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Abstract: There is a need to identify novel scaffolds and targets to develop new antibiotics.
Methylene blue is a phenothiazine derivative, and it has been shown to possess anti-malarial and
anti-trypanosomal activities. Here, we show that different phenothiazine derivatives and pyronine
G inhibited the activities of three structurally different bacterial RNase P RNAs (RPRs), including
that from Mycobacterium tuberculosis, with Ki values in the lower µM range. Interestingly, three
antipsychotic phenothiazines (chlorpromazine, thioridazine, and trifluoperazine), which are known
to have antibacterial activities, also inhibited the activity of bacterial RPRs, albeit with higher Ki
values than methylene blue. Phenothiazines also affected lead(II)-induced cleavage of bacterial RPR
and inhibited yeast tRNAPhe, indicating binding of these drugs to functionally important regions.
Collectively, our findings provide the first experimental data showing that long, noncoding RNAs
could be targeted by different phenothiazine derivatives.
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1. Introduction

Ribonuclease P (RNase P) is an essential and ubiquitous endoribonuclease responsible for
generating tRNAs with matured 5′ ends. In Bacteria, RNase P is composed of an approximately
400 nucleotides-long RNA (RPR) and one small basic protein, while in Archaea and Eukarya several
proteins associate with the sole RNA. Irrespective of origin, the catalytic moiety of RNase P is the
RPR, as evident from its ability to mediate cleavage of pre-tRNA as well as various other natural
RNAs including mRNA and artificial substrates without the protein cofactor(s) [1–4]. Comparison of
the bacterial and human RPR reveals structural differences in regions of functional importance. For
example, the human RPR lacks the region in bacterial RPR that interacts with the 3′ end of pre-tRNAs;
differences also exist in the region that constitutes the binding site for the pre-tRNA T-stem/loop in
bacterial RPR [5]. In addition, 10 proteins bind to human RPR compared to 1 in bacteria [6]. Together,
these findings suggest that bacterial RNase P is a promising target for new anti-infective agents [7–13].

The activity of bacterial RNase P is inhibited by various aminoglycosides, aminoglycoside–arginine
conjugates, and puromycin [10,14–17]. Biochemical and structural data suggest that aminoglycosides
can compete with binding of functionally important Me(II)-ion(s) to RNA [15,17,18]. In addition,
acitretin and aminoglycosides inhibit the activity of the Dictyostelium discoideum RNase P
holoenzyme [19,20]. Thus, we were motivated to search for other small molecules that interfere with
bacterial RNase P function. In this study, we focused on bacterial RPR activity without protein since
we were interested in identifying inhibitors of RNA function.
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The phenothiazine methylene blue was first synthesized and described in the late 1800s. Given
its properties, it was used as both a stain and a drug for the treatment of bacterial infections and
malaria. Its biochemical properties have also been instrumental in developing protocols for microscopic
detection and identification of microorganisms such as Mycobacterium tuberculosis, the causative agent
of tuberculosis [21]. Moreover, staining procedures involving methylene blue have been used to
stain RNAs in tissues and for visualization of RNA following separation by gel electrophoresis and
membrane blotting [22,23].

Here, we provide data showing that various phenothiazine derivatives such as toluidine blue
O and chlorpromazine, an antipsychotic drug with antibacterial activity, inhibit the activity of three
structurally different bacterial RPRs, including the M. tuberculosis variant, as well as lead(II)-induced
cleavage of yeast tRNAPhe.

