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Abstract: Most chemotherapy regimens contain at least one DNA-damaging agent that 
preferentially affects the growth of cancer cells. This strategy takes advantage of the 
differences in cell proliferation between normal and cancer cells. Chemotherapeutic drugs 
are usually designed to target rapid-dividing cells because sustained proliferation is a 
common feature of cancer [1,2]. Rapid DNA replication is essential for highly proliferative 
cells, thus blocking of DNA replication will create numerous mutations and/or chromosome 
rearrangements—ultimately triggering cell death [3]. Along these lines, DNA topoisomerase 
inhibitors are of great interest because they help to maintain strand breaks generated by 
topoisomerases during replication. In this article, we discuss the characteristics of 
topoisomerase (DNA) I (TOP1) and its inhibitors, as well as the underlying DNA repair 
pathways and the use of TOP1 inhibitors in cancer therapy. 
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1. Type IB Topoisomerases and Inhibitors 

1.1. TOP1 

DNA topoisomerases resolve topological constraints that may arise from DNA strand separation 
and are therefore important for transcription and replication [4]. There are six topoisomerases in humans, 
classified as Type IA, IB and IIA. Type IA topoisomerases TOP3� and TOP3β cleave one DNA strand 
to relax only negative supercoiling. In addition, TOP3� forms the BTR complex with BLM and 
RMI1/2, which plays a role in the dissolution of double-Holliday junctions [5]. Type IIA topoisomerases 
TOP2� and TOP2β generate double-strand breaks on one DNA molecule to allow the passing of  
other DNA strands [6]. Topoisomerases are attractive drug targets in cancer therapy. For example,  
the commonly used anticancer agents doxorubicin and etoposide (VP-16) are TOP2 inhibitors [7]. Type IB 
topoisomerases include the nuclear TOP1 and mitochondrial TOP1mt [4]. TOP1 initiates the DNA 
relaxation by nicking one DNA strand. It then forms a TOP1-DNA cleavage complex (TOP1cc) by 
covalently linked to the 3'-phosphate end via its tyrosine residue Y723 (3'-P-Y). Following the 
resolution of topological entanglements and the removal of TOP1, the 5'-hydroxyl end is realigned 
with the 3'-end for religation. Each nicking-closing cycle enables the relaxation of one DNA 
supercoiling (Figure 1). 

 

Figure 1. A schematic representation of strand passages catalyzed by three types of 
topoisomerases (adapted from ref. [8]). 

TOP1 is essential for embryonic development in mammals [9]. Although TOP1 plays an important 
role in the deconvolution of supercoils arising amid DNA replication, the precise steps involved with  
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the recruitment of TOP1 to topological constraints remains to be revealed. It appears that in yeast 
TOP1 travels at a distance of 600 bp ahead of the replication fork [10] and remains associated with the  
GINS-MCM complex [11]. However, the yeast TOP1 is distinct from its human counterpart in that it 
has little effect on fork progression or the firing of replication origin [12]. In humans, TOP1 binds to 
the regions of the pre-replicative complex in cells during the M, early G1, and G1/S phases of the cell 
cycle to control the firing of replication origins [12]. This difference may explain why yeast cells are 
viable in the absence of TOP1. In addition, TOP1 also has functions in transcription that are 
independent of its role in resolving DNA topological entanglements. First, TOP1 is known to repress 
transcription by binding to TFIID [13]. Second, inhibition of TOP1 can cause the induction of c-Jun in 
leukemia cells, suggesting its additional role in the control of transcription [14]. Furthermore, TOP1 
interacts with the splicing factor ASF/SF2 by which it promotes the maturation of RNA—through 
suppressing the formation of R-loops (RNA-DNA hybrids)—and prevents collision between transcription 
bubble and replication fork [15,16]. It appears that the levels of TOP1 have to be dynamically 
regulated. In B cells, TOP1 is reduced by activation-induced cytidine deaminase (AID) to facilitate 
class-switch recombination (CSR) and somatic hypermutation (SHM) [17,18]. Although TOP1mt is 
important for mitochondrial integrity and metabolism, mice lacking mitochondrial TOP1mt are viable 
and fertile but they are associated with increased negative supercoiling of mtDNA [19,20]. 

