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Abstract: The main function of the lymphatic system is to control and maintain fluid 

homeostasis, lipid transport, and immune cell trafficking. In recent years, the pathological 

roles of lymphangiogenesis, the generation of new lymphatic vessels from preexisting 

ones, in inflammatory diseases and cancer progression are beginning to be elucidated. 

Sphingosine-1-phosphate (S1P), a bioactive lipid, mediates multiple cellular events, such 

as cell proliferation, differentiation, and trafficking, and is now known as an important 

mediator of inflammation and cancer. In this review, we will discuss recent findings 

showing the emerging role of S1P in lymphangiogenesis, in inflammation, and in cancer. 
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1. Introduction  

The lymphatic system, composed of lymphatic vessels and lymphatic fluid, exerts important 

biological functions such as drainage of interstitial fluids and proteins to the blood stream and the 

transport of immune cells and nutrients [1]. Lymphangiogenesis is the process of formation of new 

lymphatic vessels from existing ones. Multiple signaling pathways orchestrate proliferation, sprouting 

and migration of lymphatic endothelial cells (LECs). Vascular endothelial growth factors (VEGF)-C 
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and VEGF-D and their receptor (VEGFR-3) are the most studied proteins in lymphangiogenesis. In 

adulthood, lymphangiogenesis can occur when LECs are stimulated by inflammation- or tumor-associated 

factors. Sphingosine-1-phosphate (S1P), which is also upregulated in inflammation and in tumors, has 

recently gained attention as a mediator involved in lymphangiogenesis. 

2. Lymphatic System 

The circulatory system transports blood and lymphatic fluid in our body. Lymphatic fluid is defined 

as the fluid component within lymphatic vessels, containing interstitial fluid, macromolecules, and 

cells collected from the blood vascular system by lymphatic capillaries [2]. The lymphatic vasculature 

forms a unidirectional network commencing from peripheral tissue as blind-ended capillaries which 

then merge to pre-collecting vessels, collecting vessels, and finally, to afferent vessels to lymph nodes [3]. 

Lymphatic capillaries are composed of a thin-layer of oak leaf-shaped LECs, which have discontinuous 

button-like cell-cell junctions [4]. These intrajunctional gaps provide highly permeable sites for 

leukocyte entry and uptake of lymphatic fluid components. The main functions of the lymphatic vessel 

network are maintaining tissue fluid homeostasis, transporting lipids and nutrients, and immune cell 

trafficking [1]. Lymphatic vessels drain interstitial fluids from peripheral tissue into the thoracic duct, 

returning the fluid to the blood circulation and providing routes for immune cell trafficking [5,6]. The 

anatomy of lymphatic vasculature implies an important function for this system in immune cell 

trafficking. Abundance of lymphatic vessels in skin, airway, and gut—the sites frequently exposed to 

pathogens or environmental factors—indicates that the lymphatic system participates in the regulation 

of inflammatory responses through its role as the trafficking route for lymphocyte transport to the 

lymph nodes for immune surveillance [5]. Failure of lymphatic system function can cause 

lymphedema, excessive fluid accumulation in tissue, and alteration of immune responses [3,7]. 

3. Regulators of Lymphangiogenesis 

Lymphangiogenesis is defined as the formation of new lymphatic vessels from existing ones. It 

occurs during embryonic development and becomes stable and quiescent after establishment of the 

lymphatic vasculature [3]. However, lymphangiogenesis can also be stimulated in adulthood to play 

physiological or pathological functions. It is known to occur in response to inflammatory conditions in 

peripheral tissues (skin, airway, and gut) and diseases such as inflammatory bowel diseases, rheumatoid 

arthritis, and cancer [8–11]. The regulation of lymphangiogenesis includes molecular mechanisms that 

are primarily mediated by growth factor-growth factor receptor systems (Table 1) and cellular 

mechanisms, predominantly involving myeloid cells.  
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Table1. Growth factors involved in lymphangiogenesis. 