2. Results

To investigate whether phenothiazine derivatives inhibit the activity of bacterial RPR we followed
the protocol described by Mikkelsen et al. ([15], see Materials and Methods) and monitored cleavage
of Escherichia coli (Eco) pre-tRNATyrSu3 (pSu3) and pre-tRNASerSu1 (pSu1; Figure 1). Bacterial RPRs
have been classified into type A (ancestral) and type B (Bacillus type) based on their secondary
structures ([24]; Figure 2). Hence, we decided to use Eco RPRwt (M1 RNA; type A) and also Eco RPRG235,
which carries a change that alters the structure in the vicinity of the binding site for the pre-tRNA
T-stem/loop region ([25]; see below), and Mycoplasma hyopneumoniae (Hyo) RPR (type B; Figure 2; [26]).
In addition, we included the type A M. tuberculosis (Myc) RPR because of its medical importance and
the alarming increase in the appearance of multidrug-resistant strains (Figure 2; [27,28]). The structures
of the different phenothiazine derivatives and similar compounds that we tested are depicted in
Figure 3.
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Figure 1. The secondary structures of precursor tRNATyrSu3, precursor tRNASerSu1, and yeast
tRNAPhe. (A,B) Precursor tRNATyrSu3 (pSu3) and tRNASerSu1 (pSu1). Black arrows indicate the
canonical RNase P cleavage sites; (C) The grey arrow marks the major Pb2+-induced cleavage site in
the D-loop of yeast tRNAPhe.
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Figure 2. The secondary structures of Escherichia coli (Eco) RNase P RNA (RPR) (type A),
Mycoplasma hyopneumoniae (Hyo) RPR (type B), and P15 RNA according to Massire et al. [29]. (A) Eco
RPR (type A), the dotted line demarcates the S- and C-domains. Roman numerals and grey arrows
mark the Pb2+-induced cleavage sites I to V. Residue C235 highlighted in black was mutated to G to
generate Eco RPRG235. The Eco CP RPRwt lacks the S-domain and constitutes only the C-domain, with
A79 to G88 forming a loop, marked with a grey line/arrow; for details see Kikovska et al. [30] and
Wu et al. [31]; (B) M. hyopneumoniae RPR (type B) [26]. The Ia Pb2+-induced cleavage site is marked
with a grey arrow. As in A, the dotted line demarcates the two major RPR domains; (C) P15 RNA.
The grey arrow marks the Pb2+-induced cleavage at sites III to V.
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Figure 3. Chemical structures of the small molecules tested in this study. The structure marked with a
box represents the phenothiazine scaffold structure, with the ring atoms numbered.

2.1. Inhibition of RNase P RNA Cleavage by Phenothiazine Derivatives

Increasing concentrations of the selected phenothiazine derivatives inhibited the activity of all
three bacterial RPRs. A representative inhibition curve is shown in Figure 4 and the Ki values were
determined to be in the low µM range irrespective of the RPR we tested (Table 1). Comparing the Ki
values for Eco RPRwt, Myc RPR and Hyo RPR revealed little variation, at most twofold. Replacing pSu3
with pSu1 in our assays resulted in a twofold increase in Ki for inhibition of Eco RPRwt by toluidine
blue O (cf. Tables 1 and 2). These data demonstrated that the addition of phenothiazine compounds
inhibits the activity of structurally different bacterial RPRs.
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Table 1. Ki values (in µM) for inhibition of Eco RPR, Myc RPR and Hyo RPR mediated cleavage of
pre-tRNATyrSu3 (pSu3) and lead(II)-induced cleavage of P15 RNA and yeast tRNAPhe.

RPR-Mediated Cleavage Lead(II)-Induced Cleavage

Eco Myc Hyo P15 RNA Yeast tRNAPhe

Methylene blue 14 ± 2.6 28 ± 13 25 ± 1.2 62 ± 6.3 98 ± 20
Toluidine blue O 8.6 ± 1.7 12 ± 3.8 10 ± 4.9 14 ± 8 70 ± 20

Thionine acid 17 ± 0.33 8.3 ± 4.3 9.3 ± 3.3 41 ± 1.3 46 ± 51
Azure A 29 ± 9 21 ± 2.3 19 ± 0.67 28 ± 8.3 52 ± 8.3
Azure B 17 ± 9 12 ± 2 12 ± 2.7 37 ± 10 58 ± 28

Pyronin G 15 ± 1.7 44 ± 7.0 35 ± 8.6 20 ± 3 166 ± 42
Thioridazine 177 ± 23 67 ± 6.2 125 ± 31 80 ± 1.7 ND

Trifluoperazine 131 ± 22 106 ± 3.3 151 ± 26 132 ± 24 ND
Chlorpromazine 437 ± 33 161 ± 16 170 ± 9.2 133 ± 19 ND

Ki corresponds to the concentration that led to 50% inhibition of cleavage activities. Each value was calculated
from plots like the one in Figure 4 and represents the average of three independent experiments± the maximum
deviation from the average value. The concentration of pSu3 was ≤0.02 µM while the concentrations of the
RPR variants, P15 RNA, and yeast tRNAPhe were 0.082 µM, 5 µM, and 2.4 µM, respectively (for details see
Materials and Methods). Eco: Escherichia coli; Myc: Mycobacterium tuberculosis; Hyo: Mycoplasma hyopneumoniae;
RPR: RNase P RNA; ND: not determined.