1.2. TOP1 Inhibitors 

Stabilization of TOP1cc by topoisomerase poison is detrimental to cells due to the disruption of DNA 
uncoiling, increased strand breaks, and unstable RNA transcripts as well as incomplete DNA replication [21]. 
The TOP1 inhibitor camptothecin (CPT), first isolated from the Chinese tree Camptotheca acuminate, 
was clinically used for cancer treatment long before it was identified as a TOP1 inhibitor [22]. Due to 
side effects, CPT is no longer used clinically and it has been replaced by more effective and safer 
TOP1 inhibitors [23]. Currently, CPT derivatives topotecan (trade name: Hycamtin) and irinotecan 
(CPT-11, trade name: Camptosar) are routinely used to treat colorectal, ovarian and lung cancers, 
while a few other TOP1 inhibitors are being tested in clinical trials. 

CPT is a 5-ring alkaloid that is active in its closed E-ring (lactone) form but it is inactive with  
an open E-ring (carboxylate) at physiological and alkaline pH [24]. Therefore, CPT is not effective  
for inhibiting TOP1mt due to a higher pH mitochondrial environment. The inactive form of CPT  
tends to bind to serum albumin, which might be a reason for its side effects. CPT is highly specific  
for TOP1 and the binding is of relatively low affinity and can be reversed after drug removal.  
These features make the action of CPT controllable [24], and in fact CPT is widely used in studies of 
replication-associated DNA damage response. There are a few CPT derivatives and non-CPT TOP1 
inhibitors [4,8,24]. For example, CPT derivatives Diflomotecan and S39625 were designed to stabilize 
the E-ring. Irinotecan has the bis-piperidine side chain to increase its water solubility, but it also 
contributes to some side effects. Non-CPTs—such as indolocarbazoles, phenanthrolines (e.g., ARC-111) 
and indenoisoquinolines—refer to drugs that have no typical CPT E-ring structures but they can still 
specifically target TOP1 and bind irreversibly to TOP1cc. Some of the CPT derivatives (i.e., Gimatecan 
and Belotecan) and non-CPTs (i.e., NSC 725776 and NSC 724998) are presently tested in clinical 
trials [23]. 
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How does CPT trap TOP1cc? Analysis of the crystal structure and modeling suggest that  
CPT-TOP1-DNA forms a ternary complex to prevent the two DNA ends from religation [25–27]. 
Although it is still controversial on how CPT is intercalated into DNA, it seems that CPT traps 
TOP1cc with a thymine (T) at the �1 position and a guanine (G) at the +1 position on the scissile 
strand, and it is therefore sequence-specific [28]. Three amino acid residues of the TOP1 enzyme, 
R364, D533 and N722, combined with DNA bases, contribute to the stabilization of the ternary 
complex by forming hydrogen bonds and hydrophobic interactions. It is of note that several point 
mutations, including N722S, in Camptotheca acuminata TOP1 confer resistance to CPT [29]. 
Interestingly, the same amino acids also contribute to the inhibition of TOP1 by non-CPT drugs [24]. 

2. Repair of TOP1 Poison-Induced DNA Lesions 

As aforementioned, CPT-induced trapping of TOP1cc creates a single strand break with a free  
5'-hydroxyl group, whereas the 3'-phosphate is connected to Y723 of TOP1 (3'-P-Y). At least two pathways 
contribute to the repair of DNA lesions created by TOP1 poison [30]. The tyrosyl-DNA-phosphodiesterase 
(TDP1) pathway starts with the ubiquitination and proteasome-mediated degradation of TOP1 in  
the CPT-TOP1-DNA complex to generate a 3'-P end linked to a short peptide [31]. TDP1 then cleaves 
the P-Y bond to release the 3'-P end; however, the 3'-P end cannot be directly ligated to the 5'-OH end 
because of the requirements of DNA ligases. The human polynucleotide kinase (PNKP) can process  
the DNA ends by functioning as both a 3'-phosphatase and a kinase to generate the required 3'-OH and 
5'-P termini for direct ligation. The rest of the repair events can be best described by the single-strand 
break (SSB) repair pathway, which will be discussed below. Indeed, TDP1 and PNKP are tightly 
associated with the SSB repair machinery [32,33]. 

