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Abstract: Lactic acid bacteria (LAB) have historically been used in food fermentations to 
preserve foods and are generally-recognized-as-safe (GRAS) by the FDA for use as food 
ingredients. In addition to lactic acid; some strains also produce bacteriocins that have been 
proposed for use as food preservatives. In this study we examined the inhibition of 
Listeria monocytogenes 39-2 by neutralized and non-neutralized bacteriocin preparations 
(Bac+ preps) produced by Lactobacillus curvatus FS47; Lb. curvatus Beef3; Pediococcus 
acidilactici Bac3; Lactococcus lactis FLS1; Enterococcus faecium FS56-1; and Enterococcus 
thailandicus FS92. Activity differences between non-neutralized and neutralized Bac+ preps 
in agar spot assays could not readily be attributed to acid because a bacteriocin-negative 
control strain was not inhibitory to Listeria in these assays. When neutralized and 
non-neutralized Bac+ preps were used in microplate growth inhibition assays against 
L. monocytogenes 39-2 we observed some differences attributed to acid inhibition. A microplate 
growth inhibition assay was used to compare inhibitory reactions of wild-type and 
bacteriocin-resistant variants of L. monocytogenes to differentiate bacteriocins with different 
modes-of-action (MOA) whereby curvaticins FS47 and Beef3, and pediocin Bac3 were 
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categorized to be in MOA1; enterocins FS92 and FS56-1 in MOA2; and lacticin FLS1 in 
MOA3. The microplate bacteriocin MOA assay establishes a platform to evaluate the best 
combination of bacteriocin preparations for use in food applications as biopreservatives 
against L. monocytogenes. 

Keywords: bacteriocins; Listeria monocytogenes; microplate assay; inhibition; biopreservatives 
 

1. Introduction 

Listeria monocytogenes is a human pathogen linked to foodborne illness outbreaks involving dairy, 
poultry, and ready-to-eat (RTE) meat products. It has been a recurrent threat to RTE deli meats and 
hotdogs, frequently due to post-process contamination [1]. Conventional antimicrobials (potassium 
lactate and sodium diacetate) approved by the U.S. FDA have been effective in inhibiting this pathogen 
and are considered the comparative standard of the industry for antimicrobial interventions in RTE 
meats. Consumers are generally concerned about possible health effects from the presence of chemical 
additives in foods and as a result, they are often drawn to natural and “fresher” foods with no added 
chemical preservatives. This perception, coupled with the increasing demand for minimally-processed 
foods with long shelf life and convenience, together with recurring problems with Listeria in RTE foods, 
has stimulated research interest in finding natural, but effective, preservatives. Bacteriocins produced by 
LAB are natural preservatives that can possibly fulfill these requirements. Lactic acid bacteria (LAB) 
are generally-recognized-as-safe (GRAS) by the FDA and the bacteria themselves, or their cultured 
byproducts, can be freely used in foods as food ingredients. Some strains of LAB are also known for  
the production of bacteriocins (i.e., antimicrobial peptides). Bacteriocins have been proposed for use as 
biopreservatives, either as direct food additives (i.e., nisin), as pasteurized/condensed cultured food 
ingredients (i.e., cultured milk or whey), or by using the cultures themselves to ferment products or be 
used as protective inoculants [2–5]. 

Optical density measurement is a straight forward approach for monitoring bacterial growth and 
determining the inhibitory effects of antimicrobials from plants, spices, and foods and can be readily 
accommodated by microplate readers. Rufián-Henares and Morales [6] used a microplate reader method 
to evaluate the antimicrobial properties of melanoidins which are generally present in coffee, beer, and 
sweet wine against Escherichia coli and Staphylococcus aureus. Assays using 96-well microplate 
systems have been proposed to quantify bacteriocin activity in cell free extracts [7,8]. Additionally, 
Turcotte et al. [9] developed a 1-day turbidometric assay for quantification of purified nisin Z and 
pediocin PA-1 activity in fermented media to evaluate the relationship between indicator strain growth 
and bacteriocin concentration. 