Growth factor  Receptor  Main function  

VEGF-A  VEGFR-2  ● Recruit macrophage to facilitate inflammatory 

lymphangiogenesis  

● Generate giant and abnormal lymphatic vessels in cancer and 

chronic inflammation  

VEGF-C  VEGFR-2* 

VEGFR-3 

Neuropilin-2  

● Mediate embryonic lymphatic development 

● Induce proliferation, migration, and 

survival of lymphatic endothelial cells in inflammation and cancer  

VEGF-D  VEGFR-2* 

VEGFR-3 

Neuropilin-2  

● Induce proliferation, migration, and 

survival of lymphatic endothelial cells in inflammation and cancer  

Angiopoietin-1  Tie2 ● Mediate post-natal lymphatic patterning 

Angiopoietin-2  Tie2  ● Mediate post-natal lymphatic patterning 

● Might contribute to tumor-induced lymphangiogenesis  

* After proteolytical processing, mature forms of VEGF-C and VEGF-D could bind to VEGFR-2. 

3.1. Vascular Endothelial Growth Factor (VEGF)/VEGFR System 

The discovery of vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) 

stemmed from angiogenesis research [12,13]. The mammalian VEGF family includes five members: 

VEGF (also called VEGF-A), placenta growth factor (PIGF), VEGF-B, VEGF-C, and VEGF-D. The 

VEGFR family includes VEGFR-1, VEGFR-2, and VEGFR-3. Typical signaling from VEGFRs 

promote cell survival, proliferation, and migration [14]. Among them, VEGF-C, VEGF-D, and their 

receptor VEGFR-3 are key regulators of lymphangiogenesis in both physiological and pathological 

settings and provided the first insights into how lymphangiogenesis occurs [7,15–21]. Overexpression 

of either VEGF-C or VEGF-D causes lymphangiogenesis; however, only VEGF-C is involved  

in embryonic lymphatic development [22–28]. VEGF-C expression is found at the sites of lymphatic 

sac formation in development as well as in vascular smooth muscles cells and lymph nodes in  

adults [25,29–31], while VEGF-D is only expressed in adult tissue such as the lungs, heart, skeletal 

muscle, and intestine [32]. 

A unique two-step proteolytic cleavage enables VEGF-C and VEGF-D precursor proteins to 

convert to active and mature forms and therefore determines their binding affinity to VEGFR-2 or 

VEGFR-3 [33,34]. Only fully processed mature forms can bind to VEGFR-2. The role of VEGFR-3 in 

lymphangiogenesis has been established in VEGFR-3-deficient mice, which have been shown to  

have a similar phenotype to VEGF-C-deficient mice [25,27]. In addition to VEGFRs, VEGF-C and  

VEGF-D also bind to neuropilin-2 (Nrp2), a semaphorin receptor in the nervous system that is  

also expressed in lymphatic capillaries [23]. Binding of Nrp2 modulates VEGFRs signaling by 

providing specificity of signal transduction [35–37]. Consistently, Nrp2-deficient mice have lymphatic 
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hypoplasia [38]. Other than VEGF-C and VEGF-D, VEGF-A has also been shown to induce 

lymphangiogenesis in cancer [39] and chronically-inflamed tissue [40]. VEGF-A binds to VEGFR-2 to 

activate lymphangiogenesis; however, VEGF-A still cannot replace the role of VEGF-C in embryonic 

lymphatic development [25,41]. These reports strengthen the central role of VEGF-C in developmental 

lymphangiogenesis. 

3.2. Angiopoietin/Tie System  

In addition to the VEGF/VEGFR system, angiopoietins (Ang1, Ang2, and Ang3/4) and their receptors 

(Tie1 and Tie2) are also known as mediators for vascular vessel remodeling and integrity [42]. Tie1 

and Tie2 are the only known endothelial cell-specific receptor tyrosine kinases [43,44]. Tie1-deficient 

mice showed compromised integrity of vessel endothelial cells and pulmonary edema and died in  

utero [45]. Mice with deficiency or loss-of-function Tie2 died in embryo due to inability to expand the 

vasculature system [46,47]. Ang1, Ang2, and Ang3/Ang4 have high sequence homology and all have 

been reported to promote lymphangiogenic sprouting [48–50]. Although all four of the angiopoietins 

have been shown to interact with Tie2 [51–53], Ang1 and Ang2 are the best characterized compared to 

the others to date. Ang1 is an obligate agonist of Tie2 receptor while Ang2 acts both as agonistic and 

as antagonistic in dose- and context-dependent manners [51,52,54]. Ang2 is persistently expressed in 

LECs, whereas Ang1 is downregulated by prospero-related homeodomain transcription factor (Prox-1) 

when blood vessel-derived endothelium is reprogrammed to lymphatic endothelium by Prox-1 [55,56]. 