Table 2. Ki values (in µM) for inhibition of cleavage of pre-tRNASerSu1 (pSu1) by different Eco
RPR variants.

Eco RPR Variant Toluidine Blue O (µM) Chlorpromazine (µM)

Eco RPRwt 20 ± 4 450 ± 40
Eco RPRG235 17 ± 3 200 ± 30
Eco CP RPR 30 ± 5 ND

Ki corresponds to the concentration that led to 50% inhibition of cleavage activities by the indicated Eco RPR
variants. Each value was calculated from plots like the one in Figure 4 and represents the average of three
independent experiments ± the maximum deviation from the average value. The concentration of pSu1 was
≤0.02 µM while the concentrations of Eco RPRwt and Eco RPRG235 were 0.082 µM and Eco CP RPR was 5.4 µM
(for details see Materials and Methods). ND, not determined.

The intercalator RNA dye pyronine G, which has a similar structure compared to phenothiazine
(Figure 3), also inhibited the activity of all three RPRs in the low µM range, with a threefold variation
in Ki (Table 1). Pyronine G has an oxygen and a carbon at positions 5 and 10, respectively, while
phenothiazine has sulfur and nitrogen at those positions (Figure 3). Thus, having sulfur and nitrogen
at positions 5 and 10 is not essential for inhibiting the activity of bacterial RPRs.

The inhibition of Eco RPR activity by aminoglycosides is pH-dependent [15]. We therefore
inquired whether pH also influences the inhibition by phenothiazine. For toluidine blue O, we did
not detect any change in Ki when the reaction was performed at pH 6, pH 7.9 (our standard pH), or
pH 9 (Table 3). We also inquired whether higher salt concentrations influenced inhibition by toluidine
blue O and thionine acid. The Ki values increased two- to almost fourfold in the presence of 100 mM
Mg2+ and 100 mM NH4

+, i.e., 10 to 100 times higher concentrations, respectively, compared to 10 mM
Mg2+ and 1 mM NH4

+ (see Materials and Methods). Based on this data alone, however, we cannot
determine whether the increase in Ki is due to the higher concentration of NH4

+ and/or the higher
concentration of Mg2+.
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Next, we asked whether the order of addition of Eco RPR vs. substrate (S; pSu3) and inhibitor
(I; toluidine blue O or thionine acid), had any effect on Ki. The data showed that pre-incubating pSu3
together with the I resulted in at least a fourfold lower Ki than when the RPR and I were pre-incubated
together or when RPR, S, and I were pre-incubated separately and then mixed (Table 3). These results
indicated that toluidine blue O or thionine acid might bind to pre-tRNA.

Table 3. Ki values (in µM) for inhibition of Eco RPRwt mediated cleavage under different conditions.

Inhibitor Conditions Order of Addition Ki Values (µM)

Toluidine blue O Buffer I, pH 7.2 RPR + I then S 16 ± 2
Toluidine blue O Buffer II, pH 7.2 RPR + I then S 8.6 ± 0.9
Toluidine blue O Buffer II, pH 9.0 RPR + I then S 11 ± 2.6
Toluidine blue O Buffer II, pH 6.0 RPR + I then S 9.3 ± 0.67
Toluidine blue O Buffer II, pH 7.2 RPR, I and S 10 ± 1.8
Toluidine blue O Buffer II, pH 7.2 S + I then RPR 2.2 ± 0.4

Thionine acid Buffer I, pH 7.2 RPR + I then S 63 ± 6.8
Thionine acid Buffer II, pH 7.2 RPR + I then S 17 ± 0.3
Thionine acid Buffer II, pH 7.2 RPR, I and S 7.5 ± 3.5
Thionine acid Buffer II, pH 7.2 S + I then RPR 2.2 ± 0.4

RPR + I then S: RPR + I were pre-incubated for 10 min at 37 ◦C followed by the addition of S; S + I then RPR: S + I
were pre-incubated for 10 min at 37 ◦C followed by the addition of pre-incubated Eco RPRwt; RPR, I and S: RPR,
I and S were pre-incubated at 37 ◦C separately for 10 min and then mixed. Ki corresponds to the concentration
that led to 50% inhibition of cleavage activities as indicated. Each value was calculated from plots like the one
in Figure 4 and represents the average of three independent experiments ± the maximum deviation from the
average value. The concentration of pSu3 was ≤0.02 µM while the concentration of Eco RPR was 0.082 µM.

