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Abstract: Poly (ADP-ribose) polymerase 1 (PARP1) is an ADP-ribosylating enzyme 

essential for initiating various forms of DNA repair. Inhibiting its enzyme activity with 

small molecules thus achieves synthetic lethality by preventing unwanted DNA repair in the 

treatment of cancers. Through enzyme-dependent chromatin remodeling and enzyme-

independent motif recognition, PARP1 also plays important roles in regulating gene 

expression. Besides presenting current findings on how each process is individually 

controlled by PARP1, we shall discuss how transcription and DNA repair are so intricately 

linked that disturbance by PARP1 enzymatic inhibition, enzyme hyperactivation in diseases, 

and viral replication can favor one function while suppressing the other. 

Keywords: ADP-ribosylation; DNA repair; transcription; PARP inhibitors; cancer; 

inflammation; oncogenic virus 

 

1. Introduction 

Poly (ADP-ribose) polymerase 1 (PARP1) is well known as an ADP-ribosylating enzyme, which 

becomes activated upon binding to DNA single-strand and double-strand breaks (ssDB and dsDB 

respectively) [1–6]. The interaction is important for DNA repair, as auto-ribosylation is necessary to 

assemble and activate multiprotein complexes to carry out the process [6,7]. The critical role of PARP1 

in DNA repair is reflected by its frequent upregulation in cancer [8,9], as well as the hypersensitivity 
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of PARP1 null animals towards the mutagenic effects of DNA damaging agents [10]. Since PARP1 is 

involved in the repair of modified bases, ssDB and dsDB [7], blocking the ADP-ribosylation activity 

with small molecules, can achieve synthetic lethality with DNA damaging agents in the treatment of 

cancer [8,9,11–17]. Besides DNA repair, the importance of PARP1 as a transcriptional regulator is 

also well established. As an enzyme, PARP1 acts on chromatin remodeling complexes to control DNA 

accessibility for RNA polymerase [18–22]. PARP1 also functions as a transcription factor by binding an 

octamer motif in promoter elements to regulate gene expression [23–30]. Interestingly, despite the roles 

of PARP1 in DNA repair and transcription, little is known about how one process affects the other. In 

this review, we will summarize the roles of PARP1 in DNA repair and transcriptional regulation. 

Through the motif–PARP1 interaction, we will also discuss how transcription and DNA repair affect 

one another in normal cell functions and diseases states. 

2. PARP1 Function and Regulation 

PARP1 is the first to be identified among a family of 17 proteins that cleaves NAD
+
 for the ADP-

ribosylation of protein acceptors, generating nicotinamide as a by-product [16,31]. The large 113kDa 

nuclear protein usually has low intrinsic enzymatic activity [32] which may be significantly enhanced by 

binding both ssDB and dsDB via either of its N-terminal zinc fingers [33], bringing about conformational 

changes through its third zinc finger to increase catalytic activity at the C-terminal [3,34,35]. As large 

amounts of negative charges are conferred by adding extensive polymers of ADP-ribose (PAR), PARP1 

modulates the activity of its substrates, including itself, to control several important cellular functions 

(Figure 1) such as DNA damage repair, transcriptional regulation and cell death [6,16,19–22,31,36–42]. 

However, PAR is short-lived and as soon as its purpose is served, it is rapidly degraded within minutes 

of synthesis by the exoglycosidic and endoglycosidic activities of poly (ADP-ribose) glycohydrase 

(PARG) or PAR hydrolase (ARH) [6]. 

2.1. Regulating PARP1 ADP-Ribosylation Activity 

PARP1 enzymatic activation accounts for the bulk of cellular ADP-ribosylation reactions [43,44] 

and consumes large amounts of NAD
+
. The accumulation of PAR is a cytotoxic signal as targeted 

disruption of PARG is shown to be embryonically lethal in mice and associated with apoptotic cell 

death in blastocysts [45]. Not surprisingly, PARP1 enzymatic activity is thus regulated at several levels 

(Figure 1). Acting directly at the catalytic domain, the by-product nicotinamide exerts mild inhibitory 

effects on PARP1 ADP-ribosylation activity [8,9,14,15,17]. The molecular basis for interference with 

NAD
+
 binding is well studied, and often imitated or improved upon when designing high affinity small 

molecule inhibitors targeting PARP1 functions. The end product PAR also helps to limit NAD
+
 

consumption by mildly inhibiting PARP1 and, when becoming highly branched, confers excessive 

negative charges for repulsion from DNA, switching off ADP-ribosylation. Interestingly, while the 

best characterized ligands for the PARP1 enzyme are ssDB and dsDB, PARP1 has a higher affinity for 

intact DNA and specifically recognizes the octamer motif “RNNWCAAA” found in various gene 

promoters [23]. This interaction suppresses PARP1 ADP-ribosylation activity and interferes with its 

enzyme-dependent functions. 
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Figure 1. PARP1 function and regulation. Abbreviations: Granz: Granzyme; Casp:Caspase; 

TF: Transcription factor. 