In addition, Ang-2-deficient mice have shown lymphatic vasculature defects that can be rescued by 

Ang1 [54,57]. More studies are needed to further delineate the complexity of the interrelationship 

between Ang1 and Ang2. 

3.3. Myeloid Cells 

Myeloid cells including leukocytes and macrophages also have been shown to participate in 

lymphangiogenesis [58]. A role for macrophages in post-natal lymphatic vessels remodeling has been 

suggested in mice deficient of macrophage colony stimulatory factor (M-CSF), where lymphatic vessel 

branching is reduced due to absence of macrophages in these mice [8]. In the adulthood of these mice, 

however, no abnormality can be observed. B cells also regulate expansion of lymphatic system as 

observed in lymphocyte-deficient mice [59,60]. In response to inflammatory stimuli such as 

lipopolysaccharide (LPS) or TNF-α, infiltrated macrophages express more VEGF-C and VEGF-D 

while LECs express higher Prox-1 and NF-κB to upregulate VEGFR-3 expression [61,62]. In a  

high-salt-diet-induced hypertension model, macrophages and dendritic cells are found to regulate  

the expansion of the lymphatic capillary network in skin through providing VEGF-C [63]. In  

various mouse tumor models, macrophage recruitment has been demonstrated to promote 

lymphangiogenesis [64–68]. Tumor-associated macrophages have also been linked to increased  

peri-tumoral lymphangiogenesis and metastasis in human cancer such as breast cancer [69], cervical 

cancer [65], squamous cell carcinoma [70], and advanced colorectal cancer [71]. Although still in 

debate, the general mechanism by which these macrophages, B cells, and dendritic cells contribute  

to lymphatic remodeling is through providing lymphangiogenic factors such as VEGF-A, VEGF-C, 

and VEGF-D. 
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4. Lymphangiogenesis during Development  

Lymphatic vascular development involves differentiation of LECs, lymphangiogenesis, and 

remodeling [3]. The blood vascular system develops earliest in embryos. Blood endothelial cells 

(BECs), differentiated from hemangioblast progenitors, form the primitive vascular plexus that is  

then remodeled into a vascular network. The first LECs are differentiated from a subpopulation of 

BECs in the cardinal vein and then sprout out to form primitive lymphatic sacs in regions where 

lymphangiogenic VEGF-C is expressed [3,25,72–74]. The distinct terminal differentiation between 

LECs and BECs enables the discovery of lymphatic vascular-specific markers such as Prox1, the 

membrane glycoprotein podoplanin (D2-40), VEGFR-3, and lymphatic vessel hyaluronan receptor-1  

(LYVE-1) [7,75–78]. These main transcription factors, Sox18, COUP-TFII and Prox1, orchestrate 

LEC differentiation [72,79–83]. 

Once lymphatic sacs are formed, lymphatic vessels sprout from lymph sacs and then are remodeled 

into the lymphatic vascular network [6,76]. After embryonic development, functional lymphatic 

vasculature is established and quiescent. However, physical lymphangiogenesis in adults can occur in 

certain conditions, such as immunity [10,60,84–86], during wound healing [87,88], and at the sites of 

transplanted tissue [89–91]. Lymphangiogenesis helps to decrease inflammation-induced edema, and 

to transport extravasated leukocyte and antigen presenting cells from inflamed tissue to lymphoid 

organs to initiate specific immune responses [2,5]. 