The endonuclease pathway requires multiple endonucleases to excise the DNA—usually at a few 
nucleotides away from the 3'-P-TOP1 end – on the scissile strand to release the DNA-TOP1 complex [30]. 
Initial studies were carried out to identify genes that functioned in CPT repair in the absence of TDP1 in 
yeast [34,35]. These studies led to the identification of RAD1-RAD10, SLX1-SLX4, MUS81-MMS4, 
MRE11-SAE2 as well as genes involved in recombination. The RAD1-RAD10 (human XPF/ERCC4-
ERCC1) complex is a DNA structure-specific endonuclease that can act on 5' overhang structures [36]. 
Interestingly, the cleavage site of XPF-ERCC1 is in the non-protruding DNA strand, about 3–4 
nucleotides away from the 3' end [36]. Therefore, trapped TOP1ccs can be removed by this endonuclease 
activity. Likewise, MUS81-MMS4 (human MUS81-EME1) can also cleave nicked duplex at the 5' of  
the nick [37]. The SLX1-SLX4 endonuclease, although not tested on nicked duplexes, is able to process 
3' flap and other DNA structures [38,39]. In human cells, SLX4 also associates with XPF-ERCC1 and 
MUS81-EME1 endonucleases to process specific DNA intermediates [39,40]. Moreover, MRE11-RAD50 
cleaves the 3'-P-Y bond and resects DNA to produce a 3'-OH end [41]. A direct role of SAE2 (human 
CtIP) in processing 3'-P-TOP1 is unknown, and its endonuclease activity appears to be limited to the  
5' flap or DNA “hairpin” structures [42,43]. Nonetheless, the endonuclease activity of CtIP is essential 
for processing CPT adducts [42]. In addition, like CtIP, the 5' flap endonuclease RAD27 (human FEN1) 
seems to be unable to directly process 3'-P-TOP1 ends [44]. However, the gap endonuclease activity of 
FEN1 is important for processing stalled replication forks and CPT-induced adducts [45]. The role of 
FEN1 in SSB repair will be discussed further in the next section. 
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During DNA replication, SSBs created by CPT are most likely converted to double-strand breaks 
(DSBs) by replication fork runoff. This conversion appears to be dependent on the proteolysis of TOP1 [46]. 
The repair of one-ended DSBs, as will be discussed in the next section, is largely dependent on 
homologous recombination (HR). However, low doses of CPT may also induce PARP1 and/or RAD51 
dependent replication fork regression—generating no or few DSBs [47,48]. The regressed fork leads  
to the formation of a “chicken foot” DNA structure by newly synthesized strands [3,49,50]. The 
formation of regressed fork can be largely suppressed by ATR, EXO1, and DNA2 [51–53]. However, 
fork reversal can also be beneficial as it provides time for the repair of TOP1-induced DNA lesions  
by TDP1, thereby preventing DSB formation and the activation of error-prone non-homologous  
end-joining (NHEJ) [30]. 

3. Pathways Involved in the Repair of CPT-Induced DNA Lesions 

Normal cells use DNA damage response (DDR) pathways to maintain genomic stability [54].  
As aforementioned, SSB and DSB repair mechanisms are the two major DDR pathways that repair 
TOP1-induced DNA lesions. Paradoxically, cancer cells exploit DDR pathways to accumulate necessary 
genomic alterations for promoting proliferation. Furthermore, altered DDR and apoptotic responses in 
cancer cells are the major obstacles to successful chemotherapy. Thus, the delineation of TOP1-related 
SSB and DSB repair mechanisms is of great importance for identifying drug targets that can selectively 
affect cancer cell survival. 