The objectives of the current study were to use a turbidometric-based microplate assay to assess the 
inhibition of L. monocytogenes 39-2 by six bacteriocin preparations. The goal was to develop an in vitro 
assay to distinguish bacteriocins of different modes-of-action (MOA) for their future use in a mixed-MOA 
motif as natural preservatives in food applications. 
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2. Results and Discussion 

2.1. Heat Tolerance of Bacteriocins 

Bacteriocin culture preparations were examined for heat resistance, both as a potential replacement 
for filter sterilization and as an indication that bacteriocin preparations would survive applications in 
heated foods. We observed no loss in activity when centrifuged/heat treated bacteriocin preparations 
were compared to filter-sterilized preparations, nor any differences between duplicate samples  
(Figure 1A). In subsequent heating trials, we increased the temperature to 85 °C for 15–20 min, because 
of the use of larger samples, obtaining similar results. The ability to survive high heat treatment without 
loss of activity demonstrates that these bacteriocins may be added to foods that will be heated and still 
retain activity. The bacteriocins used in this study demonstrate thermal stability under conditions 
simulating pasteurization and confirm heat resistance observed in other bacteriocins [10]. 

2.2. Bacteriocin Activity at Acid vs. Neutral pH 

Nearly all of the Bac� and Bac+ cultures lowered the pH of MRS broth (~pH 6.7) down to ~pH 4.3 
(Figure 1B) allowing the use of a standardized neutralization regimen on a fixed volume of cell-free 
supernatant culture. A pH-effect was observed on bacteriocin activity titers of cell-free supernatants 
obtained before, and after, pH neutralization in which five of six showed reduced activity after 
neutralization (Figure 1C). This might not seem unusual since LAB can produce both lactic acid and 
bacteriocins, and perhaps neutralization eliminated inhibition due to lactic acid while leaving only 
bacteriocin activity. However, no inhibitory activity was observed on Listeria indicator lawns from  
non-neutralized supernatant from the Bac� strain, Lb. delbrueckii 4797-2 (Figure 1C) and therefore it is 
not clear why neutralized Bac+ preps should show changes in inhibitory activity. 

Traditional concepts of organic acid inhibition in foods maintains that organic acids, such as lactic 
acid, are mostly inhibitory to bacteria when the pH of the food medium in which the bacteria are 
suspended is at or below the pKa of the acid (i.e., pH 3.86 for lactic acid). That is when the majority of 
the lactic acid molecules are nondissociated ([Ac�H+]) and able to diffuse into bacterial cells because of 
their net-neutral charge. When the pH is above the pKa of the acid, it is mostly in the dissociated form 
([Ac�] + [H+]) and the charge on the lactate anion prevents its entry into cells (or after the nondissociated 
form gains entry into cells, it dissociates to the toxic anion form in the neutral pH of the bacterial 
cytoplasm). In the current study the pH of the Bac� spent broth (and five of six Bac+ preps) was at  
~pH 4.37 and above the pKa of lactic acid and showed no inhibitory activity on agar when applied to 
lawns of L. monocytogenes 39-2 indicator cells (Figure 1C and Figure 2). 