5. Lymphangiogenesis in Inflammation 

Although lymphangiogenesis is restricted to the site of inflamed tissue and wound healing  

in adulthood, pathological lymphangiogenesis also happens in the setting of dysregulated 

inflammatory responses or when cancer cells take advantage of lymphangiogenesis to facilitate their 

progression [6,92–99]. 

Lymphangiogenesis can be observed in inflamed peripheral tissue and its draining lymph  

nodes. Similar as in embryonic development, the VEGF-C/VEGFR-3 axis has been identified as  

a key mediator of inflammation-driven lymphangiogenesis as described in the model of cornea 

neovascularization [100]. In a mouse airway infection model, VEGF-C and VEGF-D-expressing 

immune cells drive lymphangiogenesis. Another mouse peritonitis model showed inflammatory 

lymphangiogenesis is triggered through NF-κB-mediated upregulation of Prox-1 and VEGFR-3 [62]. 

Inflammation promotes lymphatic vessel growth by pro-inflammatory cytokines like TNF-α and IL-1β 

which upregulate VEGF-C though NF-κB-mediated promoter activation [101]. The relationship 

between lymphangiogenesis and inflammation is somewhat reciprocal. Lymphangiogenesis has a 

physical role in the clearance of fluid and infiltrated inflammatory mediators to resolve inflammation 

as it does in tissue repair and wound healing; however, pervasive lymphangiogenesis in response to 

overexpressed VEGF-C or VEGF-A could delay lymphatic fluid clearance as well [41,102]. It has 

been observed that once lymphangiogenesis has been established during inflammation, the newly 

formed lymphatic vessels persist for months even when the inflammation has been resolved [8]. This 

might be an important clue for the pathological involvement of lymphangiogenesis in chronic 

inflammatory diseases.  
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In addition to the VEGF-C/VEGFR-3 axis, VEGF-A expression is also upregulated in certain 

inflammatory circumstances such as rheumatoid arthritis and delayed-type hypersensitivity; however, 

VEGF-A and VEGFR1/2 seem to participate in lymphangiogenesis in a more context-dependent way. 

In a TNF-α-induced rheumatoid arthritis model, lymphangiogenesis was reduced by neutralization of 

VEGFR-2 [103]. In a delayed-type hypersensitivity model, which is induced in the ear skin of 

transgenic mice that overexpress VEGF-A specifically in the epidermis [9], the inflammatory lesions 

displayed promoted lymphatic vessel proliferation and enlargement, which might contribute to 

prolonged inflammatory responses, by blocking both VEGFR-1 and VEGFR-2 suppressed 

lymphangiogenesis as well as inflammation. Nonetheless, no significant effect on lymphangiogenesis 

was observed by inhibiting either VEGFR-1 or VEGFR-2 in a bacterial infection-induced chronic 

airway inflammation model [8]. 

The involvement of myeloid cells in inflammatory lymphangiogenesis is also commonly observed. 

For example, B cells are found to drive lymphangiogenesis in inflamed lymph nodes [60]. In a murine 

corneal inflammation model, a rapid increase of VEGFR-3 and VEGF-C expressing dendritic cells are 

found in the cornea [104]. Macrophages are recruited to inflamed corneas in response to VEGF-A, and 

to release VEGF-C and VEGF-D to mediate inflammatory lymphangiogenesis in a rabbit corneal 

inflammation model [100]. 

6. Lymphangiogenesis in Cancer 

Tumor-associated lymphangiogenesis has been observed and implicated in cancer progression by its 

role of providing routes for immune cell recruitment and for cancer metastasis [92,105,106]. It has 

been shown that tumor-associated lymphangiogenesis usually causes formation of abnormal and leaky 

lymphatic vessels, which facilitates access for cancer cells to metastasize [107,108]. As in developmental 

lymphangiogenesis, transcription factors Sox18 and COUP-TFII and the VEGF-C/VEGFR-3/Nrp2 

system are utilized by tumor cells to regulate LEC differentiation and lymphatic vessel sprouting, 

respectively. Usually, the expression of Sox18 and COUP-TFII is suppressed after development; 

however, studies have indicated that these proteins might be re-expressed by tumor cells to  

facilitate lymphangiogenesis and metastasis. In experimental tumor models, Sox18 deficiency  

or COUP-TFII inactivation has been shown to cause reduced tumor lymphangiogenesis and  

metastasis [109,110]. COUP-TFII might exert its lymphangiogenic function through Nrp2-increased 

VEGF-C signaling [109]. 