 

Various posttranslational modifications are known to regulate PARP1 enzyme activity. PARP1 may 

be acted upon by other members of the PARP family such as PARP2, and mono-ADP-ribosylation by 

PARP3 has been shown to enhance PARP1 activity and automodification [46]. Other enzymes 

possessing ADP-ribosylating activity, such as SIRT6, also act on PARP1, promoting dsDB repair in 

oxidative stress [47]. Depending on which residue is modified on the large protein, PARP1 

phosphorylation seems to exert differential effects on its ADP-ribosylation activity. In the presence 

and absence of damaged DNA, its catalytic activity may be significantly enhanced and maximized by 

action of phosphorylated ERK2 [48–50]. Similarly, phosphorylation by activated calcium-dependent 

protein kinase (CaMKII) during neuronal development activates PARP1 enzyme and promotes the 

nuclear export of its negative regulator KIF4 [51]. However, overexpression of protein phosphatase 5 

(PP5) increases PARP1 enzymatic activity towards dsDB [52], suggesting that the kinases and PP5 act 

on different residues to bring about contrasting effects on PARP1 enzymatic activity. Intricate cross-

talks between PARP1 acetylation and sumoylation have also been observed, where modification by 

SUMO1 and SUMO3 prevents p300-mediated acetylation of PARP1 [53]. Given the number and types 

of posttranslational modifications PARP1 is subjected to, it would not be surprising to find more of 

such cross-talks.  
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Besides direct interference with catalysis and molecular switches by posttranslational modification, 

several proteins are known to bind and modulate PARP1 activity. Perhaps acting as a convenient 

source of substrate, nuclear NMNAT catalyzes the final step of NAD
+
 synthesis and associates with 

PAR to enhance PARP1 enzyme activity [54]. Other proteins regulating PARP1 activity include Ku [52], 

histone variant mH2A1.1 [55] and KIF4 [56]. Another important strategy often used in cell death pathways 

to control PARP1 activity is cleavage by proteases. In early apoptosis, PARP1 is one of the first substrates 

cleaved by caspase 3 and caspase 7 between the second and third zinc-binding domains [57,58], 

preventing DNA strand-break binding from inducing NAD
+
 catalysis [40,59,60]. In immune responses, 

cytotoxic lymphocytes and NK cells release of granzyme A and granzyme B that also target PARP1 [61]. 

In response to intracellular calcium perturbations, PARP1 may also be cleaved by calpain 1 [61,62]. 

Furthermore, PARP1 cleavage is also observed in autophagic and necrotic cell death pathways by 

action of various cathepsins [61,63]. The cleavage of PARP1 by a myriad of proteases at different loci 

seems to be a common mechanism in cell death, however, the significance of this is not yet fully 

understood.  

2.2. PARP1 Substrates and Effectors Play Important Roles in Transcription and DNA Damage Response 

PARP1 is itself the major acceptor of PAR [43]. The extensive branching network of PAR on 

PARP1 acts as the cue to attract and assist in assembling multiprotein complexes involved in 

chromatin remodeling, DNA repair and damage checkpoint signaling (Figure 1) [50,64–69]. Histones 

such as H1 and H2B are important substrates of PARP1 [22,65,70,71], which, when displaced by  

ADP-ribosylation, enables enhanced accessibility of large protein complexes assembled during DNA 

repair and transcription. After strand-break dependent activation, DNA repair scaffold proteins such as 

XRCC1 may be directly recruited by automodified PARP1 [72], while PAR provides the localization 

signal for directing the nucleosome repositioning enzyme ALC1 (Amplified in Liver Cancer 1) [73] in 

response to DNA damage. PAR also recruits the DNA damage checkpoint protein ATM (Ataxia 

Telangiectasia Mutated) [74], activating the signaling cascade for DNA damage and cell cycle arrest. 

Besides recruiting and activating nuclear complexes, PARP1 also exerts its effects by directly modifying 

protein activity and localization. Transcription factors and transcription coregulators such as SP1, Oct-1 

and hnRNP K (heterogeneous nuclear ribonucleoprotein K) are known targets of PARP1, when ADP-

ribosylated are repelled from DNA hence resulting in altered transcript expression profiles [31,75–77]. 

The bulky posttranslational modification prevents the association of transcription factors p53 and NF-B 

to nuclear export factors such as Crm1, enabling nuclear retention [78,79]. Thus, through altering 

transcription factor function and localization, as well as remodeling chromatin structure and recruiting 

DNA processing complexes, PARP1 plays pivotal roles in both transcriptional regulation and DNA 

damage response. 