1 
 

 
Figure 4. Toluidine blue inhibition of Eco RPRwt-mediated cleavage of pSu1. (A) A representative
experiment showing toluidine blue inhibition of Eco RPRwt activity. The experiment was performed
as outlined in the Materials and Methods and the reaction time was 5 min. Lanes 1 and 2 correspond
to controls; lane 1 corresponds to pSu1 substrate without Eco RPRwt and toluidine blue and lane 2
corresponds to pSu1 with Eco RPRwt but without toluidine blue; (B) Efficiency of cleavage is expressed
in percentage as a function of increasing concentration of toluidine blue.
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2.2. Lead(II)-Induced Cleavage of Yeast tRNAPhe, P15 RNA, and Eco RPR

To test whether phenothiazine indeed binds to tRNA, we studied lead(II)-cleavage of yeast
tRNAPhe based on the precedent that aminoglycosides interfere with Pb2+ binding to RNA ([15,18]; see
Materials and Methods). Our data indicate that all phenothiazine derivatives inhibit lead(II)-cleavage
of yeast tRNAPhe (Table 1). The Ki values for inhibition of Pb2+-cleavage were higher compared
to values determined for inhibiting the bacterial RPRs. In addition, we tested pyronine G and it
also inhibited lead(II)-cleavage of yeast tRNAPhe. However, Ki was significantly higher than for the
phenothiazine derivatives. Together, these data suggested that phenothiazine and pyronine G bind to
tRNA, albeit with different affinities.

The functionally important P15 domain in Eco RPRwt (type A; Figure 2; [1]) is cleaved at specific
sites in the presence of Pb2+ in the context of both full-length Eco RPRwt and as a separate module [32].
Hence, we asked whether lead(II)-induced cleavage of P15 RNA, a 31-nt-long RNA [33] representing
the P15-domain, is also inhibited by phenothiazine and pyronine G. Ki values ranging from 14 to
60 µM indicate that these inhibitors also bind to the P15 RNA. Collectively, these data suggested that
phenothiazines bind to RNA and interfere with binding and/or positioning of Pb2+.

2.3. Inhibition of Bacterial RPR Activities by Antipsychotic Phenothiazine Variants

The antipsychotic drugs thioridazine, trifluoperazine and chlorpromazine are phenothiazine
variants with different functional (R) groups, R1 and R2, at positions 2 and 10 (Figure 3). As was
observed for the other phenothiazine derivatives, addition of any of these molecules inhibited the
activity of all three RPRs. However, the Ki values, which ranged from 67 to 437 µM, were higher
than the values for the other phenothiazine derivatives (Table 1; see also Table 2 where pSu1 was
used as substrate). This increased Ki might be due to the presence of bulky R2 groups. Moreover,
thioridazine, trifluoperazine, and chlorpromazine also inhibited lead(II)-induced cleavage of P15 RNA,
with Ki values similar to the values for inhibition of RPR activity. We also tested if the “three ring”
antidepressants imipramine and amitriptyline (Figure 3) showed any inhibitory effect on bacterial RPR
activity, but we did not detect any inhibition under our conditions (data not shown).