Studies have demonstrated that VEGF-C and VEGF-D induce lymphangiogenesis, lymphatic 

invasion, and nodal metastasis in various experimental tumor models [92,111–119]. Collaborative 

action of VEGF-C and another growth factor, fibroblast growth factor-2 (FGF-2), has also been 

reported [120]. Reciprocally, blocking VEGFR-3, Nrp2, or FGF-2 has been shown to inhibit tumor 

growth, lymphaniogensis, and metastasis [37,115,121,122]. 

Early stage of tumorigenesis requires involvement of Ang2 as demonstrated in Ang2-deficient  

mice [123]. Moreover, Ang2/Tie2 signaling has been implicated in tumor-induced angiogenesis and 

tumor growth and metastasis [124,125]. Further studies will be needed to further delineate the 

contribution of the Ang2/Tie2 system in tumor-induced lymphangiogenesis. The involvement of 

myeloid cells in tumor-induced angiogenesis is still a matter of debate. Some evidence exists for trans-
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differentiation of hematopoietic cell-derived endothelial progenitors to leukocytes and macrophages 

precipitating the process of growing vessels in tumor [58], while other reports show no evidence for 

the contribution of either bone marrow-derived cells or macrophages [126,127]. 

7. Sphingosine-1-phosphate (S1P)  

Sphingosine-1-phosphate (S1P) is a bioactive lipid involved in a broad spectrum of cellular process 

such as cell survival, proliferation, differentiation, migration, and trafficking [128,129]. S1P is formed 

in cells by phosphorylation of sphingosine by sphingosine kinases (SphK1 and SphK2). Breakdown of 

S1P can be achieved by irreversible hydrolysis by S1P lyase or reversible dephosphorylation by S1P 

phosphatases (SPP1 and SPP2) back to sphingosine [130]. Intracellular S1P is a second messenger to 

trigger calcium release from the endoplasmic reticulum [131–133]. Important intracellular target proteins 

of S1P such as histone deacetylases (HDACs) and tumor necrosis factor (TNF)-associated factor 2 

(TRAF2) have been identified [134,135]. These findings further address the molecular mechanisms by 

which S1P mediates TNF-α signaling and epigenetic regulation. 

Intracellular S1P can be exported by several transporters, such as the ATP-binding cassette 

transporters ABCA1 [136], ABCC1 [137,138], ABCG2 [138], and Spinster 2 (Spns2) [139–147]. 

Interestingly, ABCC1 and ABCG2 were originally identified as multi-drug resistant genes [138], and 

correlate with worse prognosis in breast cancer [148]. Discovery of these S1P transporters explains the 

diverse autocrine and paracrine actions of S1P. The “inside-out signaling” of S1P is termed to describe 

that activation of SphK1 produces S1P which is exported and then binds to five specific G-protein-

coupled receptors, S1PRs (S1PR1-5) [129]. The combination and cell-type-specific expression of 

different S1PRs determines a broad range of biological functions mediated by S1P [129,149,150]. 

Owing to its multiple biological functions, S1P is implicated in various physiological and pathological 

conditions such as inflammation and cancer [128,150,151]. 

8. S1P in Inflammation 

S1P is now emerging as an important mediator of multiple aspects of both innate and adaptive 

immunity [149,150]. One of the most important functions of S1P is regulation of immune cell 

trafficking. Concentration of S1P in the blood is much higher than within the tissue, and this S1P 

gradient is important for lymphocyte trafficking [150,152]. Lymphocytes sense this S1P gradient, and 

by altering S1PRs expression, egress from lymphoid organs to the blood [153–156]. Ample evidence 

of S1P’s role has been collected in experiments using mice with genetic loss of S1PR1 [157,158] as 

well as in models that have downregulation of S1PR1 by using a functional antagonist of S1PR1, 

