Isolation and Characterization of a Novel Rebaudioside M Isomer from a Bioconversion Reaction of Rebaudioside A and NMR Comparison Studies of Rebaudioside M Isolated from *Stevia rebaudiana* Bertoni and *Stevia rebaudiana* Morita

Supplementary Materials

Figure S1. 1D and 2D NMR spectra of Rebaudioside M2 (2). (A) ¹H-NMR spectrum of 2; (B) ¹³C-NMR spectrum of 2; (C) ¹H-¹H COSY spectrum of 2; (D) ¹H-¹³C HSQC-DEPT spectrum of 2; (E) ¹H-¹³C HMBC spectrum of 2; (F) ¹H-¹H NOESY spectrum of 2.

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 •••• 0.0 ppm

1.0 0.5

F

Figure S2. 1D and 2D NMR spectra of Rebaudioside M (1); (A) ¹H-NMR spectrum of 1; (B) ¹³C-NMR spectrum of 1; (C) ¹H-¹H COSY spectrum of 1; (D) ¹H-¹³C HSQC-DEPT spectrum of 1; (E) ¹H-¹³C HMBC spectrum of 1.

D

Figure S3. ¹H- and ¹³C-NMR spectra of Rebaudioside D (3). (A) ¹H-NMR spectrum of 3; (B) ¹³C-NMR spectrum of 3.

Figure S4. ¹³C, HSQC-DEPT, and HMBC NMR spectra of 82% Rebaudioside M (1) + 18% Rebaudioside D (3). (A) ¹³C-NMR spectrum of 82% Rebaudioside M (1) + 18% Rebaudioside D (3); (B) Expansion of ¹³C-NMR spectrum of 82% Rebaudioside M (1) + 18% Rebaudioside D (3) (13–60 ppm); (C) Expansion of ¹³C-NMR spectrum of 82% Rebaudioside M (1) + 18% Rebaudioside D (3) (85–108 ppm); (D) Expansion of ¹³C-NMR spectrum of 82% Rebaudioside M (1) + 18% Rebaudioside M (1) + 18% Rebaudioside D (3) (152–180 ppm); (E) HSQC-DEPT NMR spectrum of 82% Rebaudioside M (1) + 18% Rebaudioside D (3); (F) HMBC NMR spectrum of 82% Rebaudioside M (1) + 18% Rebaudioside D (3).

Figure S4. Cont.

ppm

ppm

ppm

• • Figure S5. ¹³C and HSQC-DEPT NMR spectra of 82% Rebaudioside D (3) + 18% Rebaudioside M (1). (A) ¹³C-NMR spectra of 82% Rebaudioside D (3) + 18% Rebaudioside M (1); (B) Expansion of ¹³C-NMR spectra of 82% Rebaudioside D (3) + 18% Rebaudioside M (1) (13–60 ppm); (C) Expansion of ¹³C-NMR spectra of 82% Rebaudioside D (3) + 18% Rebaudioside M (1) (85–108 ppm); (E) HSQC-DEPT NMR spectra of 82% Rebaudioside D (3) + 18% Rebaudioside M (1).

Figure S6. ¹³C-NMR spectra of 80% Rebaudioside M (1); (A) ¹³C-NMR spectra of 80% Rebaudioside M (1); (B) Expansion of ¹³C-NMR spectra of 80% Rebaudioside M (1) (13–60 ppm); (C) Expansion of ¹³C NMR spectra of 80% Rebaudioside M (1) (85–108 ppm); (D) Expansion of ¹³C-NMR spectra of 80% Rebaudioside M (1) (152–180 ppm).

 \bigcirc 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).