A possible explanation of the pH-related phenomena observed in this study is that the net charge of 
the bacteriocin is also involved in adsorption to cell surfaces of Gram-positive bacteria. Most bacteriocins 
have higher antimicrobial activity at pH 5 or lower, compared to their activity at physiological pH [11–13]. 
At pH 6 or above, bacteriocin molecules adsorb to the surface of bacteriocin producer cells and other 
Gram-positive bacteria, in effect, titering them out of solution [7,12,14–17]. In general, at low pH, 
bacteriocins do not adsorb well to bacterial cells, so more is available for inhibitory functionality and 
increased antibacterial activity is observed. When culture supernatants are neutralized, activity due to 
acid is eliminated, but bacteriocin activity is also diminished because of this absorption phenomenon. 
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Figure 1. Treatment of culture supernatants produced by Lb. delbrueckii 4797-2 (Bac�) and 
Bac+ strains: Lb. curvatus FS47, P. acidilactici Bac3, Lb. curvatus Beef3, En. faecium FS56-1, 
En. thailandicus FS92, and Lc. lactis FLS1. (A) Comparison of bacteriocin activity after 
filter sterilization or heat pasteurization; (B) The pH of MRS broth media before inoculation 
and after overnight growth of various strains used in this study; (C) Bacteriocin activity titers 
of cell-free supernatants against L. monocytogenes 39-2, before and after neutralization. 
Treatments with the same culture supernatant that have different lower case letters are 
significantly different (p < 0.05); treatments with the same lowercase letter are not 
significantly different (p > 0.05). No differences were found in duplicate replications of 
samples in (A) and (C). 
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Figure 2. (A) Inhibition of L. monocytogenes 39-2 by overlay of prior spotted and incubated 
culture spots (“deferred antagonism”). Spotted cultures, clockwise from top: Lb. delbrueckii 
4797-2 (Bac� control), Lb. curvatus FS47, En. faecium FS56-1, Pediococcus acidilactici 
Bac3, Lactococcus lactis FS91-1, En. thailandicus FS92, En. faecium FS97-2; (B) Inhibition 
of L. monocytogenes indicator lawn spotted with non-neutralized cell free spent broth from 
Bac+ (Lb. curvatus FS47) and Bac� (Lb. delbrueckii 4797-2) strains (“concurrent antagonism”). 
The presence of “spontaneous resistant” indicator colonies can be clearly observed in  
the curvaticin FS47 inhibition zone. 

2.3. Wild-Type L. monocytogenes 39-2 (R0) and Bacteriocin-Resistant Variants (R1, R2) 

A bacteriocin-resistant variant of the wild-type L. monocytogenes 39-2 (“R0”; i.e., not resistant) 
obtained against curvaticin FS47 was designated “R1” (i.e., resistant #1). A comparison of inhibitory 
bacteriocin spots on lawns of L. monocytogenes R0 and R1 demonstrated that the spontaneous resistance 
against Lb. curvatus bacteriocin FS47 gave cross-resistance to P. acidilactici bacteriocin Bac3 (Figure 3) 
and Lb. curvatus bacteriocin Beef3 [18]. Some bacteriocins no longer inhibited L. monocytogenes 39-2 
(R1) while others were still inhibitory to it (Figure 3B). The different bacteriocins whose activity were 
no longer inhibitory to the R1 BacR variant (i.e., FS47, Bac3, and Beef3) were classified as having the 
same MOA while those that were still inhibitory to R1 (i.e., FS56-1, FS92) were considered to possess 
another MOA. This process was again repeated by isolating additional enterocin FS56-1 BacR mutants 
against R1 that possessed accumulated bacteriocin resistances, now designated “R2” (Figure 3C). 
Activity against R2 identified a bacteriocin (i.e., FLS1) of still another MOA (Figure 3C). The wild type 
L. monocytogenes (R0) and its two consecutively-derived BacR variants (R1, R2) were used as indicator 
organisms to screen for new Bac+ isolates as well as screen bacteriocin preparations in microplate 
inhibition assays [19].  
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Figure 3. (A) L. monocytogenes 39-2 (R0) spotted with cell free supernatants from five Bac+ 
strains: Lb. curvatus FS47, P. acidilactici Bac3, Lactococcus lactis FLS1, En. thailandicus 
FS92, En. faecium FS56-1; (B) L. monocytogenes 39-2 (R1) spotted with the same five Bac+ 
supernatants; (C) L. monocytogenes 39-2 (R2) spotted with the same five Bac+ supernatants. 

