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Abstract: Autophagy is an indispensable mechanism of the eukaryotic cell, facilitating the removal
and renewal of cellular components and thereby balancing the cell’s energy consumption and
homeostasis. Deregulation of autophagy is now regarded as one of the characteristic key features
contributing to the development of tumors. In recent years, the suppression of autophagy in
combination with chemotherapeutic treatment has been approached as a novel therapy in cancer
treatment. However, depending on the type of cancer and context, interference with the autophagic
machinery can either promote or disrupt tumorigenesis. Therefore, disclosure of the major signaling
pathways that regulate autophagy and control tumorigenesis is crucial. To date, several tumor
suppressor proteins and oncogenes have emerged as eminent regulators of autophagy whose
depletion or mutation favor tumor formation. The mammalian cell “janitor” p53 belongs to one of
these tumor suppressors that are most commonly mutated in human tumors. Experimental evidence
over the last decade convincingly reports that p53 can act as either an activator or an inhibitor of
autophagy depending on its subcellular localization and its mode of action. This finding gains
particular significance as p53 deficiency or mutant variants of p53 that accumulate in the cytoplasm
of tumor cells enable activation of autophagy. Accordingly, we recently identified p53 as a molecular
hub that regulates autophagy and apoptosis in histone deacetylase inhibitor-treated uterine sarcoma
cells. In light of this novel experimental evidence, in this review, we focus on p53 signaling as
a mediator of the autophagic pathway in tumor cells.
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1. Introduction: Autophagy and Tumorigenesis

Autophagy is a self-degradative process that represents an important physiological catabolic
mechanism of the eukaryotic cell. Thereby, organized degradation and recycling of non-functional or
non-required cellular components as a reaction to changing conditions is enabled [1–3]. The different
pathways of autophagy have been classified into three categories: macroautophagy, microautophagy,
and chaperone-mediated autophagy [4–7]. Via lysosomal degradation, basic macroautophagy,
to which we refer in this review, allows, in addition to the proteasome-mediated pathway,
the turnover of long-lived protein and organelles, the maintenance of anabolic–catabolic homeostasis,
the counteraction of aging, and the preservation of energy of the cell. Thereby, autophagy together
with apoptosis is also granted a crucial role in cellular quality control [5]. Furthermore, autophagy is
particularly indispensable for the cell in its response to nutrient starvation and other types of stressful
conditions [8]. Autophagy is encountered during embryonic development and cell differentiation
and participates in the innate immune response by eliminating invading intracellular bacteria and
viruses. In 2016, the Nobel Prize in Physiology or Medicine was awarded to Yoshinori Ohsumi
for his groundbreaking experiments related to the mechanisms of autophagy in starvation-induced
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non-selective autophagy [1,9–11]. Selective autophagy describing the cytoplasm-to-vacuole targeting
(CVT) pathway was discovered a few years later by Daniel J. Klionsky´s group [12]. Although the
process of autophagy was discovered half a century ago and the term “autophagy” derived from the
ancient Greek meaning for “self-eating” was given by the Belgian biochemist Christian de Duve in
1963, its fundamental importance as a physiological cellular mechanism was only appreciated upon
Ohsumi’s research in yeast in the 1990s [13]. Subsequently, as autophagy is conserved throughout
evolution, the corresponding autophagic machinery involved in its pathway has been discovered in all
eukaryotes, including humans [14]. Autophagosomal dysfunction can be caused by genetic mutations
that have been associated with the pathogenesis of diseases such as the neurodegenerative Parkinson’s
disease, type 2 diabetes, and cancer [15]. Thus, ongoing research is focused on the development of
drugs that can target autophagy in these specific diseases.