3.1. Single-Strand Break (SSB) Repair 

Trapping of TOP1cc results in a 3'-P-TOP1 end and a 5'-OH terminus. Because the two ends cannot 
be directly religated, the persisting SSB is likely to be detected by PARP1 in which activated PARP1 
catalyzes the synthesis of poly(ADP-ribose) (PAR) chains for recruiting repair proteins [55]. This 
reaction can be rapidly reversed by PARG, which hydrolyzes the PAR chains. The PAR chains at the 
SSB sites are important for the recruitment of XRCC1 that functions as a loading dock for other SSB 
repair proteins including TDP1 and PNKP. TDP1 generates 3'-P and PNKP converts 3'-P to 3'-OH,  
and PNKP also converts 5'-OH to 5'-P, making ends compatible for religation with no base loss.  
The rejoining of the 3'-OH and 5'-P ends is mainly mediated by LIG3, in which XRCC1 mediates  
the recruitment of LIG3. 

If the trapped TOP1cc intermediates are processed by endonucleases, the initial SSBs will be 
converted to 3'-OH and 5'-OH ends with a gap over a few nucleotides (in the case of XPF-ERCC1,  
the loss is in the range of 3–4 nt), leading to the activation of PARP1 and XRCC1 recruitment. 
Consequentially, Pol� recruited by XRCC1 can catalyze the gap filling, and PCNA-Pol�/� also plays a 
role in this process [55]. If the 5'-OH is not processed by PNKP, the 5'-flap resulted from gap filling is 
likely to be removed by FEN1, which explains why FEN1 deficiency also leads to an increased CPT 
sensitivity. The final ligation is catalyzed by LIG1 because of the presence of PCNA. 
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3.2. Double-Strand Break (DSB) Repair 

Successful DSB repair requires concerted actions of proteins involved in DNA damage signaling 
and repair [54]. To repair TOP1 poison-induced DNA lesions, ATR signaling is required due to the 
runoff of replication fork and the presence of long single-strand DNA (ssDNA) [56]. The full 
activation of ATR follows a “two-man” rule—the ssDNA-ATRIP-dependent recruitment of ATR 
kinase and the RAD17 clamp loader/9-1-1/TOPBP1 mediator loading at the ssDNA-dsDNA junction. 
ATR phosphorylates CHEK1 to harness cell cycle arrest. If one-ended DSB is formed, ATM will be 
activated through the action of the MRE11-RAD50-NBS1 (MRN) complex. ATM mainly phosphorylates 
CHEK2 to mediate cell cycle arrest. Both ATM and ATR are able to phosphorylate hundreds of 
proteins in response to DSB formation [57]. One remarkable substrate is the histone H2AX, which  
can be phosphorylated by both kinases to yield γ-H2AX. It is conceived that the propagation of  
γ-H2AX signaling along the chromatin facilitates MDC1 recruitment and BRCA1 signaling via the 
MDC1-RNF8-RNF168-RAP80 ubiquitin cascade—events that are essential for HR [58]. 

The repair of TOP1 poison-induced DNA lesions is in essence the repair of one-ended DSBs, which 
facilitates the restoration of replication forks to restart DNA replication. It is important to note that 
one-ended DSB repair occurs in the S phase and relies on HR rather than NHEJ [59]. The first step in 
HR is end resection to generate a 3'-overhang for homology searching. A TOP1 cleavage in the leading 
strand may require end resection by the MRN-CtIP-BRCA1 and BLM-EXO1-DNA2 complexes [60], 
whereas a cleavage in the lagging strand automatically forms a 3'-overhang. Rad51 then associates 
with the 3'-ssDNA to form a nucleofilament for strand invasion, which leads to the formation of a  
D-loop structure [61]. This process continues with DNA synthesis, branch migration and the resolution 
of Holliday junction structures to reconstitute a functional replication fork [62]. TOP1 poisons can also 
lead to the formation of two-ended DSB if two replication forks collide into each other at the site of 
SSB. The repair of this type of DSBs is not aimed for fork restoration and can be accomplished by  
the classical DSB repair mechanisms [61]. 