2.4. Microplate Growth Inhibition Assays Using Wild-Type L. monocytogenes 39-2 (R0) 

Differences were observed with Bac� preps in microplate growth inhibition assays in which  
L. monocytogenes 39-2 (R0) was treated with neutralized or non-neutralized cell-free culture supernatants 
(Figure 4) that were not observed during agar spot activity titer assays (Figure 1C). When non-neutralized 
cell-free supernatants of the Bac� control strain (Lb. delbrueckii 4797-2) were added to L. monocytogenes 
R0, some inhibition was observed whereby R0 did not grow as well as in the Bac� control assay while 
all the Bac+ preparations showed baseline-level inhibition (Figure 4A). However, when neutralized  
cell-free supernatants of the Bac� 4797-2 strain were added to R0, it grew equally well and without any 
significant difference from the R0 control (Figure 4B). Trials with the neutralized preps also showed late 
recovery of L. monocytogenes R0 treated with the Beef3 Bac+ prep (Figure 4B) suggesting possible 
outgrowth of spontaneous resistant variants which is consistent with observations in the agar spot assay 
for FS47 (Figure 2B) and other bacteriocins (Figure 3A). The baseline-level inhibition of L. monocytogenes 
by bacteriocin Beef3 observed with non-neutralized preparations (Figure 4A) could have been due to 
acid-assisted inhibition that was removed by neutralization; such differences are likely only noticeable 
with microplate growth inhibition data, offering real-time growth curve comparisons, that would otherwise 
appear as similar fully-grown endpoints on agar surface spot assays.
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Figure 4. Microplate growth inhibition assays showing the activity of Listeria monocytogenes 39-2 (R0) treated with culture supernatants from: 
None (R0 Cont.), Lb. delbrueckii 4797-2 (Bac�), Lb. curvatus FS47, P. acidilactici Bac3, Lb. curvatus Beef3, En. faecium FS56-1, En. thailandicus 
FS92, and Lc. lactis FLS1. (A) Microplate assay using non-neutralized culture supernatants; (B) Microplate assay using neutralized culture 
supernatants. Data points represent the means of triplicate replications and error bars represent the standard deviations from the means (error 
bars were not used for all curves in order to prevent clutter). Treatments with different lowercase letters are significantly different (p < 0.05); 
letters in brackets are for entire group of graph lines.
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2.5. Microplate Assay of Bacteriocin Preparations vs. L. monocytogenes 39-2 (R1) 

Microplate inhibition assays were also performed with the L. monocytogenes 39-2 R1 BacR variant 
(Figure 3B) and growth inhibition assays were again evaluated with non-neutralized and neutralized  
cell-free culture supernatants (Figure 5). As observed previously, the R1 strain with non-neutralized 
supernatants from the Bac� control strain showed intermediate inhibition (Figure 5A) whereby the 
neutralized supernatants from the Bac� control showed no inhibition (Figure 5B). This time, three of  
six neutralized Bac+ preps showed no inhibition of R1 due to the bacteriocin resistance incurred by strain 
R1 (Figure 5B). All of the bacteriocins that are no longer inhibitory to L. monocytogenes 39-2 (R1) are 
presumed to have the same or highly similar MOA while those bacteriocins that were still inhibitory to 
R1 were considered to have a different MOA. The data obtained in microplate growth assays with  
L. monocytogenes 39-2 (R1) suggests that curvaticin FS47, curvaticin Beef3, and pediocin Bac3 belong 
to the same mode of action, MOA1. 