The role of autophagy in cancer offers high potential for future therapy and is, therefore,
currently also intensively investigated. Different from apoptotic or necrotic programmed cell
death, autophagy can pursue either a pro-survival or a pro-death strategy if mediated in tumor
cells [15,16]. Specifically, encountered often in apoptosis-resistant tumor cells, autophagy takes on
a tumor suppressive function, which limits tumor necrosis and inflammation [17]. In this context,
autophagy may be regarded as a protective pro-survival mechanism that inhibits the onset of apoptotic
and necrotic cell death in a concerted action [15,18–21]. Moreover, it can help tumor cells deal with
metabolic stress and overcome the cytotoxicity of chemotherapy. In cells and conditions where
autophagy may have a supportive function in cell death, however, unelucidated mechanisms seem
to expedite the autophagic program [22]. Inhibition of autophagy in tumor cells will, therefore,
promote tumor survival. Alternatively, tumor cells could capitalize on autophagy for their survival
due to the higher turnover requirements of their metabolism. Regardless of these facts, disruption of
autophagy in combination with chemotherapeutic treatment has been approached intensively in
cancer therapy. For these reasons there is certainly a lack of knowledge about autophagic signaling in
tumor cells. As a consequence, before determining whether autophagy interference can be applied in
tumor therapy and a better clinical translation of basic research findings in the future, it is even more
important and desirable to first define and gather molecular clues that confirm the context-dependent
role of autophagy in tumorigenesis [23–25].

2. The Cellular Mechanism of Autophagy

During the process of macroautophagy, the controlled formation of a vesicle with a bilayer
membrane is initiated allowing the separation of targeted cellular components or organelles from
the rest of the cytoplasm [14]. This vesicle, known as an autophagosome, then undergoes a fusion
process with lysosomes, which thereby enables degradation and recycling of the engulfed contents
by the complemented lysosomal proteolytic enzymes in a low pH milieu [26]. Autophagosomes are
formed de novo from the so-called phagophore at the phagophore assembly site, which is also
called a pre-autophagosomal structure (PAS) [27]. However, it is still unclear where the phagophore
membranes come from. In the current model, it is assumed that the endoplasmic reticulum is the
source [28]. This collection of membranes serves as a platform to which the various so-called proteins
derived from autophagy-related genes (ATGs) are then recruited. Specifically, Ohsumi´s discovery
of ATGs in yeast has tremendously enhanced our understanding of autophagosome formation and
led to the isolation of its membrane [29]. These act in a specific sequence, leading to the formation,
enlargement, and closure of the autophagosome and have been grouped into the following autophagic
stages: initiation (the ATG1/ULK kinase complex), nucleation (the ATG12 conjugation system),
elongation (the ATG8/LC3 conjugation/deconjugation system), maturation (the phosphatidylinositol
3-kinase complex), and degradation (the ATG9/ATG9L1 cycling system). At present, more than
20 ATG proteins are known in mammalian cells, contributing to these stages, although the respective
functions have not yet been conclusively clarified.
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3. Autophagosome Formation and Its Molecular Control