3.3. Genes Involved in CPT-Induced Damage Repair 

A long list of genes, in which mutations confer sensitivity to CPT in yeast, chicken or mammalian 
cells, has been compiled [24,30,63]. With no surprise, many genes involved in SSB and DSB repair are 
on the list, such as PARP1, XRCC1, PNKP, TDP1 for SSB repair; MRN, ATM-CHK2, ATR-CHK1 
for DSB signaling; BRCA1/2, XRCC2, XRCC3 for HR. Most recently, the hMSH5-FANCJ complex 
has also been implicated to play a role in CPT-induced DNA damage response and repair [64]. 
Mutations in the binding partners of these repair factors are also likely to sensitize cells to CPT 
treatment. For example, depletion of the MRN-binding partner hnRNPUL increases the sensitivity to 
CPT [65]; and deficiencies in ZRANB3 and SPIDR, binding partners of PCNA and RAD51, cause 
CPT hypersensitivity in cancer cells [66–68]. In addition, the two DNA helicases BLM and WRN have 
also been implicated in the repair of CPT-induced DNA lesions [69,70]. Early studies revealed that 
chicken BLM knockout cells and human BLM-deficient fibroblasts showed increased sensitivity to 
CPT [71,72]. On the contrary, mouse BLM knockout embryonic stem cells showed mild resistance to 
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CPT [73]. This discrepancy is likely attributable to the complexity of CPT-induced DNA lesion repair 
as well as different treatment conditions and experimental systems. 

Interstrand crosslinks (ICLs) resemble CPT-induced lesions in that they block both replication  
and transcription [74]. They may induce replication fork reversal and fork collapse, which require  
DNA incision for lesion processing and HR for repair. ICL repair is accomplished by the coordinated 
actions of 17 Fanconi anemia (FA) genes whose mutations contribute to FA in patients [75]. Depletion 
of FANCP/SLX4 or FANCQ/XPF causes cellular sensitivity to CPT because they form an endonuclease 
complex involved in the repair of trapped TOP1cc [38]. Likewise, depletion of FANCS/BRCA1, 
FANCD1/BRCA2, FANCN/PALB2 or FANCO/RAD51C sensitizes cells to CPT because of their 
involvement in HR [76]. Accordingly, depletion of the FA core complex except FANCM—involved in 
fork reversal—is not expected to increase CPT sensitivity because they are unable to recognize the 
trapped TOP1cc [76]. However, the roles of FANCI, D2, J and FAN1 in the process are elusive due to 
conflicting reports presumably reflecting different experimental systems [76–78]. For example, in a 
multicolor competition assay, loss of FANCI or FAN1 rendered cells sensitive to CPT treatment [77]. 
However, this observation could not be recapitulated in studies performed with FANCI-deficient 
lymphoblasts and FAN1-depleted HEK293 cells [76,79], indicating that the involvement of these two 
genes in CTP sensitivity might be cell type specific. 

It is interesting to note that the MMS22L-TONSL complex plays a prominent role in mediating 
CPT sensitivity [80–83]. Depletion of this complex impairs RAD51 foci formation and triggers G2/M 
arrest, indicating that the MMS22L-TONSL complex participates in HR repair. Furthermore, this 
complex associates with MCM, FACT, ASF1 and histones. FACT and ASF1 are histone chaperones 
that function in H2A/H2B and H3/H4 chromatin assembly and disassembly, respectively [84]. They 
recycle parental histones from old DNA strands unwound by MCM and incorporate them into newly 
synthesized DNA strands. FACT and ASF1 also function in checkpoint signaling; therefore the 
involvement of MMS22L-TONSL in CPT response implies the existence of a close association 
between HR, DNA damage signaling and replication restart. 

4. TOP1 Inhibition in Cancer Treatment 

The understanding of the function of TOP1 and the cellular effects of TOP1 inhibition has been  
a stepping-stone for the development of effective CPT derivatives in cancer therapy. Since TOP1 
functions in normal and cancer cells, the use of low doses of TOP1 inhibitors are actively sought to 
treat cancers that heavily rely on the function of TOP1 for survival (e.g., highly malignant, rapid-dividing 
tumor cells). In fact, the FDA-approved CPT derivatives topotecan and irinotecan are currently used to 
treat ovarian and colorectal cancers, respectively [24]. 