3. PARP1 ADP-Ribosylation Activity Is Important for Mediating DNA Repair 

Though not directly involved in any of the processes per se, PARP1 initiates and modulates 

multiple DNA repair pathways (Table 1) and is thus important for maintaining genomic integrity. 

Indeed, PARP1 knockout mice are highly susceptible to DNA damaging agents such as -irradiation 

and DNA alkylating agents, accounting for DNA strand break accumulation, increased sister 
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chromatid exchange, and high genomic instability in them [80]. While these mice are viable and 

phenotypically normal [80], PARP1 knockout mice haploinsufficient for DNA repair enzymes such as 

Ku80 have increased spontaneous mutations and present higher liver and brain tumor incidence with 

age [81,82]. Female PARP1 knockout mice also develop mammary carcinomas with age, which is 

accelerated with the loss of p53 [83]. The importance of PARP1 for DNA repair is further demonstrated 

by embryonic lethality in knockout mice models doubly-deficient for PARP1 and DNA repair proteins 

Ku80 [82], BRCA1 [84], ATM [38] or DNA polymerase  [85]. The requirement for PARP1 in DNA 

damage repair is dependent on its ADP-ribosylation activity, as all male rats fed on a diet to deprive 

liver NAD
+
 spontaneously developed hepatocellular carcinoma with age [86]. 

Table 1. Involvement of PARP1 and PAR in DNA repair pathways. 

DNA Repair Mechanism PARP1 Function References 

Base excision repair (BER) 
Binds AP site 

Auto-modified PARP1 recruits BER complex 

[87] 

[88] 

Nucleotide excision repair (NER) ADP-ribosylates XPA [89,90] 

Mismatch repair (MMR) ADP-ribosylates MSH6 [89,90] 

Single-strand break repair (SSBR) Auto-modified PARP1 recruits BER complex [88,91,92] 

Double-strand break repair by 

nonhomologous end joining (NHEJ) 

Ku enhances PARP1 ADP-ribosylation activity 

ADP-ribosylates and activates DNA-PKcs  
[89,90] 

Double-strand break repair by  

homologous recombination (HR) 

Auto-modified PARP1 recruits Mre11 [66] 

PAR activates ATM signalling [74] 

3.1. PARP1 in the Repair of Modified DNA 

Several DNA repair pathways are in place to tackle a variety of genotoxic lesions. These pathways 

are activated depending on the type of DNA insult and phase within the cell cycle. Minor damage to 

bases such as methylation may be chemically reversed by specific glycosylases such as MGMT in an 

energy inefficient “suicide” reaction, restoring the base but rendering the enzyme unusable for subsequent 

reactions. To overcome this, base excision repair (BER) complexes targeting nonbulky modified bases 

may be recruited by PARP1 (Figure 2). Base modification by methylation, deamination and oxidation 

are recognized and removed by specific DNA glycosylases, generating an apurinic/apyrimidinic site 

(AP site) which, through a mechanism that is not completely understood, recruits PARP1 and APE1 [87]. 

APE1 removes the deoxyribose phosphate backbone at the site of lesion, generating nicked DNA 

which significantly enhances PARP1 ADP-ribosylation activity. The highly charged PAR produced 

keeps the DNA structure open [1] while various components of the BER complex are recruited. These 

components include the scaffold protein XRCC1 (X-ray Repair Cross-Complementing Protein 1), the 

DNA end-processing kinase/phosphatase PNK (Bifunctional polynucleotide phosphatase/kinase), the 

gap-filling polymerase DNA polymerase  and DNA ligase III [91,92] (Figure 2). By the time the 

BER complex is assembled, PARP1 accumulates enough negative charges for repulsion from the DNA 

lesion, enabling the BER and subsequent ligation to restore DNA.  
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Figure 2. The role of PARP1 in base excision repair (BER). PARP1 may also mediate 

DNA single-strand break repair by recruiting the BER complex.  

 

Large adducts that distort DNA structure such as thymine dimers formed by UV irradiation require 

nucleotide excision repair (NER) for resolution [91,93]. In transcriptionally quiescent cells, global 

genomic NER (GG-NER) is initiated by the recruitment of XPC/HHRAD23B complex whereas in 

cells undergoing active transcription, the stalled RNA polymerase II is displaced with the aid of CSA 

and CSB proteins in transcription coupled NER (TC-NER). The two sub-pathways converge with the 

unwinding of DNA at the site of damage by transcription factor IIH, and the recruitment of DNA 

lesion recognition factors XPA and RPA. The endonucleases XPG and ERCC1/XPF then cut one 

strand of the unwound DNA at either ends of the damage to produce a 23–30 nt fragment containing 

the DNA lesion. While the resultant gap in DNA is not known to bind PARP1, XPA interestingly has 

been shown to be associated with PAR [90,91] (Table 1). Prior to DNA ligation the gap is repaired by 

DNA polymerase  or , together with factors including PCNA, RPA and RFC. 