The molecular control of autophagic activation is dominated by tumor suppressor and oncogene
proteins that functionally represent protein kinases [30–34]. Thus, generally, tumor suppressor
proteins promote autophagy whereas oncogenes silence this process. Particularly, the nutrient-sensing
serine/threonine kinase mammalian target of rapamycin (mTOR), the unc-51-like autophagy activating
kinases (ULK1/ ULK2), the Beclin-1 (BECN1) lipid kinase complex, and a ubiquitin-like conjugation
system take part in the fine-tuning networks controlling the early stages of autophagosome formation
(Figure 1, Table 1) [1,8,35–37]. As a common denominator at the molecular level, autophagy is primarily
initiated by activation of the mTOR multiprotein complexes (mTORC), which integrate multiple
signaling pathways that sensitize genotoxic stress and the levels of reactive oxygen species (ROS),
as well as the availability of amino acids, glucose, oxygen, energy, and growth factors [35,38]. Therefore,
in addition to autophagy, mTOR regulates numerous other cellular processes, such as cell cycle
progression, protein translation, microtubule organization, and lipid biogenesis [39]. By interacting
with different proteins, mTOR forms at least two different complexes, mTORC1 and mTORC2,
which both include mLST8 and Deptor proteins, in addition to mTOR, but also contain unique
components [40]. mTORCs subsequently phosphorylate and further downregulate the activities
of a complex containing ATG13, ULK1 (ATG1), and the focal adhesion kinase interacting protein
of 200 kDa (FIP200) [41]. This ATG13–ULK–FIP200 complex is required for activating nucleation
(i.e., phagophore formation) and is involved in nutrient starvation-induced autophagy [42,43].
However, novel studies also implicate mTOR in the regulation of autophagy via inhibition of
p73, a member of the p53 family, which leads to subsequent activation of ATG5, ATG7, and UV
radiation resistance-associated gene (UVRAG) [44,45]. For ULK1-mediated autophagic activation,
mTOR interacts further downstream with Beclin-1 (ATG6), forming a core complex with Vps15 and
class III phosphatidylinositol 3-kinase (PIKC3), also known as Vps34. Activation of PI3KC3 allows
the generation of phosphatidylinositol 3-phosphate (PI3P) [37,46]. Thereby, Beclin-1 recruits many
proteins to the phagophore and interacts with them in order to coordinately arrange elongation
and maturation of the autophagosome or the suppression of autophagy [47]. Nevertheless, Beclin-1
is involved not exclusively in autophagy—as it is phosphorylated itself by the death-associated
protein kinase (DAPK)—but in membrane trafficking of lysosomes and endosomes of the cell in
general [48]. Beclin-1 is furthermore a known haploinsufficient tumor suppressor protein that is
commonly lost in many sporadic tumors of the breast, ovary, and prostate [37]. Final autophagosome
maturation requires subsequent recruitment of PI3P-binding proteins WIPI 1/2 and two ubiquitin-like
conjugation systems, the ATG12-ATG5-ATG16L and the LC3-phosphatidylethanolamine (LC3-PE)
complexes [1,49–51]. During the maturation process, cytosolic LC3-I (microtubule-associated protein
1A/1B-light chain 3) is integrated and sequestered to LC3-II. Furthermore, the ubiquitin-binding
scaffold protein p62 (also known as SQSTM1) directly interacts and co-localizes with LC3 via a specific
sequence motif [52]. Its task may be found in selective autophagy by directing ubiquitinated proteins
toward the autophagosome; furthermore, it has been associated with the regulation of deacetylase
activity and has been implicated in tumorigenesis [53,54]. Consequently, the protein levels of p62
decline during autophagic induction or accumulate upon autophagic interference. Interestingly,
clearance of this autophagic cargo protein was also reported to suppress tumorigenesis [54]. Thus,
both LC3 and p62 represent specific markers used for monitoring the autophagic flux [55]. Final fusion
with the lysosomal compartment, allowing degradation of the autophagosome content via acid
hydrolases and cathepsins, involves the presence of small Rab GTPases and the transmembrane
protein LAMP2 [56,57].