2.6. Microplate Assay of Bacteriocin Preparations vs. L. monocytogenes 39-2 (R2) 

Similar to the results of the inhibition assays against L. monocytogenes 39-2 R0 and R1 performed 
with non-neutralized culture supernatants, we observed full growth of L. monocytogenes 39-2 (R2), 
partial inhibition of R2 by the Bac� supernatants, and full inhibition from the Bac+ supernatants  
(Figure 6A). When the neutralized cell-free supernatants were added, the R2 BacR variant showed the 
same resistance to bacteriocins FS47, Bac3, and Beef3 as R1, but less sensitivity to enterocins FS92 and 
FS56-1, from which R2 was selectively derived (Figure 6B). The remaining Bac+ prep (FLS1) still 
showed baseline-level inhibition of R2 (Figure 6B). From these data, we suggest that enterocins FS92 
and FS56-1 belong to a second mode of action, MOA2, while lacticin FLS1 belongs to a third, MOA3. 

These data support that the microplate inhibition assay is more sensitive to acid than the agar spot 
assays, presumably because of the scale of inhibitory assay applied whereby only 5–10 �L of supernatant 
is applied as a spot on the agar surface allowing the agar layer below the spot to buffer the acid. In the 
microplate assay, half of the liquid added to the wells is culture supernatant and background lactic acid 
may have more influence than in the agar spot assays. The microplate assay allows the observation of 
discernible inhibition during growth using turbidity data over time. Growth curves of neutralized 
preparations that appear delayed are likely inhibited to some degree, and may represent unique MOAs 
that are not readily discernible by the agar plate assay. It is also noteworthy that some bacteriocinogenic 
strains, including FS56-1 and FS92, have been shown to possess more than one bacteriocin [19,20].  
It is reasonable to assume that in such situations, if one bacteriocin is rendered insensitive by  
a bacteriocin-resistance indicator, but not the other, it is possible that a reduced zone size may be 
observed in spot on lawn assays (Figure 3B) or intermediate results in microplate growth assays  
(Figure 6B). Further testing is needed to confirm these hypotheses. Although baseline-level inhibition is 
always ideal and preferable, bacteriocins that show inhibitory activity at levels between full baseline 
inhibition and uninhibited growth may still have merit in food applications, especially when using 
mixtures of bacteriocins of different MOAs. 
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Figure 5. Microplate growth inhibition assays showing the activity of Listeria monocytogenes 39-2 (R1) treated with culture supernatants from: 
None (R1 Cont.), Lb. delbrueckii 4797-2 (Bac�), Lb. curvatus FS47, P. acidilactici Bac3, Lb. curvatus Beef3, En. faecium FS56-1, En. thailandicus 
FS92, and Lc. lactis FLS1. (A) Microplate assay using non-neutralized culture supernatants; (B) Microplate assay using neutralized culture 
supernatants. Data points represent the means of triplicate replications and error bars represent the standard deviations from the means (error 
bars were not used for all curves in order to prevent clutter). Treatments with different lowercase letters are significantly different (p < 0.05); 
letters in brackets are for entire group of graph lines. 
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Figure 6. Microplate growth inhibition assays showing the activity of Listeria monocytogenes 39-2 (R2) treated with culture supernatants from: 
None (R2 Cont.), Lb. delbrueckii 4797-2 (Bac�), Lb. curvatus FS47, P. acidilactici Bac3, Lb. curvatus Beef3, En. faecium FS56-1, En. thailandicus 
FS92, and Lc. lactis FLS1. (A) Microplate assay using non-neutralized culture supernatants; (B) Microplate assay using neutralized culture 
supernatants. Data points represent the means of triplicate replications and error bars represent the standard deviations from the means (error 
bars were not used for all curves in order to prevent clutter). Treatments with different lowercase letters are significantly different (p < 0.05); 
letters in brackets are for entire group of graph lines. 
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Another observation in the study was the tailing of most of the growth curves in the microplate  
assays (Figures 4–6). Although the reason was not ascertained, it is likely due to a slow lysis of the 
bacterial cells as bacteriocins form membrane pores in susceptible cells and/or the result of a change in 
cellular morphology upon nutrient depletion during extended stationary phase which may have an effect 
on optical density. Figure 5B with error bars has been published as an Appendix Figure A1; likewise, 
Figure 6B with error bars has been published as an Appendix Figure A2. 