FTY720, which is an FDA-approved drug for treatment of multiple sclerosis [159]. FTY720 is a 

structural analog of S1P that will be phosphorylated by SphK1 or SphK2 and produce phosphorylated-

FTY720 (FTY720-P) [160–162]. FTY720-P binds to all the S1PRs except for S1P2, acting as a 

functional antagonist. FTY720-P induces internalization and degradation of the S1PR1 therefore 

affecting lymphocyte trafficking by decreasing the number of mature circulating lymphocytes and 

preventing lymphocyte egress from lymphoid organs [163–165]. This unique action is what makes 

FTY720 an immunosuppressive agent for treating the autoimmune disease multiple sclerosis. Preclinical 
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evidence is still accumulating in other inflammatory disease such as colitis [166], arthritis [167], and 

asthma [168].  

Furthermore, the intracellular actions of S1P also play important role in inflammation by activation 

of the transcription factor NF-κB, which is required in inflammatory and immune responses [134,169]. 

S1P has been shown to mimic the effect of the inflammatory cytokine TNF-α to activate endothelial 

cell activation through NF-κB [170]; subsequently, the biological action of TNF-α has been shown to 

occur through activation of SphK1. Furthermore, SphK1 has proven to be an indispensable mediator in 

LPS, TNF-α and IL-β signaling and pro-inflammatory function [171–173].  

9. S1P in Cancer Progression  

The role of S1P in cancer progression has been established by studies demonstrating that the 

upregulation/activation of SphK1 and production of S1P inhibits apoptosis and facilitates survival of 

cancer cells, thus promoting tumor growth, angiogenesis, and metastasis [151,174]. Numerous studies 

reveal the oncogenic role of SphK1; however, the isoform SphK2 seems to possess not only an 

overlapping role with SphK1 in promoting tumor development but also an opposing role in inducing 

apoptosis [175,176]. The mechanism by which SphK2-produced S1P acts as an endogenous HDAC 

inhibitor [135] might suggest a more sophisticated role of SphK2 in cancer progression due to the 

varied contexts of epigenetic regulation among different cell types. In solid tumors, SphK1 is required 

in the oncogenic signaling of VEGF, epidermal growth factor (EGF), and Ras [177–179]. Overexpression 

of SphK1 has been identified in mRNA screening or immunohistochemistry staining in multiple 

cancer cells derived from breast, colon, lung, ovary, stomach, uterus, kidney, and rectum [180–182]. 

Inhibition of SphK1 with its specific inhibitor SK1-I reduces the growth of acute myelogenous 

leukemia and glioblastoma [183,184]. A recent study has proposed a new SphK2 specific inhibitor 

ABC294640 [185] which reduces S1P levels and inhibits cancer cells proliferation in vitro and in vivo, 

and might be used to further dissect the biological functions between the two isoforms.  

As discussed above, cancer cells may adapt both the intracellular actions of S1P and inside-out 

signaling of S1P to promote their survival and metastasis. S1P may act on intracellular targets such as 

HDACs and NF-κB to promote cancer progression [134,135]. Tumor cells export S1P to act through 

S1PRs to promote growth, survival, motility and metastasis in an autocrine manner [186,187]. A 

paracrine action of tumor cells-exported-S1P is to induce the production of endothelial adhesion 

molecules, angiogenesis, and to regulate tumor–stromal interactions as well as immune cells [188]. 

S1PR1 has been shown to mediate persistent activation of signal transducer and activator of 

transcription-3 (STAT3) in tumor. Activated STAT3 therefore plays two regulatory roles as 

transcription factor for both S1PR1 and IL-6, which is the most potent oncogenic cytokine [189]. In 

agreement with this report, our recent study further demonstrates the SphK1/S1P/S1PR1 axis links 

STAT3 and NF-κB persistent activation in colitis-associated colon cancer [190]. 

10. Role of S1P in Lymphangiogenesis  

The role of S1P in determining the fate of vascular cells is much known, mainly through interaction 

of S1PRs, which are coupled with different combinations of G proteins. S1PR1 couples with the Gi 

protein family, while S1PR2 and S1PR3 couple to the Gi, Gq, and G12/13 protein families. S1P regulates 
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vascular endothelial cell proliferation, migration, and morphogenesis. S1PR1-deficient mice have  

been shown to have incomplete vascular maturation, dying in embryo due to hemorrhage [157].  