2.4. Binding of Phenothiazine Affects the Structure of Eco RPR

To elucidate where phenothiazine binds RPRwt we used Pb2+, which induces cleavage at specific
and well-defined positions in the Eco RPRwt (Figure 2). As shown in Figure 5, Pb2+-induced cleavage
of Eco RPRwt in the presence of toluidine blue O and chlorpromazine resulted in changes in the
vicinities of sites Ib, IIa, and IIb as well as near III, IV, and V in the case of chlorpromazine (Figure 5,
marked with •). The change in cleavage at III and V is consistent with phenothiazine inhibition
of lead(II)-induced cleavage of P15 RNA (Table 1). Sites IIa and IIb are located in the S domain,
which constitutes the binding site for the pre-tRNA T-stem/loop in bacterial RPR [1,34]. Hence, these
data suggested that toluidine blue O and chlorpromazine bind to Eco RPR, altering its structure and
interfering with the binding of Pb2+ ions in several Eco RPR regions.
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Figure 5. Lead(II)-induced cleavage patterns of 3′-[32P]-pCp labeled Eco RPRwt and Eco RPRG235 with
and without toluidine blue (TB) or chlorpromazine (CH). The experiments were performed at 37 ◦C as
outlined in the Materials and Methods. The Roman numerals refer to the lead(II)-induced cleavage
sites as shown in Figure 2 and the bands marked with • indicate observed changes induced in the
presence of toluidine blue. In all the experiments, we used 1 µM RPR. Lane 1: Eco RPRwt, 0.025 mM
toluidine blue and 1 mM Pb2+, reaction time 7 min; lane 2: Eco RPRwt, 0.25 mM toluidine blue and
1 mM Pb2+, reaction time 7 min; lane 3: incubation of Eco RPRwt without toluidine blue and Pb2+,
reaction time 7 min; lane 4: Eco RPRwt cleaved with Pb2+ (2 mM) for 7 min; lane 5: Eco RPRwt, 4 mM
chlorpromazine and 2 mM Pb2+, reaction time 7 min; lane 6: Eco RPRG235, 0.025 mM toluidine blue and
1 mM Pb2+, reaction time 7 min; lane 7: Eco RPRG235, 0.25 mM toluidine blue and 1 mM Pb2+, reaction
time 7 min; lane 8: incubation of Eco RPRG235 without inhibitor and Pb2+, reaction time 7 min; lane 9:
Eco RPRG235 cleaved with Pb2+ (1 mM) for 5 min; lane 10: Eco RPRG235, 4 mM chlorpromazine and
1 mM Pb2+, reaction time of 5 min.



Biomolecules 2016, 6, 38 9 of 16

2.5. Phenothiazine Inhibition of Structurally Altered Eco RPR

To further test the influence of the Eco RPRwt S domain with respect to phenothiazine inhibition,
we determined the Ki values for inhibition of two variants, Eco RPRG235 and Eco CP RPR, by toluidine
blue O and chlorpromazine (the latter was not tested for inhibition of Eco CP RPR). Eco RPRG235

carries a mutation in the region near lead(II)-induced cleavage sites Ia, Ib, IIa and IIb (Figure 2; see
also Figure 6) and it influences cleavage at sites Ia and IIb (Figure 5, cf. lane 9 vs. 4; [25]). The other
variant Eco CP RPR lacks the S domain [30,31]. With pSu1 as substrate, toluidine blue O inhibited
the activity of these two Eco RPR variants with similar Ki values as observed for Eco RPRwt. For Eco
RPRG235 and chlorpromazine, the Ki was roughly twofold lower compared to that determined for
Eco RPRwt (Table 2). Moreover, the Pb2+-induced cleavage pattern of Eco RPRG235 in the presence of
these two phenothiazine derivatives was similar compared to that observed for Eco RPRwt. Of note,
while cleavage at site Ia for Eco RPRG235 was reduced in the absence of inhibitor, the addition of either
toluidine blue O or chlorpromazine led to an even greater reduction in cleavage at that site (Figure 5,
cf. lane 9 (without inhibitor) and lanes 7 and 10 (with inhibitor)). Together, these data suggest that
both the S and C domains are targeted by phenothiazine derivatives (see also above).
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Figure 6. (A) Secondary structures of various RNAs shown to bind to phenothiazine;
(B) Three-dimensional structure of the P7, P10 and P11 region in the S domain that is suggested to
constitute one binding site for phenothiazine derivatives. Residues marked with black arrows 1–3 and
in blue (C122, C123 and A124), magenta (A232 and A233) and green (C235, changed to G235, see Figure 2);
for color code see panel A; (C) The nuclear magnetic resonance structure of human immunodeficiency
virus type 1 (HIV1) trans-activation response element (TAR) RNA in complex with acetopromazine.
Black arrows mark acetopromazine (in green) and the nucleotides (in magenta) forming the UCU-bulge
(see panel A).
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3. Discussion

Various phenothiazine derivatives have been demonstrated to bind to RNAs (Figure 6).
For example, the human immunodeficiency virus (HIV) trans-activation response element (TAR)
RNA that interacts with the trans-activator of transcription (Tat) protein, forming a complex that is
essential for activating the transcription of the HIV genome [35–37]. Moreover, nuclear magnetic
resonance (NMR) data revealed binding of the phenothiazine acetopromazine [38] to small RNAs
representing the E. coli ribosomal A site, the coxsackievirus (CV) B3 loop D RNA (CV loop D RNA), and
the loop B of the poliovirus (PV) internal ribosome entry site (IRES) (PV loop B RNA). The KD values
for HIV-TAR RNA, ribosomal A site, and CV loop D RNA were reported to be ≈300 µM whereas the
KD for the PV loop B RNA, at 1.8 mM, was much higher [38]. Here, we provide data showing that
different phenothiazines and pyronine G inhibited the activities of three structurally different bacterial
RPRs, including M. tuberculosis RPR, while the three-ring compounds imipramine and amitriptyline
did not. Interestingly, three antipsychotic phenothiazines known to have antibacterial activities [39]
also inhibited the activity of all three bacterial RPRs; while their Ki values were higher than those
of the other phenothiazines tested, they were in the same range as the KD value for acetopromazine
binding to, e.g., HIV-TAR RNA (Table 1; [38]). Collectively, our findings are, to the best of our
knowledge, the first to show that long functional non-coding RNAs (≈400 nt) are targeted by different
phenothiazine derivatives.