4. Positive Regulation of p53-Mediated Autophagy

The key tumor suppressor protein p53 has been described, in addition to its numerous other
tasks justifying its designation as “gatekeeper of the cell,” as a further important regulator of
autophagy. Thus, p53 can react to different kinds of stress and damage exerted on the cell that
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comprise endogenous- or environmentally-caused oxidative stress, genotoxicity, and oncogene
activation in order to prevent cell damage and maintain cellular integrity [58,59]. On the molecular
level, activation of p53 is arranged by multiple covalent modifications, including acetylation,
methylation, phosphorylation, and ubiquitination [60,61]. Accordingly, as a central transcription
factor implementing these posttranslational signals, p53 co-ordinates the expression of genes that
control cell-cycle progression, apoptosis, energy metabolism, DNA repair including methylation,
and autophagy in a transcription-dependent or -independent fashion [62–66]. Nevertheless, how
posttranslational modifications of p53 specify its selectivity for each of these transcriptional targets
and the respective cellular programs to induce apoptosis or autophagy is still unclear.
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TSC2 (tuberous sclerosis complex 2) and PTEN (phosphatase and tensin homolog), both of them 
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AMP-activated protein kinase (AMPK) or sestrins 1 and 2 that are AMPK activators [67–70]. Further 
signaling of the autophagic process by these pro-autophagic factors is then mediated by mTOR 
inhibition as detailed in the previous chapter [67,71]. As a kind of shortcut and a direct mediator of 
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Figure 1. Autophagy, apoptosis, and cell cycle arrest mediated by the activity of nuclear p53
protein (p53) in its function as a transcription factor in stress conditions. p53 primarily induces
the canonical pathway of autophagy by transcriptionally upregulating tuberous sclerosis complex 2
(TSC2) (or phosphatase and tensin homolog (PTEN); not shown) and AMP-activated protein kinase
(AMPK) (or the AMPK activating sestrins; not shown), thereby suppressing mammalian target of
rapamycin (mTOR) and the unc-51-like autophagy activating kinase 1 (ULK1) complex including the
autophagy-related protein13 (ATG13) and the focal adhesion kinase interacting protein of 200 kDa
(FIP200) further downstream. For ULK1-mediated autophagosome formation or suppression, mTOR
interacts further downstream with Beclin-1 (BECN1). Alternatively, damage-regulated autophagy
modulator (DRAM), death-associated protein kinase (DAPK), or autophagy-related protein5 (ATG5)
upregulation by the p53 family members p63 and p73 are also able to initiate autophagy. DAPK executes
autophagy by phosphorylating Beclin-1 or inhibiting LC3-interacting MAP1B protein (MAP1B-LC3).
DRAM and p63/p73 can also induce apoptosis. Pro-apoptotic proteins of the Bcl-2 family such as
BCL2, BCL-xL, BAX, BAD, MCL, PUMA, and BNIP and the alternate reading frame protein product
of the CDKN2A locus (p14ARF) can further induce autophagy via reversal of Beclin-1 inhibition.
Fork symbols: inhibition by indicated proteins. Arrow lines: upregulation or activation by indicated
proteins. Double arrow: major pathway activity. p53-mediated upregulation of the cyclin-dependent
kinase inhibitor 1 (p21) enforces cell cycle arrest.

Autophagic regulation by nuclear transactivation—i.e., transcriptional upregulation of its
downstream target genes by wild-type p53—in healthy and tumor cells occurs through several
pathways in the classical canonical pathway (Figure 1, Table 1) [64]. These include the target genes
TSC2 (tuberous sclerosis complex 2) and PTEN (phosphatase and tensin homolog), both of them
being determined or presumed tumor suppressors, respectively, as well as the nutrient energy
sensor AMP-activated protein kinase (AMPK) or sestrins 1 and 2 that are AMPK activators [67–70].
Further signaling of the autophagic process by these pro-autophagic factors is then mediated by mTOR
inhibition as detailed in the previous chapter [67,71]. As a kind of shortcut and a direct mediator of
autophagy and apoptosis, damage-regulated autophagy modulator (DRAM) can be upregulated by
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stress-activated p53 [72]. DRAM represents a lysosomal protein that can interfere with several different
stages of autophagosome formation [73]. In addition, apoptosis-inducing proteins can be directly
transactivated by p53 and are also implicated in activation of autophagy [74,75]. Here, downregulating
the expression of BCL-2, BCL-xL, and MCL-1 or upregulating the expression of BAX, BAD, BNIP3,
or PUMA releases Beclin-1 from its protein complex that initiates autophagy [76].

Table 1. Different mechanisms of p53-mediated regulation of autophagy.

p53-Induced
Autophagy Molecular Mechanism Additional Mechanism Ref.