Furthermore, the promising results from a Phase I trial have warranted further evaluation of the 
CPT derivative Diflomotecan in Phase II trials [85]. Other derivatives like Gimatecan, Lurtotecan and 
Exatecan are also being tested in clinical trials (Table 1). The non-CPT indolocarbazole BMS-250749 
showed great anti-tumor activity against preclinical xenograft models [86], but no further evaluation 
beyond Phase I trials is presently available (Table 2). Another indolocarbazole compound Edotecarin 
has shown promising anti-tumor activity in xenograft models and it is now advanced to Phase II 
studies of patients with advanced solid tumors [87]. By contrast, Phenanthroline ARC-111 (topovale) 
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was potently against human tumor xenografts and displayed anti-cancer activity in colon and Wilms’ 
tumors [88]; however, no result from Phase I clinical trials is available owing to profound bone 
marrow toxicity [89]. To date, indenoisoquinolines are the most promising non-CPT inhibitors in 
clinical trials. LMP400 (NSC 743400, indotecan) and LMP776 (NSC 725776, indimitecan) show 
significant anti-tumor activities in animal models and both are being evaluated in Phase I clinical trials 
for relapsed solid tumors and lymphomas [8,90]. 

Table 1. CPT derivatives in clinical trials [91]. 

Name Structure Clinical Trial Malignancy Reference 

Camptothecin Discontinued  [24] 

Topotecan 
(Hycamtin) 

FDA approved 
Ovarian cancer, 

SCLC 
[24] 

Irinotecan 
(Camptosar/CPT-11) 

FDA approved Colorectal [24] 

Belotecan 
(CKD-602) 

Approved 
(South Korea) 

 [4] 

Diflomotecan 
(BN80915) 

 

Phase II 
(Ipsen) 

Advanced 
metastatic cancer, 

SCLC 
[84] 

Gimatecan 
(ST-1481, LBQ707) 

Phase I/II 
(Sigma-Tau, 

Novartis) 

Advanced solid 
tumors 

[24] 

Lurtotecan 
(Liposomal OSI-211, 

NX 211) 

Phase II 
(Astellas, NCLC) 

SCLC, Ovarian 
[24] 

 

Exatecan mesylate 
(DX-8951f) 

Phase II/III 
(Daiichi) 

Sarcoma, 
Pancreatic, 

Gastric, Liver 
[24] 

  

HO

O

O

O

N
N

HO

HO

N

N
N

O

O

O

HO

O

O

O

N

O

O

N

N
N



Biomolecules 2015, 5 1660 
 

 

Given the observation that CPT-mediated TOP1 inhibition provokes DNA repair activities, a synergistic 
effect is then anticipated on cancer cells by inhibition of TOP1 and downregulation of DNA repair 
activities. The rationale for this approach is to accelerate the accumulation of DNA breaks and trigger 
cellular apoptosis, probably through mitotic catastrophe [92]. Which DNA repair pathways can  
we exploit? Currently, the major interests are in SSB and DSB repair mechanisms. Indeed, PARP 
inhibitors can enhance the cytotoxicity of TOP1 inhibitors in cancer cell lines as well as in mouse 
models [93–96]. Phase I studies of combination therapy using PARP inhibitors veliparib or olaparib 
(FDA-approved) together with topotecan were carried out in patients with advanced solid tumors but 
showed some dose-dependent side effects [97,98]. TDP1 can be another potential target because it 
functions directly downstream of PARP1 in the repair of TOP1 poison-induced DNA lesions [99]. 
TDP1 inhibitors sensitize cells to CPT treatment in vitro [100,101], however in vivo evaluation is 
presently unavailable due to unsuitable properties of the compounds [102]. 

Table 2. Non-CPT derivatives in preclinical and clinical trials [91]. 