3. Experimental Section 

3.1. Bacterial Cultures, Handling, Growth, and Storage Conditions 

Select bacteriocin-producing (Bac+) LAB obtained from our culture collection or from retail foods 
and animal sources [20–22] were propagated in de Man, Rogosa, and Sharpe Lactobacilli broth (Difco, 
Becton-Dickenson Labs, Franklin Lakes, NJ, USA) at 30 °C. Bac+ LAB included Lactobacillus curvatus 
FS47 and Beef3, Pediococcus acidilactici Bac3, Lactococcus lactis FLS1, Enterococcus faecium  
FS56-1 and En. thailandicus FS92. All cultures were propagated twice before use. Master cultures were 
maintained by resuspension of cell pellets in milk-based freezing media (11% non-fat dry milk powder, 
1% glucose, 0.2% yeast extract) after centrifugation (8000 rpm, 4 °C, 10 min) and stored frozen.  
L. monocytogenes 39-2 (R0, R1, and R2) were grown in tryptic soy broth (TSB, Difco, Becton-Dickenson 
Labs). The parent strain, L. monocytogenes 39-2 was isolated from packages of retail frankfurters [23], 
and has been used as part of a 4-strain L. monocytogenes “cocktail” for inoculation of RTE meats 
evaluating meat surface pasteurization [24,25], liquid smoke extracts [26,27] as antimicrobial 
interventions, and has also been characterized as having moderate biofilm adherence properties by a 
microplate adherence assay [28]. All (working stock) cultures were held at �20 °C for short term storage 
or at �80 °C for long term storage. 

3.2. Bacteriocin Preparations 

Cultures of Bac+ LAB were propagated overnight (twice) at 30 °C and centrifuged at 8000 rpm  
(4 °C) for 10 min (Sorvall RC50 Plus, Thermo Fisher Scientific, Waltham, MA, USA). The supernatants 
(i.e., “Bac+ preps”) were filter-sterilized with cellulose acetate syringe filters (25 mm, 0.20 � pore-size; 
Nalgene), aliquoted into 1 mL eppendorf tubes for use in experiments, and stored at 4 °C for short term 
experiments or at �20 °C for longer term storage. 

3.3. Exclusion of other Inhibitors 

The possibility of inhibitory activity produced by other potential inhibitors (bacteriophage, acid inhibition, 
or hydrogen peroxide) observed among some LAB was eliminated as described previously [19,22]. 

3.4. Neutralization of Culture Supernatants 

Culture supernatants were neutralized after centrifugation to remove the bulk of cells (see Section 3.6). 
An Oakton pH 110 series pH meter (EUTECH instruments, Cole-Parmer, Court Vernon Hills, IL, USA) 
was used to measure the pH of bacteriocin preparations collected in sterile falcon tubes. The pH electrode 
was calibrated against pH 4.0 and pH 7.0 buffers and rinsed with deionized water. Cell-free bacteriocin 
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preparations obtained from LAB were neutralized (pH 6.8–7.2) using approximately 80–150 �L of 5 M 
NaOH per 10 mL volume. After neutralization, the supernatants were filter-sterilized as described earlier. 

3.5. Bacteriocin Activity Determination by Serial Dilution and Spot-on-Lawn Assay 

Filter-sterilized or pasteurized Bac+ preps were serially diluted by 2-fold dilutions in 0.1% buffered 
peptone water (BPW) in 96-well microtiter plates (Becton-Dickenson Labs) whereby the bacteriocin is 
diluted in half with each successive dilution. Indicator assay plates were made whereby L. monocytogenes 
39-2 (8-log cfu/mL) was seeded at 1% dilution into soft TSA agar (0.75% agar), and then 5 mL of this 
seeded soft agar was overlaid onto normal TSA agar plates (1.5% agar). The indicator-seeded assay 
plates were marked in eight pie-section quadrants and 10 �L of each dilution was surface spotted onto 
the indicator lawns. Plates were allowed to incubate overnight at 30 °C and the titer end point was taken 
from highest dilution showing the last visible sign of inhibition. The titer was then designated as activity- 
or arbitrary-units (AU), and was determined as the reciprocal of the dilution × 100 (because 10 �L 
represents 1/100th of 1 mL) and reported as AU/mL.  