S1PR1-mutant cells have shown an inability to activate the small GTPase, Rac, therefore leading  

to a defective migration response. Attempts to block S1PRs by FTY720 or extracellular S1P by  

anti-S1P-neutralizing antibody have resulted in an inhibition of tumor-induced angiogenesis [191,192]. 

Together, this evidence highlights the essential role of S1PR1 and S1P signaling in blood vessel 

formation and mammalian development. Regarding the close similarity of regulation and intimate 

crosstalk of angiogenesis and lymphangiogenesis, a role for S1P in lymphangiogenesis has been 

expected [193]. 

Following from the various overlapping roles of S1P and lymphangiogenesis in physical and 

pathological contexts, studies to address their interrelationship have been accumulating during the past 

five years [194]. As summarized in Figure 1, Yoon et al. first depicted the elegant signaling pathways 

by which S1P promotes lymphangiogenesis via an S1PR1-dependent manner [195]. Since S1P has 

been shown to possess angiogenic and pro-inflammatory properties [196,197], a lymphangiogenic 

action is therefore hypothesized. Yoon et al. demonstrated that exogenous S1P induces 

lymphangiogenesis in both in vitro and in vivo systems. By treating human primary LECs with 

exogenous S1P and positive control VEGF-C, they found S1P induced migration and tube formation, 

but not proliferation of LECs. In vivo evidence was collected by the Matrigel plug assay, where S1P 

has been shown to act similarly to VEGF-C, inducing significant lymphangiogenesis. The molecular 

mechanism has been further addressed in studies using the genetic silencing of S1PR1 or S1PR3, 

where S1PR1, but not S1PR3, has been shown to be required in the lymphangiogenic action of S1P. 

S1P activates S1PR1; therefore, its coupled-Gi protein is activated to stimulate downstream 

phospholipase C to mobilize calcium to induce in vitro lymphangiogenesis.  

Figure 1. Sphingosine-1-phosphate (S1P) in cancer-induced lymphangiogenesis. 
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Given the role of Ang2 in lymphatic vessel development [54], Jan et al. further provided a link 

between S1P and Ang2 (Figure 1). Exogenous S1P treatment was shown to stimulate Ang2 exocytosis 

by either BECs or LECs. In agreement with Yoon et al.’s work, S1P acts through an 

S1P1/Gi/phospholipase C/Calcium signaling pathway to trigger Ang2 exocytosis [198]. Moreover, our 

group recently reported that SphK1-produced S1P promotes angiogenesis and lymphangiogenesis and 

facilitates breast cancer progression [199]. Because lymphatic metastasis is a major determinant for the 

staging and prognosis of breast cancer [200,201] and due to the importance of SphK1 in cancer 

progression as discussed above, we used an improved syngeneic breast cancer cell implantation 

method to examine the effect of SphK1 specific inhibitor, SK1-I, on tumor-induced lymphangiogenesis 

and cancer progression. In this model, we found inhibition of SphK1 decreases tumor growth, tumor 

burden, as well as lung metastasis. S1P levels and lymphangiogenesis in tumor are lowered by 

treatment with SphK1 inhibitor. We further demonstrated S1P acts similarly with Ang2 to exert 

angiogenic and lymphangiogenic effects on BECs and LECs. SphK1 inhibitor was shown to  

further abrogate the effect of Ang2. These results indicate that targeting S1P is a feasible therapeutic 

strategy for breast cancer and also shed light on the pathological effect of S1P in tumor-induced 

lymphangiogenesis. 

To address the function of S1P in lymphatic system development [141], Pham et al. used an 

advanced animal model—SphK2 knockout mice with LEC-specific deletion of SphK1 (SphK
Δ
 mice). 

This sophisticated model was necessitated by the fact that SphK1 and SphK2 double knockout mice 

die in utero due to defects in blood vascular angiogensis and neurogenesis [202], whereas,  

SphK1-deficient or SphK2-deficient mice appeared morphologically and functionally normal [203]. 