When faced with singly or doubly mismatched bases and small loops arising from insertions or 

deletions, lesion recognition by MUTS (MSH2-MHS6 heterodimer) initiates DNA mismatch repair 

(MMR) [92] and the recruitment of MUTL (PMS2-MLH1 heterodimer). Conformation changes 

allow MUTS-MUTL to move along and nick DNA near the mismatch, enabling EXO1 

(Exonuclease 1) to cleave and remove the damaged section of DNA. It is unclear whether PARP1 is 

activated at the site of DNA strand break, but MSH6 has been shown in independent studies [89,90] to 

be an acceptor of PAR (Table 1). Subsequently, gap filling by DNA polymerase  or  followed by 

ligation restores DNA. 
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3.2. PARP1 in the Repair of DNA Strand Breaks 

DNA strand breaks may be directly induced by -irradiation or X-rays, as well as drugs such as 

bleomycin [51]. Under physiological conditions, they can be purposefully induced to enhance genetic 

diversity for meiotic recombination and antibody class switching [94]. Stalled replication forks may 

also require dsDB for resolution [66]. Single-strand DNA breaks are readily repaired by the BER 

complex, as PARP1 readily recognizing nicked DNA to organize its recruitment. The repair of dsDB is 

trickier as the involvement of both DNA strands prevents the use of neither as template. Thus, two 

pathways have evolved to repair such DNA lesions—nonhomologous end joining (NHEJ) and 

homologous recombination (HR). Even though their mechanistic details have not been fully 

elucidated, recent data indicates that PARP1 is not only involved in them (Table 1) but possibly also 

controls the choice of pathway utilized [95–98].  

HR repairs DNA with high fidelity, using either homologous chromosomes in G1 phase or the sister 

chromatid after DNA replication as the blueprint for repair [99]. Following end recognition, the MRN 

complex comprising Mre11 nuclease, Rad50 and Nbs1 is recruited along with CtIP complex bearing 

BRCA1 to resect DNA, generating 3’ single-stranded overhangs which are stabilized by RPA1. 

PARP1 may contribute to this process at stalled replication forks by binding short single-stranded 

overhangs and recruiting Mre11 [66]. MRN also activates ATM signaling, initiating the DNA damage 

response including cell cycle arrest. BRCA2 then mediates the exchange of RPA1 for RAD5, and 

directs the presynaptic filament in its search for homologous DNA template. Strand invasion and 

exchange ensues, allowing DNA polymerase to extend the 3’ end of the invading strand. Repaired 

heteroduplexed DNA is generated after DNA ligase I joins the DNA ends and the resultant holiday 

junctions resolved by resolvases. When the damaged DNA may not be rapidly repaired, ssDNA-RPA1 

may activate ATR signaling via DNA resection to sustain the DNA damage response [100–104]. This 

involves RPA1 interaction with ATRIP, RFC-mediated loading of the 9-1-1 clamp, and subsequent 

recruitment of TOPBP1 (topoisomerase binding protein 1) necessary for ATR activation.  

NHEJ is an error-prone mechanism that ligates DNA ends together, often occurring in G1 phase 

when a suitable repair template is not available [105]. The ring-structured Ku heterodimer comprising 

Ku70/Ku80 slips and binds onto the broken ends of DNA, recruiting other factors such as DNA-PK 

(DNA-dependent protein kinase), XRCC4 and DNA ligase IV. DNA strand-break binding activates the 

catalytic subunit of DNA-PK (DNA-PKcs), initiating DNA damage signaling cascade by 

autophosphorylating substrates including ATM, p53 and itself, while DNA end-processing enzymes 

such as Artemis prepares the damaged DNA for ligation. Recent data points to the recruitment of MRN 

for end processing, as well. As V(D)J recombination for antibody class switching utilizes the NHEJ 

machinery, the unusual antibody profiles of PARP1 knockout mice point to its involvement in the 

process [94]. Instead of directly binding dsDB, PARP1 ADP-ribosylation activity is strongly enhanced 

by interaction with Ku, forming a functional complex with DNA-PK [52]. The kinase activity of DNA-PK 

is significantly increased by ADP-ribosylation [106]. However, the precise role of PARP1 in NHEJ is 

still unclear. 
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3.3. Uncontrolled PARP1 ADP-Ribosylation Activity during DNA Repair Results in Cell Death 

When DNA damage is minimal, the recruitment of PARP1 to sites of DNA lesions activates the 

DNA damage response. Depending on the type of lesion encountered, signaling mediated by molecules 

such as p53 and ATM or ATR to promote cell cycle arrest, buying time for DNA repair enzymes to 

work. However, when DNA damage is extensive and irreparable, PARP1 is rapidly cleaved within 

minutes of DNA damage by effector caspases [107,108], presumably to prevent futile DNA repair 

when DNA is eventually cleaved later in the process. The dissociated N-terminal fragment is believed 

to remain bound to DNA strand breaks while the C-terminal is rapidly shuttled out of the nucleus. 