3.1. Comparison with Aminoglycoside Interaction with RNA

The Ki values for the phenothiazines are similar to those determined for inhibition of Eco RPRwt

with and without the C5 protein by aminoglycosides such as neomycin B [12,15]. However, in contrast
to aminoglycosides (and other RNA-based activities [40,41]) inhibition of bacterial RPR activity
by phenothiazines does not appear to be pH-dependent. We also did not detect as pronounced
an effect on inhibition in response to increasing Mg2+ and NH4

+ concentrations as was reported
for aminoglycoside derivatives [15,17]. At most, a fourfold increase in Ki was observed (Table 3).
Electrostatics is a major factor that accounts for aminoglycoside binding to RNA, and for E. coli and
human rRNA A sites, the electrostatic contribution is about one-half of the total binding energy [42].
Contributions also come from non-ionic and pseudo-base-pair interactions, water-mediated contacts,
shape complementarity, and conformational adaptation [15,17,40,41]. Moreover, NMR studies revealed
that the interaction between TAR RNA and the aminoglycoside neomycin B results in distortion of
the RNA structure, whereas binding of acetopromazine to TAT RNA induces only minor changes [43].
Hence, these differences suggest that phenothiazine binding to RNA is governed by features other than
aminoglycoside binding [41]. However, as discussed below, structural information on phenothiazine
RNA interaction is limited.

3.2. Phenothiazines Interact Preferentially with Internal RNA Bulges

Although, we do not know the mode of interaction of phenothiazines with bacterial RPRs,
the NMR structure of the acetopromazine–TAR RNA complex and the phenothiazine’s interaction
with other RNA molecules such as the E. coli A site RNA provide several insights (Figure 6; [36,38,43]).
First, the KD values for acetopromazine binding to HIV-TAR RNA, E. coli A site RNA, and CV D loop
RNA are reported to be approximately 300 µM. This is within the same range as the Ki values for
RPR inhibition by chlorpromazine, thioridazine, and trifluoperazine (Table 1), while the values for the
methylene derivatives were significantly lower (Table 1). Second, phenothiazines have a nonplanar
structure, and NMR data suggest that the tricyclic ring system is in closest contact with the RNA and
forms most of the contacts, whereas weaker contacts are contributed by the aliphatic side chain. Third,
acetopromazine has a preference for internal bulges and binding to smaller (two to three nucleotides
in size) bulges is slightly stronger. Moreover, NMR data suggest only minor differences in the RNA
structure with and without the inhibitor. Fourth, acetopromazine binds poorly to RNA loop structures
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and no detectable binding to a UUCG-tetraloop has been reported [38]. Fifth, there is no preference for
internal bulges composed of purines or pyrimidines. Sixth, the identity of the 2-position substituent
affects binding affinity. Finally, acetopromazine has a preference for internal bulges and hence it is
likely that phenothiazines bind in the vicinity of bulges and internal loop regions in RPRs.

3.3. Phenothiazine Interaction with the S Domain and the Pre-tRNA D/T Loop

In the Eco RPR S domain, there are two internal bulges (Figure 2). Lead(II)-induced cleavage in
the presence of toluidine blue O (and chlorpromazine) was affected at and near sites Ib, IIa, IIb and
IIb′ in the S domain, which are proximal to these two internal bulges. The crystal structure of the
type A RPR from Thermus thermophilus showed that sites Ia, Ib, IIa, IIb and IIb′ are in close proximity
to each other ([44,45]; see also [34]). Moreover, the C to G change at position 235 in Eco RPR, which
is located in the vicinity of these sites in the S domain (Figure 2), resulted in a twofold lower Ki
value for chlorpromazine while the Ki of toluidine blue O was unaffected (Table 2). In addition, the
lead(II)-induced cleavage patterns for Eco RPRwt and Eco RPRG235 with and without phenothiazines
were similar except for site Ia, in particular, which is known to be affected in response by having G at
position 235 [25]. Taken together and based on the preference of acetopromazine for internal bulges,
it is likely that phenothiazines bind at or in the vicinity of the bulges near site Ia, Ib, IIa, IIb, and IIb′