3.6. Heat Pasteurization of Bacteriocin Preparations 

LAB cultures were propagated twice at 30 °C and centrifuged at 8000 rpm for 10 min at 4 °C (Sorvall 
RC 50 Plus). The centrifuged supernatant was transferred to sterile tubes and pasteurized at 80 °C for 
either 5-min (1 mL portions) suspended in a water-filled heating block. Pasteurized bacteriocins 
preparations were stored at 4 °C for near term experiments or frozen at �20 °C. Bacteriocin activity  
was determined as described previously and done in duplicate. Samples of pasteurized bacteriocin 
preparations were plated onto MRSA plates or inoculated into MRS broth to check the effectiveness  
of the pasteurization process. 

3.7. Bacteriocin-Resistant Variants of Wild-Type L. monocytogenes 39-2 

During prolonged incubation of inhibition zones during spot-on-lawn assays of bacteriocin 
preparations against L. monocytogenes 39-2, bacteriocin-resistant colonies would appear at frequencies 
of approximately 10�5 to 10�7 (Figure 2B and Figure 3A). Bacteriocin-resistant variants of L. monocytogenes 
39-2 were obtained from select Bac+ strains by plating dilutions of overnight culture on TSA that was 
surface-inoculated with 200–300 �L of cell-free supernatant of Bac+ culture (i.e., Lactobacillus curvatus 
FS47). Colonies that arose against the bacteriocin were again streaked again on TSA + Bac+ (FS47) to 
insure isolation of a resistant phenotype. Bacteriocin-resistant (BacR) variants recovered in this manner 
were tested in spot tests with various cell-free bacteriocin preparations in comparison with the prior 
strain and was repeated with bacteriocins that still inhibited the BacR L. monocytogenes 39-2 variant. 
The use of bacteriocin-resistant variants as screening organisms was characterized by Macwana and 
Muriana [29] as capable of differentiating bacteriocins of different modes-of-action (MOA). 

3.8. Microplate Turbidometric Growth Inhibition Assays 

The microplate inhibition assay used a mixture of indicator organism (L. monocytogenes 39-2) and 
various culture supernatant preparations (Bac+, Bac�). Sterile MRS broth (not spent broth) was used as 
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a control treatment and spent culture supernatant from bacteriocin-negative (Bac�) Lb. delbrueckii 4797 
was used as a control to assess lactic acid effects. L. monocytogenes 39-2 was diluted and inoculated 
into double-strength TSB broth (~1 × 105 cfu/mL) from which 100 μL was distributed to various wells 
in a clear 96-well flat bottom microtiter plate (Becton Dickinson). Bacteriocin preparations (100 μL) 
were added and mixed by aspiration using a multi-channel pipette. Settings for the growth curve/turbidity 
analysis using a GENios microplate reader (Tecan Inc, Morrisville, NC, USA) were as follows: 
measurement mode: absorbance; measurement wavelength: 595 nm; number of flashes: 1; temperature 
range: 33–35 °C; shake duration (orbital normal): 10 s; kinetic interval: 1800 s; unit: optical density 
(OD); and total measurement time: 48 h. The 96-well plate was sealed with UltraClear film (Axygen 
Inc., Union City, CA, USA) to prevent evaporation of the liquid and well-to-well contamination. The 
OD595 values obtained were plotted against time and were used to illustrate the antilisterial activity of 
the bacteriocin preparations against L. monocytogenes. 