While the reason for PARP1 cleavage is not clear, their different subcellular localizations is thought to 

conserve energy required for apoptosis by preventing unnecessary NAD
+
 consumption. In support of 

this, energy failure by making large amounts of PAR when DNA is extensively damaged results in cell 

death by necrosis instead [8,16,40,41,59,109]. PAR can also mediate PARP1-dependent cell death 

(parthanatos) through the release of Apoptosis-inducing factor (AIF) from mitochondria in a caspase-

independent manner [42,110].  

4. PARP1 as a Transcriptional Regulator Controlling Expression of DNA Damage Response Genes 

PARP1 is an important regulator of transcription, as can be seen at PAR-rich Drosophila chromosomal 

“puffs” undergoing active transcription [111]. The importance of PARP1 in controlling transcription 

was further supported by global alterations in gene expression [112–114], most notably of those 

involved in cell cycle, DNA repair and metabolism. Transcriptional regulation by PARP1 involves 

both ADP-ribosylation-dependent and independent mechanisms (Figure 3). Furthermore, PARP1 

exerts its effects on transcription both in a DNA sequence-dependent and independent manner, through 

motif recognition at specific gene promoters [24–27,30,115–123] and chromatin remodeling [20,22], 

respectively.  

4.1. PARP1 ADP-Ribosylation Activity Controls Transcription States 

The “opening” of chromatin for active transcription often requires PARP1 ADP-ribosylation 

activity (Figure 3A) [18,22]. In the absence of NAD
+
, minimally automodified PARP1 acts as a 

transcriptional repressor by bridging neighboring nucleosomes to compact chromatin [18]. However, 

when enzymatically activated, the extensive negative charges conferred by automodified PARP1 

loosens chromatin structure, thereby enabling transcription factors to bind. Upon recognition of its 

response element, transcription activators such as estrogen receptor  recruit a complex containing 

topoisomerase II- and PARP1 [65]. While the topoisomerase resolves DNA secondary structures by 

creating transient dsDB, the DNA lesion activates PARP1 to ADP-ribosylate histones H1 and H2B. 

The negative charges on ADP-ribosylated histones repel DNA, loosening chromatin for increased 

DNA accessibility to the transcriptional machinery [18,22]. PARP1 is thus found in place of histone 

H1 in most transcriptionally active genes [21,69,70,113]. Modified histone H1 may also then be 

exchanged for histone H1-HMGB (histone H1 high mobility group B) favorable for transcription [65]. To 

maintain chromatin in its transcriptionally active state, PARP1 also prevents the histone demethylase 

KDM5B from approaching trimethylated histone H3K4 by repelling it from DNA through ADP-
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ribosylation [69]. The action of PARP1 on chromatin and chromatin remodeling complexes thus 

enables RNA polymerase II to load readily onto transcriptionally active promoter regions [69].  

Figure 3. The role of PARP1 in transcriptional regulation. (A) PARP1 relieves and 

maintains an “open” chromatin structure by ADP-ribosylation of histones or preventing the 

action of histone demethylase KDM5B. (B) PARP1 forms functional complexes with 

transcription factors such as NFB, altering their activity depending on its state of 

posttranslational modification. This interaction need not activate or require PARP1 enzyme 

activity, although when stimulated, ADP-ribosylation usually reduces the affinity of the 

complex for DNA cis elements. The effect of PARP1 on transcription in both cases is 

dependent on the type of binding partner and nature of promoter element recognized.  

(C) PARP1 acts as a transcription activator or repressor by binding its recognition motif. 

Grey arrows are repulsion from DNA or chromatin. R—ADP-ribosylation; TF—

transcription factor.  

 

By modulating the affinity of transcription factors for their response elements and interacting partners, 

ADP-ribosylation acts as a molecular switch to control transcription [76, 124–127] (Figure 3B). Through 

direct protein–protein interaction, PARP1 behaves like a coactivator or corepressor by forming a stable 

complex with transcription factors and its associated DNA cis element. Upon stimulation, the active 

PARP1 enzyme acts on its binding partner and results in complex dissociation from DNA. 