in the S domain. The S domains of type A and type B RPRs are similar [44] and type B Hyo RPR is
cleaved by Pb2+ at a site in the S domain that corresponds to site Ia in Eco RPR ([26]; see also [46,47]).
It is therefore reasonable to suggest that phenothiazines also bind the corresponding region(s) (i.e., near
site Ia) in Hyo RPR. This putative phenothiazine binding site in the S domain would be close to the site
that interacts the pre-tRNA T stem/loop (TSL) region, referred to as the TSL-binding site (TBS) [25].
Thus, binding of phenothiazine at (or near) this location might interfere with the interaction between
TSL and TBS.

Our analysis further revealed that phenothiazines interact with yeast-tRNAPhe and inhibit
lead(II)-induced cleavage in the D loop between residues 16 and 17. Residues in the TSL region are
involved in coordinating the Pb2+ ion that activates the 2′OH at position 16 that results in hydrolysis of
the RNA [48,49]. The phenothiazines may also bind in the TSL region. However, neomycin B inhibition
of lead(II)-induced cleavage of yeast tRNAPhe is the result of binding distant to the cleavage site [18].
Thus, we cannot exclude that the phenothiazine binds elsewhere and indirectly interferes with the
structural topology of the T/D loop such that binding of the catalytic Pb2+ is affected. Interestingly,
pre-incubating phenothiazine and pre-tRNA prior to adding Eco RPR resulted in a four- to eightfold
reduction in Ki for toluidine blue O and thionine acid, respectively (Table 3). This indicates that
inhibitor binding to the pSu3 substrate is more inhibitory than inhibitor binding to the RPR, which may
be due to a structural change in the precursor tRNA that results in enhanced affinity for the inhibitor.
However, inhibition of lead(II)-induced cleavage of yeast tRNAPhe required higher phenothiazine
concentrations compared to inhibition of RPR (Table 1). This might reflect differences in the pSu3 and
yeast tRNAPhe structures, which affect the binding affinities for the phenothiazines. Nevertheless, these
observations raise the question that binding of some phenothiazine derivatives like chlorpromazine
might interfere with the interaction between the TSL and TBS [25,50]. Additional studies are required
to address these possibilities.

3.4. Phenothiazine Interaction with the C Domain and the Pre-tRNA D/T Loop

Eco CP RPR, which lacks the S domain, is still catalytic [30,31] and addition of toluidine blue O
inhibited the activity (Table 2). This finding suggested that phenothiazines also bind to one or more
other sites in Eco RPR in addition to the binding site in the S domain. Moreover, binding of Pb2+

ions in the P15–P17 region promotes hydrolysis at sites III, IVa, and V in full-length Eco RPR and the
addition of chlorpromazine in particular influenced cleavage at these sites (Figures 2 and 5; [51,52]).
Lead(II)-induced cleavage at sites III and V was also detected using P15 RNA, a model representing
the L15 internal loop (Figure 2; [32,33]); addition of phenothiazines inhibited lead(II)-induced cleavage
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of this RNA (Table 1). This suggests that phenothiazines bind the L15-loop of bacterial type A RPR, the
region that interacts with the 3′RCC end of precursor tRNA [1,2] Thus, we conclude that phenothiazines
interact with functionally important regions in both the S and C domains of bacterial RPRs. In this
context it is of interest that both the L15 and TBS regions have been exploited as part of antisense
approaches to inhibit the activity of bacterial RNase P [13,53–55].