Name Structure Clinical Trial Malignancy Reference 

Indolocarbazoles 
(Edotecarin, 

BMS-250749) 

Phase II 
(Edotecarin, Pfizer) 

 
Preclinical 

(BMS-250749) 

Stomach, breast 
neoplasms 

 
 

Anti-tumor activity 
in preclinical 

xenograft models 

[86,87,103] 

Phenanthridines 
(ARC-111/topovale) 

 

Preclinical 
Anti-tumor activity 

in preclinical 
xenograft models 

[88,89,103] 

Indenoisoquinolines 
(LMP400, LMP776) 

Phase I Lymphomas [8,90,103] 

DSB repair can be targeted by either inhibition of DSB signaling or inhibition of HR. ATM and 
ATR inhibitors can largely increase the sensitivity to CPT in cancer cells [104,105]. This can be 
explained by the fact that abrogation of the cell cycle arrest will allow cells with unreplicated or 
unrepaired chromosomes to enter mitosis thereby triggering mitotic catastrophe and cell death. Similarly, 
CHEK1 and CHEK2 inhibitors are tested in Phase I studies in combination with irinotecan [106,107]. 
Inhibitors that can directly block HR proteins are very limited [108]. This is partially attributed to the 
fact that HR genes are often mutated in cancer cells, thus diminishing the enthusiasm for developing HR 
inhibitors. One diterpenoid compound, however, was found to be able to inhibit the function of BRCA1 
and render cytotoxicity in human prostate cancer cells [109]. Several RAD51 inhibitors have also been 
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identified but have not been tested in cell lines [110]. Inhibition of BRCA1 and RAD51 can be also 
achieved indirectly by harnessing corresponding kinases [106]. Clearly, defective hMRE11 sensitizes 
colon cancer cells to CPT treatment [111]. Although MRE11-deficeint tumor xenografts failed to 
display significant growth inhibition by irinotecan alone, combining thymidine with irinotecan caused a 
dramatic growth delay [112]. 

TOP1 inhibitors might be also useful for treating cancers with BRCA1/2 mutations. The successful 
use of PARP inhibitors in treating BRCA1/2-deficient tumors has ignited a broad interest in searching 
for synthetic lethality among DNA damage response and repair genes [113,114]. In the PARP-BRCA1/2 
example, the accumulation of SSBs by PARP inhibition would lead to the formation of DSBs during 
replication. In HR-deficient cells, DSBs can only be repaired by illegitimate (toxic) NHEJ—joining 
one-ended DSBs from different locations—leading to cell death [115,116]. However, resistance to 
PARP inhibitors can arise in BRCA1-deficient tumors during treatment from either genetic reversion 
of BRCA1 mutations or the loss of NHEJ [117–122]. Therefore, it would be beneficial to explore the 
possibility of developing a similar synthetic lethal strategy to use TOP1 inhibitors in the treatment of 
BRCA1/2-deficient tumors. 

 

Figure 2. An overview of the effects of TOP1 inhibition is provided. Inhibitors and key 
DNA repair factors are highlighted. 
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5. Conclusions 

Trapping of TOP1 by inhibitors generates SSBs and DSBs that are repaired by their corresponding 
repair pathways (Figure 2). Therefore, developing effective TOP1 inhibitors not only provides powerful 
tools to study DNA replication and repair but also establishes a foundation to devise new synthetic 
lethal strategies for efficient cancer treatments. The accumulation of DNA strand breaks (SSBs and 
DSBs) by TOP1 inhibition in HR-deficient tumor cells is expected to enhance cytotoxicity. However, 
increased DNA repair activities in cancer cells can make TOP1 inhibitors less effective, so silencing of 
repair pathways in conjunction with the use of TOP1 inhibitors offers an attractive new means for 
cancer control. Since each tumor is unique, it would be advantageous to identify the individualities of 
DNA repair pathways or biomarkers reflecting the changes of DNA repair activities in tumor cells [92,123]. 
This will make it possible to achieve better and predictable prognosis through tailored therapeutic 
regimens. Given that TOP1 is essential for transcription and DNA replication, future design of novel 
TOP1 inhibitors and combinational therapy strategies should aim to increase therapeutic efficacy of  
the inhibitors, thus reducing side effects. 
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