Activation

TSC2 upregulation mTOR inhibition [68]
AMPK/PTEN upregulation mTOR inhibition [69]
Sestrin 1 and 2 upregulation mTOR inhibition [70]

DRAM upregulation Direct autophagosome formation [73]
Downregulation of BCL-2, BCL-xL, MCL-1 Release of BECN1 [76]
Upregulation of BAX, BAD, BNIP3, PUMA Release of BECN1 [76]

p14ARF upregulation BCL-xL mediated BECN1 release [77]
DAPK-1 upregulation Release of BECN1 by phosphorylation [78]
DAPK-1 upregulation Inhibition of MAP1B-LC3 [79]

p63 and p73 upregulation ATG5, ATG7, UVRAG upregulation [45,80]

Inhibition

AMPK inhibition mTOR activation [81]
FIP200 interaction ? [82]

TIGAR upregulation Downregulation of glycolysis,
suppression of ROS [83]

BECN1 interaction BECN1 ubiquitination and degradation [84]

BECN1 interaction De-ubiquitination of p53 via USP10
and USP13 [85]

Via the same mechanism, by directly physically interacting with BCL-xL, the p53-regulated human
tumor suppressor protein p14ARF (alternate reading frame protein product of the CDKN2A locus) also
seems to be able to induce autophagy [77,86]. The major task of p14ARF was established in the cellular
response towards hyperproliferative signals provoking oncogenic activation partially by stabilizing
the p53 protein that induces cell growth arrest and apoptosis. However, several groups have reported
that human p14ARF can also induce autophagy [86–88]. A recent investigation confirmed that by
the activation of autophagy, p14ARF also exerts tumor suppressive activity. The same report also
untangled previous conflicting results about two p14ARF mRNA isoforms and demonstrated that only
full-length p14ARF present in the nucleus can induce autophagy, whereas the small mitochondrial
(smARF) isoform induces mitophagy (selective macroautophagy of mitochondria) [89,90]. Moreover,
DAPK-1-induced autophagy has been reported to be initiated by p53 via upregulation of its gene
expression [48]. DAPK-1 follows two pathways to execute autophagy. One pathway is via the
phosphorylation of Beclin-1 as described above, which prevents its degradation by BCL-2/BCL-xL,
while the other possibility lies in the inhibition of the anti-autophagic LC3-interacting MAP1B
protein [78,79]. Interestingly, DAPK-1-mediated autophagy has been discovered very late since
it is not present in yeast.