Transcription factors whose function is regulated by PARP1 in this manner include Oct-1 [76],  

SP1 [124], PPAR [125], Smad3/Smad4 [126] and Sox2 [127], accounting for the dysregulation of 

multiple genes, hence the perturbation of several cellular processes in the absence of PARP1. For 

instance, transcription initiated by functional interaction between Smad3/Smad4 and PARP1 is 

disrupted when TGF1 signaling activates the PARP1 enzyme, attenuating Smad-dependent gene 
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transcription for epithelial-mesenchymal transition [126]. Likewise, FGF/ERK signaling regulating 

embryonic stem cell differentiation relieves Sox2 interaction with its DNA responsive element by 

enhancing PARP1-dependent ADP-ribosylation [127].  

PARP1 can also exert its effects as an inactive enzyme by directly interacting with and altering 

transcription factor function (Figure 3B). While ADP-ribosylated NFB is retained in the nucleus [78], 

PARP1 controls its transcriptional activity [53,64,68,128,129] in an enzyme-independent manner. This 

is seen when acetylated PARP1 association with NFB results in transcription of its downstream 

targets [64]. Sumoylation of PARP1, however, prevents p300/CBP from acetylating PARP1, hence the loss 

of coactivator function [53]. Surprisingly, in response to inflammatory stimulation by lipopolysaccharide, 

PARP1 loses its repressive function on NFB at different sets of gene promoters when cleaved by 

inflammasome-dependent caspase 7, enabling transcription of pro-inflammatory genes [130]. Taken 

together, PARP1 is shown to be important for regulating transcription at multiple levels—from 

macroregulation of chromatin structure to the complex fine-tuning of gene expression which is 

dependent on its state of posttranslational modification.  

4.2. PARP1 is a Motif-Dependent Transcription Factor

Evidence for the sequence requirement of PARP1 transcription factor function (Figure 3C) came 

from studies of single nucleotide polymorphisms (SNP) within promoters that alter the affinity of PARP1 

for undamaged DNA. For example, a single CT SNP within the IFNAR1 (Interferon-/receptor 1) 

promoter reduces PARP1-dependent transcription hence confers increased susceptibility towards 

chronic infection from the hepatitis B virus (HBV) [27]. Likewise, increased affinity of PARP1 for the 

SMARCB1 promoter by a single GT SNP enhanced the SWI/SNF chromatin remodeling complex 

transcript and protein expression [26]. In agreement with phenotypes from promoter SNP variant 

analysis, single base substitutions within the HBV PARP1 binding motif was sufficient to abrogate 

transcriptional activation at the viral core promoter [23]. The effect of single base substitutions on 

promoter transcriptional activity concurred with the ability of PARP1 to bind the mutant DNA 

sequence [24], indicating that the motif through which PARP1 exerts transcriptional effects is 

“RNNWCAAA,” where “R” is “A” or “G,” and “W” is “A” or “T,” and “N” may be any nucleotide. 

Motif recognition is heavily reliant on the 3’ half of the sequence, especially at nucleotide positions 5 

and 6, as their mutation abrogated transcription and PARP1 binding. This recognition motif may be 

readily identified in other gene promoters whose activities are also regulated by PARP1, including 

immune regulators interferon- [119] and IL-10 [123], response elements of viruses such as the human 

T-cell leukemia virus (HTLV) [24], as well as BRCA2 [120]. Since BRCA2 is crucial for dsDB repair 

by HR, the finding that its expression is regulated by PARP1 suggests another means through which 

PARP1 controls DNA repair. Indeed, promoters of DNA repair genes often contain PARP1 binding 

motifs within 3kb upstream of the transcription start site (Table 2), many of which have important 

functions in HR.  

 

 

 

 



Biomolecules 2012, 2                

 

 

534 

Table 2. Genes involved in DNA repair that possess the PARP1 binding motif. 

DNA repair mechanism Gene Gene function [References] PARP1 motif 

Double-strand break repair by 

homologous recombination (HR) 

BRCA1 E3 ubiquitin ligase with multiple roles including 

controlling DNA damage signaling [131] 

GAAACAAA 

BRCA2# Mediates recombination [132,133] GGTACAAA 

BRIP1 Interacts with BRCA1 [131] AGTTCAAA 

GAGTCAAA 

OBFC2B SOSS complex component; ATM signaling [134] GCGACAAA 

SSBIP1 SOSS complex component; ATM signaling [134] GAGACAAA 

TOPBP1 Stalled replication forks; ATR signaling [135] ATTTCAAA 

ATTTCAAA 

NSMCE2 E3 SUMO ligase of SMC5-SMC6 complex [136] GGATCAAA 

SLX1B SLX1-SLX4 resolvase catalytic subunit [137,138] AGGACAAA 

DMC1 Meiosis-specific recombinase; Interacts with  

BRCA2 [132,139] 