Pham et al. found undetectable amounts of S1P in lymphatic fluid and no difference in blood S1P in 

their SphK
Δ
 mice compared to control mice. This ablation of lymphatic fluid S1P leads to aberrant 

lymphocyte trafficking and altered lymphatic vasculature. Along with this report, our group 

demonstrated the importance of S1P in the lymphatic system by examining Spns2-deficient mice [140]. 

We found aberrant lymphocyte trafficking and also a disrupted lymphatic vessel network in  

Spns2-deficient mice. Interestingly, Spns2-deficient mice showed decreased S1P in blood but increased 

concentrations in lymphatic fluid. Clearly, more work is needed to detangle the interrelationship 

between S1P production and exportation and the resultant impact on lymphatic system development. 

Recently, it has been reported that S1P in the blood circulation stimulates S1PR1 on the blood 

endothelial cells, which restricts sprouting angiogenesis, enhances the cell-to-cell adhesion, and 

stabilizes the vessels in the development process [204–207] (Figure 2A). Decreased expression of 

S1PR1 results in more aberrant sprouting, which actually interferes with vascular development and 

results in immature vascular networks in an S1PR1 knockout mouse model as well as in a model using 

morpholio-mediated knockdown of S1PR1 in a zebra fish [158,207]. Therefore, it is important to note 

that S1P regulates the vascular maturation in the development process by suppressing unnecessary 

sprouting and increasing the endothelial cell contact. Interestingly, it was recently shown that S1PR1 

and S1PR2 cooperate to regulate the vascular development [207]. Moreover, Spns2, a newly identified 

S1P transporter, also cooperates with S1PR1 in this process [207], and as discussed above, we recently 

found that Spns2 has a role in lymphatic vessel network development as well [140]. Although roles for 

S1P in vessel sprouting in lymphangiogenesis and in lymphatic vessel stabilization are yet to be 

reported, S1P is expected to have a similar role in the development process of lymphatic vessels to its 
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role in that of blood vessels considering that Pham et al. have reported that S1P secreted from 

lymphatic endothelial cells regulates lymphatic vessel maturation [141]. Furthermore, the role of S1P 

in tumor-induced angiogenesis and lymphangiogenesis needs to be investigated more precisely in this 

context; since S1P is provided not only from blood and endothelial cells, but also from tumors [199], 

and the contribution of S1P in the angiogenesis and lymphangiogenesis induced by tumors may be 

different from that which occurs in the normal vascular development processes (Figure 2B). In sum, 

S1P and S1PR1 regulate vascular development processes by restricting aberrant sprouting and 

stabilizing the vessels. Further investigation needs to be done especially in the cancer field. 

These studies have firmly linked S1P to lymphangiogenesis in either molecular or biological 

aspects. Therefore, S1P might be a potential new addition to the growing list of lymphangiogenic 

factors secreted by LECs, inflammatory cells, and cancer cells to orchestrate the development and 

function of lymphatic system. 

Figure 2. S1P and sprouting angiogenesis in normal development and in tumor-induced angiogenesis. 
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11. Conclusions  

The lymphatic system contributes to important physiologic functions in fluid homeostasis, lipid 

transport, and in immune cell trafficking. Dysregulation of lymphangiogenesis provides a niche for 

uncontrolled inflammation and cancer progression. The field of lymphatic biology research remains 

young and needs more attention. Owing to the involvement of S1P in a wide range of physical and 

pathological process, the link between S1P and lymphangiogenesis provides important insight for 

further exploration of this field. Moreover, the emerging role of S1P as a lymphangiogenic lipid 

unveils the hidden regulatory mechanism which LECs, immune cells, or cancer cells utilize for 

promoting lymphangiogenesis in the context of inflammation and cancer. For therapeutic purposes, 

targeting S1P and S1P-metabolizing enzymes might be a feasible strategy. However, due to the 

massive complexity in the signaling pathways leading to lymphangiogenesis, more studies are still 

needed to establish an S1P pathway targeted therapy.  
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