3.5. Phenothiazine, a Scaffold with Potential

Phenothiazines are promiscuous and they bind and interfere with targets such as nitric oxide
synthase, acetylcholinesterases, disulfide reductases, DNA, Ca2+-dependent enzymes, enzymes
involved in lipid metabolism, ATP transporters, and various bacterial efflux pumps, and it has
been suggested that trifluoperazine acts as a calmodulin antagonist [21,39,56]. Our present data adds
RNA, particularly bacterial RPRs, to the list of phenothiazine targets. Comparing chlorpromazine
inhibition of bacterial RPR (Table 1) and chlorpromazine inhibition of previously reported targets such
as trypanothione reductase (Ki = 10.8 µM [57]), Na+/K+-ATPase from rat brain (IC50 = 29 µM [58])
and mitochondrial malate dehydrogenase (inhibition observed at >140 µM [59]) reveals that higher
concentrations are required to inhibit bacterial RPR. It should also be noted that since the discovery of
methylene blue’s antimalarial activity, other phenothiazines have been synthesized and shown to be
useful drugs in various settings. The best-known examples are the antipsychotic drugs chlorpromazine
and thioridazine. These drugs also have antibacterial activity; in particular, thioridazine has
apparently been instrumental in treating patients infected with extreme drug-resistant M. tuberculosis
strains [60–62]. Given the structural differences between human and bacterial RNase P and the
inhibition of bacterial RPRs, including M. tuberculosis RPR, by selected phenothiazine derivatives,
development of new phenothiazine derivatives that are more specific in targeting bacterial RNase P
warrants consideration. Additionally, it has been discussed that methylene blue might slow down
the development of Alzheimer’s disease since it can inhibit the aggregation of tau protein ([21] and
references therein). In this context, aminoglycosides have been reported to interact with the tau exon
10 splicing regulatory RNA element [63]. Therefore, this raises the possibility that phenothiazines also
interfere with the expression of the tau protein and RNA splicing in general.

4. Materials and Methods

4.1. Preparation of RNA

The tRNATyrSu3 (pSu3) and tRNASerSu1 (pSu1) precursors were prepared, labeled internally
with α-[32P]-UTP (pSu3) or 5′-labeled with γ-[32P]-ATP using T4 polynucleotide kinase (pSu1). The
labeled precursor tRNAs were gel-purified as described in detail elsewhere [32,64–66]. The different
bacterial RPRs, E. coli (Eco RPRwt, Eco RPRG235, and Eco CPR PR), M. tuberculosis (Myc RPR), and
Mycoplasma hyopneumoniae (Hyo RPR) were generated as run-off transcripts using T7 DNA-dependent
RNA polymerase as described previously [25–27,64,67].

4.2. Preparation of Compounds

The different phenothiazine derivatives, pyronine G, imipramine, and amitriptyline used in the
present study were purchased from Sigma-Aldrich (Stockholm, Sweden) and VWR International
(Stockholm, Sweden). All compounds were dissolved in double-distilled water prior to use.

4.3. RNase P Assay Conditions

RNase P RNA (RPR) activity with and without inhibitors was monitored as described
elsewhere [15] in buffer I (50 mM Tris·HCl, pH 7.9/5% (w/v) polyethylene glycol 6000/100 mM
NH4Cl/100 mM MgCl2) and buffer II (50 mM Tris·HCl, pH 7.9/5% (w/v) polyethylene glycol
6000/1 mM NH4Cl/10 mM spermidine/10 mM MgCl2). The reaction products were separated
on denaturing polyacrylamide gels (8% (w/v) and 25% (w/v) for pSu3 and pSu1, respectively) and
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visualized with a PhosphorImager. The final concentrations of substrate and RPR (Eco RPRwt,
Eco RPRG235, Myc RPR and Hyo RPR) were ≤20 nM and 82 nM, respectively. In the case of Eco
CP RPR 5.4 µM was used.

4.4. Lead(II)-Ion Induced Cleavage of Yeast tRNAPhe, Eco RPR and P15 RNA

Eco RPR and yeast tRNAphe were 3′ end-labeled with [32P]-pCp following standard procedures [68].
The 31 nucleotides long P15 RNA was 5′ end-labeled with γ-[32P]-ATP as described elsewhere [32].
Lead (II)-induced cleavage was done in 50 mM Tris–HCl (pH 7.5), 1 mM NH4Cl; 10 mM MgCl2 as
previously described [15]. The final concentration of Pb(OAc)2 was 0.5 mM while the concentrations
of toluidine blue O and chlorpromazine were as indicated. For additional details see Kirsebom and
Ciesiolka [68].

4.5. Determination of the Inhibition Constant Ki

The Ki value was defined as the inhibitor concentration that results in 50% inhibition of cleavage.
Conditions were adjusted so that measurements were carried out when product formation was in the
linear part of the curve of kinetics of the cleavage reaction. Each value in µM was calculated from plots
as the one in Figure 4 and the values are averages of three independent experiments ± the maximum
deviation of the average value.
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