AGAACAAA 

Base excision repair (BER) 

NEIL3 DNA glycosylase [140] AGCTCAAA 

AACACAAA 

MBD4^ DNA glycosylase specific for G:T or G:U 

mismatches within CpG islands [141,142] 

ACAACAAA 

Nucleotide excision repair (NER) CETN2 Component of XPC complex [143] GAGACAAA 

Mismatch repair (MMR) MSH6 Component of MMR [91] GGGTCAAA 

Direct base reversal ALKBH3 Oxidative demethylation of alkylated DNA [144,145] GCCACAAA 

Interstrand crosslink repair (ICL) FANCG Component of FA core complex [146] ACTACAAA 

DNA repair accessory proteins RPA1 Stabilize single-strand DNA intermediates GTGACAAA 

DNA polymerases 
POLA2 Subunit of primase complex GCTACAAA 

POLD3 DNA polymerase  subunit ACTTCAAA 

Gene promoters with PARP1 binding motifs within 3kb upstream of the transcription start site identified 

from BLASTn search on the human RefSeq database. #Gene promoter activity known to be regulated by 

PARP1. ^MBD4 interacts with MLH1 hence may also be involved in MMR [141,142]. 

5. Dysregulated PARP1 ADP-Ribosylation and Transcription Activities  

Although PARP1 is heavily involved in DNA repair and transcriptional regulation, PARP1 

activation at sites of DNA damage favors repair by shutting down transcription, recruiting polycomb 

and NuRD complexes that convert chromatin to its transcriptionally repressed state [147]. Conversely, 

as opposed to binding DNA strand breaks, sequence-specific motif binding suppresses the nuclear 

enzymatic activity of PARP1, reducing ADP-ribosylation on histone H1 and compromising cellular 

DNA repair [23]. However, the mechanism discriminating between intact binding motifs and damaged 

DNA remains unknown. Under physiological conditions, PARP1 ADP-ribosylation activity curiously 

follows the rhythmic circadian cycle [148]. The mechanism governing oscillating PARP1 enzymatic 

activity is not known, although in mice, autoregulatory loops with PARP1 acting as a transcriptional 

repressor at its own promoter may help to achieve this [149]. Rhythmic cycling of PARP1  

ADP-ribosylation activity predicts for temporally compartmentalized DNA repair and transcription 

factor functions, where the efficacies of each is conversely related and differs throughout the day in a 
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circadian rhythm-dependent manner (Figure 4). This intricate balance of PARP1 functions, however, 

may be perturbed in disease states such as cancer and inflammation, or by external agents such as 

small molecule PARP inhibitors and viruses, favoring one function over the other. The hepatitis B 

virus (HBV) provides a model to demonstrate this, whereby the utilization of motif–PARP1 interaction 

to drive viral replication suppresses PARP1 ADP-ribosylation activity hence compromises cellular 

DNA repair [23]. 

Figure 4. PARP1 DNA repair and motif-dependent transcription is intricately regulated 

and possibly temporally compartmentalized by the circadian rhythm. Disturbances to this 

may favor one function over the other, and arise from diseases such as cancer and 

inflammatory disorders, as well as the addition of small molecule inhibitors and utilization 

of PARP1 for viral replication. 

 

5.1. PARP1 Inhibition, Enzymatic Hyper-Activation and Disease 

As the major contributor of ADP-ribosylation activities in the cell, PARP1 receives lots of attention 

for its enzymatic hyperactivation in various diseases. In particular, the reliance on it for initiating 

multiple DNA repair pathways, especially BER, HR and NHEJ, is exploited by cancer cells to 

safeguard against cell death induced by the accumulation of cytotoxic DNA lesions. As such, PARP1 

expression is often elevated and its ADP-ribosylation activity increased in cancerous tissues [150,151], 

rendering it a good candidate for sensitizing cancer cells to the cytotoxic effects of DNA damaging 

agents [8,9,11–17]. Synthetic lethality may be achieved with PARP inhibitors designed to compete 

with NAD
+
 for the PARP1 catalytic site, and these small molecules have produced promising results in 

clinical trials for the treatment of several cancers. Further evidence for synthetic lethality was obtained 

in mice bearing BRCA1-deficient ovarian cancer cells, where life expectancy was significantly 

extended by delivery of nanoparticles containing siRNA targeting PARP1 [152]. PARP1 is also 

frequently implicated in inflammatory disorders such as sepsis, diabetes, myocardial infarction and 

stroke [8,9,11,12,15,16,109], as considerable by-stander DNA damage resulting from the generation of 

reactive oxygen species hyperactivates PARP1. Large amounts of NAD
+
 consumed in the process can 

also result in necrosis, aggravating the inflammatory condition. Under such circumstances, treatment with 