3.9. Statistical Analysis 

Microplate growth inhibition assays were repeated in triplicate and mean O.D. (595 nm) values were 
plotted versus time. The statistics functions in SigmaPlot 13 (Systat Software, San Jose, CA, USA) was 
used to perform one-way repeated measures analysis of variance (RM-ANOVA) to determine if significant 
difference exists between different treatments. For some assays, the Holm-Sidak one way ANOVA method 
was used to perform pair wise multiple comparisons with level of significance set at 0.05 (p-value). 

4. Conclusions 

Bacteriocinogenic LAB and their bacteriocin preparations are promising antimicrobials for application 
in food systems as effective biopreservatives, especially in RTE meat systems. However, crude screening 
methods such as agar diffusion assays alone would not be sufficient to forecast their effectiveness in 
meat systems that are highly complex. In this study we have employed agar diffusion assays (sandwich) 
only as a primitive approach to screen for new bacteriocinogenic LAB from different food samples.  
In order to obtain more detailed information on the effectiveness of the bacteriocin preparation on the 
inhibition of the L. monocytogenes 39-2 and to study the interactions of bacteriocins affecting different 
MOAs, a more reliable growth inhibition assay was developed. The comparison of non-neutralized and 
pH-neutralized preparations confirmed the participation of acid inhibition against L. monocytogenes, 
while evaluations performed with neutralized preparations allowed preferential evaluation of bacteriocin 
activities against L. monocytogenes. The comparison of wild-type L. monocytogenes 39-2 (R0) vs. 
bacteriocin-resistant variants (R1, R2) allowed a preferential selection of bacteriocins that are likely to 
work better together (i.e., “mixed mode-of-action”) and without confusion of whether activity is due to 
lactic acid. Although the primary interest was in evaluating only inhibition due to bacteriocin activity 
during in vitro assays, any additional inhibition by lactic acid during actual in-food applications would 
be an added and appreciable benefit. The use of such L. monocytogenes BacR variants allowed the 
differentiation of bacteriocins into different MOA’s (MOA1: curvaticins FS47 and Beef3, pediocin 
Bac3; MOA2: enterocins FS92 and FS56-1; MOA3: lacticin FLS1) from which we may select an efficacious 
mixture of bacteriocin preparations for application as food preservatives, especially where recurrent 
problems with L. monocytogenes have been observed. 
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Appendix 

 

Figure A1. (Figure 5B with error bars) Growth inhibition assay showing the activity of 
Listeria monocytogenes 39-2 (R1) treated with culture supernatants from: None (R1 Cont.), 
Lb. delbrueckii 4797-2 (Bac�), Lb. curvatus FS47, P. acidilactici Bac3, Lb. curvatus Beef3, 
En. faecium FS56-1, En. thailandicus FS92, and Lc. lactis FLS1. Growth inhibition assay 
using neutralized culture supernatants. Data points represent the means of triplicate replications 
and error bars represent the standard deviations from the means (error bars were not used 
for all curves in the main paper to prevent clutter). Treatments with different lowercase 
letters are significantly different (p < 0.05); letters in brackets are for entire group of graph lines. 
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Figure A2. (Figure 6B with error bars) Growth inhibition assay showing the activity of 
Listeria monocytogenes 39-2 (R2) treated with culture supernatants from: None (R2 Cont.), 
Lb. delbrueckii 4797-2 (Bac�), Lb. curvatus FS47, P. acidilactici Bac3, Lb. curvatus Beef3, 
En. faecium FS56-1, En. thailandicus FS92, and Lc. lactis FLS1. Growth inhibition assay 
using neutralized culture supernatants. Data points represent the means of triplicate 
replications and error bars represent the standard deviations from the means (error bars were 
not used for all curves in the main paper to prevent clutter). Treatments with different 
lowercase letters are significantly different (p < 0.05); letters in brackets are for entire group 
of graph lines. 
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