. Further, some
patients with FOP exhibit significant neurologic phenotype with heightened sensitivity to
pain, suggesting nervous system involvement in FOP that still needs to be elucidated [79].
Future animal studies of FOP, tHO, and nHO should include functional tests, such as von
Frey and algometer testing, to better understand how pain is modulated with treatments.

8. Current Therapeutics for HO
8.1. Traumatic HO

Treatment for tHO once it has matured is limited. Surgical removal represents a
controversial but potentially effective option. The early resection of lesions within the
first year of diagnosis has positive results, with relatively low rates of recurrence [202,203].
However, in many cases, the risk of recurrence, along with the technical difficulty of fully
removing tHO from anatomical locations like the thoracic cavity, make surgery a less
optimal solution for some patients [5]. As a result, many of the remaining therapies relating
to tHO are supportive or prophylactic in nature.
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While complete removal and cure of tHO remains a challenge, supportive measures
can be taken to alleviate patients’ symptoms. Physical therapy (PT) is known to improve
pain and range of motion with other disabling conditions [204] and can be considered for
patients with deficits in range of motion due to tHO. However, PT has not been well-studied
in the context of HO, and conflicting opinions on the impact of PT on HO exacerbation exist
within the PT community [205]. As such, PT’s impact on tHO and its symptoms represents
a worthwhile avenue for exploration.

The prevention of tHO formation in high-risk individuals (i.e., individuals undergoing
planned procedures like total hip arthroplasty) can be achieved using certain therapeu-
tics. While these methods have demonstrated prophylactic efficacy, they each come with
their own set of drawbacks. Non-steroidal anti-inflammatory drugs (NSAIDs), like in-
domethacin, have been demonstrated to prevent tHO formation after hip replacement [206].
However, their effectiveness in preventing tHO after other surgeries is inconsistent [207],
and they come with their own host of gastrointestinal and renal side effects. Radiation
therapy courses attenuate HO formation if initiated within 48 h of hip surgery but come at
the risk of secondary malignancy [208]. Bisphosphonates, like etidronate, have historically
been used for tHO prophylaxis but are cost-prohibitive and do not exhibit significantly
better outcomes when compared to NSAIDs [209].

8.2. Genetic HO

Currently, there are no curative treatments for FOP. Standard-of-care therapy remains
focused on supportive measures, including the judicious use of glucocorticoids and NSAIDs
within 24–48 h of a flare-up to decrease the excessive inflammation present in early FOP
lesions [89]. However, these therapies are not particularly effective in preventing HO, and
they do not mitigate the progressive nature of this disease. Furthermore, there are notable side
effects with long-term corticosteroid use, making this a less favorable drug for chronic treat-
ment. Mast-cell inhibitors and leukotriene inhibitors are also often used on a chronic basis
to empirically address the inflammatory aspect of early FOP lesions [210,211]. Bisphospho-
nates are occasionally used for refractory flare-ups that do not respond to glucocorticoids;
however, concrete clinical data for these treatments are sparse [211]. Avoidance of trauma
and injury, which would, in turn, reduce inflammation, remains the mainstay of therapy.
Surgical resection, which can be used in some non-genetic causes of heterotopic ossification
(e.g., trauma, burns, spinal cord injuries, and hip surgery), is contraindicated in patients
with FOP as it can induce inflammation and trigger a cascade of unrelenting, excessive
bone formation at both the surgical site and at distant locations [89,212–214].

Recent clinical discoveries and research have identified several potential therapeutic
options for managing new HO formation in FOP (Figure 4). Multiple compounds are cur-
rently being evaluated in clinical trials. These include palovarotene (NCT05027802) [215,216],
a recently approved retinoic acid receptor-γ agonist that blocks BMP signaling and the
conversion of cartilage to bone; garetosmab (NCT05394116) [217,218], an anti-activin A
antibody that decreases the neo-ligand signaling induced by the ACVR1R206H mutation;
rapamycin [219] (https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000
032495, accessed on 4 September 2023), an immunosuppressant with anti-proliferative
properties; and several kinase inhibitors directed against ACVR1, including zilurgis-
ertib (INCB000928, NCT05090891), fidristertib (IPN60130, NCT05039515), and saracatnib
(NCT04307953).

In addition, several medications have been considered for off-label use based on case re-
ports showing potential benefits in FOP. A number of these are immunomodulators, including
canakinumab [220], imatinib [220], and tofacitinib [221]. These therapeutic directions target
different stages of HO, and some may be more specific to FOP. However, drugs that have
more mechanistic targets rather than FOP-specific targets, such as palovarotene and immune
modulators, may also find potential benefits for non-genetic forms of HO and warrant further
study. Examples include potential uses of anti-IL1 therapies in nHO [222] and NSAIDs for
prophylaxis against tHO after total hip arthroplasties [223,224]. Further, while radiation

https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000032495
https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000032495
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therapy can be used for tHO prophylaxis, it is not used in patients with FOP due to the risks
of inducing further muscle inflammation [225] and triggering subsequent HO.
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9. Conclusions

Heterotopic ossification is a debilitating disease process that can be mediated by both
genetic and non-genetic mechanisms. The development of HO relies on the interplay of
signaling within a heterogeneous environment. Genetically mediated forms of HO found
in FOP follow a known pathway involving a mutation in ACVR1, leading to dysregulated
ALK2 signaling down a pro-osteogenic pathway. The identification of this signaling cascade
has allowed for the development of drug therapies like palovarotene and garetosmab.
While this signaling cascade has been well-established, the growth of ectopic bone in gHO
and tHO remains a complex and elusive process involving progenitor, inflammatory, and
nerve cells. The goal of this review was to provide insights into the current understanding
of how each of these cell populations contributes to HO pathology. Progenitor cell research
has identified discrete populations that differentiate directly into HO, as well as create an
environment conducive to osteogenic development. Inflammatory cells, like macrophages,
mast cells, and adaptive immune cells, have been implicated in the development of both
gHO and tHO. Further, the study of HO in the context of its neurological environment
is still developing, and with further advancements in this field, we will have a more
comprehensive view of HO development within both genetic and traumatic contexts.
While no reliable, curative treatments exist for either tHO or gHO once it has formed,
clinical studies on compounds for the prophylaxis and prevention of HO development are
in progress. The development of non-invasive, point-of-care (POC) diagnostic modalities
that can pinpoint the early stages of tHO and nHO to detect early HO formation and
progression following traumatic events is desperately needed for an improved clinical
decision support system for HO management. For gHO, targeted therapies at ACVR1 and
downstream signaling are being assessed. More generalizable therapeutics, like NSAIDs
for prophylaxis, have shown potential outside of FOP with tHO and will need to be further
evaluated. Overall, while significant strides are still needed for the clinical treatment of both
traumatic and genetic HO, recent advancements have improved our ability to diagnose,
understand, prevent, and treat them both.
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