PARP1 inhibitors can provide symptomatic relief in animal models for such diseases [8,9,11–17,59,109], 

raising hope for clinical efficacy in the near future. 
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The ability of PARP1 to function without its enzymatic activity is often underappreciated. Indeed, 

many diseases involving PARP1 manifest independently of its ADP-ribosylation activity, and arise 

from dysregulated expression of molecules because of altered PARP1 affinity for its recognition motif 

in susceptibility genetic loci. Sequence-dependent PARP1 binding for SNP variants within promoter 

elements of the cytokine IL-10 [123], chemokine CCL2 [30], interferon / receptor 1 (IFNAR1) [27] 

and SMARCB1 [26], have all been associated with systemic lupus erythematosus (SLE), carotid 

atherosclerosis, chronic infection with HBV and acute lymphoblastic lymphoma (ALL), respectively. 

The effect of PARP1 inhibition on the outcome of such diseases, however, has not been evaluated. 

Importantly, because both PARP1 DNA repair and transcription factor functions may be implicated, 

the outcome of enzymatic inhibition in certain diseases need not be immediately conclusive. In 

diabetes, however, PARP inhibitors may be therapeutically beneficial as inhibiting ADP-ribosylation 

suppresses inflammation and concurrently enhances PARP1 transcription activator function at the Reg 

promoter for -cell regeneration [29]. Interestingly, PARP1 inhibitors have gender-specific effects on 

animal disease models [153]. Whether this may also be true in the clinical setting remains to be seen. 

5.2. Oncogenic Viruses—Inhibiting the PARP1 Enzyme to Enhance Viral Replication 

The balance of PARP1 functions between enzyme-independent transcription and enzyme-dependent 

DNA repair is easily tipped by external stimuli. HBV is one external agent which deprives the infected 

host cell of PARP1 activity for its efficient replication whilst preventing its function in DNA repair, as 

the PARP1 binding motif “ACTTCAAA” carried within its genome is readily recognizable for 

transcriptional activation [23]. This may contribute to the oncogenic properties of HBV, especially in 

carriers of the virus with high HBV DNA loads [154–156]. By utilizing PARP1 to increase replication 

efficiency, the large amounts of viral DNA produced act as template to support further viral replication 

while concurrently inhibiting PARP1 ADP-ribosylation, reducing DNA repair capacity of the infected 

host cell. Accumulation of sublethal DNA lesions with prolonged infection [157] thus increases the 

risk of developing hepatocellular carcinoma (HCC). Several oncogenic viruses also possess high 

affinity PARP1 binding motifs in their genome (Table 3), suggesting that they may act on PARP1 in a 

similar manner to increase host risk for developing cancer. Viral DNA-PARP1 interaction has already 

been shown to be important for enhancing replication of the human T-cell leukemia virus (HTLV) [24] 

and the Kaposi’s sarcoma-associated virus (KSHV) [158,159]. Since these studies also show that 

PARP1 enzymatic inhibitors positively regulate viral replication, the use of small molecules targeting 

only the PARP1 catalytic domain may be contraindicated in many patients with such viral infections. 

Given the potential benefits of PARP inhibitors for the treatment of multiple diseases, it is perhaps 

worthwhile to invest in novel strategies that can overcome the pitfalls of aggravating viral replication 

and altered transcription factor function of current PARP inhibitors.  
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Table 3. PARP1 binding motifs identified in oncogenic viral genomes. 

Oncogenic virus Gene or DNA element Motif 

Human herpesvirus 4 (EBV) OriLyt replication origin ACTTCAAA 

Hepatitis B Virus (HBV) Core promoter ACTTCAAA 

Human T-cell leukemia virus (HTLV) Tax responsive element ACGACAAC 

Human herpesvirus 8 (KSHV) 
ORF4 complement control protein GCTACAAA 

Primase ACGTCAAA 

Merkel cell polyomavirus VP3 capsid protein ACTTCAAA 

6. Conclusions 

PARP1 plays important roles in both DNA repair and transcription, and the interplay of these 

processes in relation to cellular function and diseases states have not been well defined. As PARP1 

binding motifs may be readily found in promoter elements of DNA repair genes, the expanding role of 

PARP1 in DNA repair need not be independent of transcription. Moreover, since PARP1  

ADP-ribosylation is very important for DNA repair and transcription, yet the PAR-independent 

mechanism of transcriptional regulation through specific binding of PARP1 at its recognition motif 

also exists, rhythmic cycling of PARP1 enzyme activity suggests that these processes are unlikely to 

occur optimally together. The suppression of DNA repair by motif-dependent replication of oncogenic 

viruses illustrates this possibility. Thus, there is a need to better understand the effect of PARP1 

inhibition in the therapeutic context and its effect on cellular transcription. 
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