5. Negative Regulation of p53-Mediated Autophagy

In addition to the well-established modulatory functions of nuclear p53 directing the activation
of autophagy, key regulatory activities of cytoplasmic p53 protein related to autophagy have been
discovered in the last decade (Figure 2, Table 1) [32,64,91,92]. Notably, Tsademir et al. unraveled that
depending on its subcellular localization, p53 elicits either pro- or anti-autophagic responses [81].
Thus, stress-induced activation of p53 protein translocated to the cell nucleus is able to stimulate
pro-autophagic functions, while physiological p53 protein levels localized in the cytosol have
an inhibitory effect on autophagy under normal conditions. This inhibitory effect seems to be
independent of its transcriptional function but employs the same canonical AMPK–mTOR signaling
pathway cascade as nuclear p53. Thus, in contrast to nuclear p53, the cytoplasm-localized protein
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inhibits the AMP-dependent kinase, a positive regulator of autophagy, and activates mTOR [81].
As a proof-of-concept, depletion or pharmacological inhibition of basal levels of p53 was found to
induce autophagy in vivo and in vitro and this increased autophagy confers resistance to metabolic
stress in p53-deficient cells. Furthermore, cells with a genetically modified nuclear export domain
in the p53 protein, forcing it to remain in the nucleus, lack suppressive autophagic capabilities and
are in line with this conclusion. The exact mechanism of how p53 directly mediates autophagic
suppression, which was found to be conserved in nematodes and mammalian cells, needs to be
clarified [93]. In this regard, bioinformatic predictions that FIP200 (ATG17) represents at least one
interacting partner of p53 in the cytoplasm that regulates autophagy could be verified by mutational
analyses [82]. Previous findings demonstrated the molecular link of TIGAR (TP53-induced glycolysis
and apoptosis regulator) with the anti-autophagic function of cytoplasmic p53 [83]. As a direct target
gene of p53, inhibition of autophagy by TIGAR has been shown to be associated with downregulation
of glycolysis and suppression of ROS formation under stressful conditions [94]. If the function of
TIGAR is blocked, increased ROS levels initiate induction of autophagy. However, its involvement
seems to be unlikely and represents an alternative metabolic pathway as TIGAR does not clearly
attenuate mTOR signaling. In embryonal carcinoma cells, cytoplasmic p53 was demonstrated to
interact with Beclin-1, which consequently promotes its ubiquitination and degradation and thereby
suppresses autophagy [84]. Inactivation of cytoplasmic p53 reverses this effect and promotes induction
of autophagy. In an independent study, Beclin-1 could be identified as a mediator of de-ubiquitination
activity of p53 by engaging the USP10 and USP13 ubiquitin-specific peptidases [85]. Nevertheless,
also in this case, the underlying mechanisms that relate to the nuclear p53-dependent autophagy need
to be further elucidated. Beclin-1-induced autophagy mediated by up- or downregulated BCL2-family
members can be furthermore blocked by caspase-mediated cleavage of Beclin-1, which simultaneously
leads to the production of pro-apoptotic Beclin-1 fragments, triggering apoptosis via cytochrome
c release from the mitochondria [95]. This mechanism exemplifies one possibility of bidirectional
interaction between apoptosis and autophagy.
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Figure 2. Autophagy and apoptosis mediated by the cytoplasmic activity of p53 protein under
basal conditions. Cytoplasmic p53 protein inhibits autophagic cell death by inducing Beclin-1
(BECN1) degradation via the ubiquitin-specific peptidases USP10 and USP13 and/or inhibiting the
AMPK-mTOR-ULK1 signaling pathway. It is unclear whether the canonical pathway is mediated by
direct p53/FIP200 interaction or whether this represents an extra pathway. TP53-induced glycolysis
and apoptosis regulator (TIGAR) inhibits autophagy by downregulation of glycolysis and suppression
of reactive oxygen species (ROS) formation. p63/p73 possibly also possess transcription-independent
inhibitory functions for autophagy (dashed line). Fork symbols: inhibition by indicated proteins.
Arrow lines: activation by indicated proteins; downward arrow, downregulation. For abbreviations,
see Figure 1.



Biomolecules 2018, 8, 14 7 of 18

6. Regulation of Autophagy in p53-Inactivated Cells

In addition to the multifaceted maintenance of cell integrity and homeostasis, the most eminent
functions of p53 belong to the supervision of the cell with regard to tumor transformation. This includes
the activation of oncogenes, DNA methylation alterations, and genotoxicity [58]. Mutations of the p53
tumor suppressor gene are among the most frequent genetic alterations found in human tumors [96].
Of these, p53 missense mutations with a single amino acid change resulting in the loss of functional
wild-type p53 and its tumor suppressor function reflect the prevailing number of cases [97]. In addition,
several mutant p53 variants can exert a dominant-negative effect over the remaining wild-type allele
or even lead to gain-of-function alleles that carry new oncogenic potential [98,99]. Thus, experimental
evidence confirms that tumors with a mutant gain-of-function variant of p53 are characterized by
higher genomic instability, reduced chemotherapeutic response, and a generally poor prognosis for
patients [100].

Impairment of p53 wild-type function, as provoked by many tumor-derived p53 mutants, can also
deregulate autophagy signaling [81,93,101,102]. While the ability of nuclear transactivation-dependent
activation of autophagy by p53 is hampered in many cases due to inactivation or lack of p53 in the
cytoplasm, the (tumor) cell is able to stimulate pro-autophagic functions. This activity is translated
by downregulation of the mTOR complex. Astonishingly, Morselli et al. specified that several
tumor-derived variants of p53 with point mutations that steadily localize to the cytoplasm are still able
to inhibit autophagy [93]. This finding led to the conclusion that p53 may inhibit autophagy by means
of direct protein–protein interactions. Moreover, it demonstrates the importance to discriminate p53
variants with respect to null or point mutations, keeping in mind that nonsense mutations can also
lead to degradation of the p53 transcript. Although inactivated p53 seems to be counterproductive
with regard to the tumor suppressor function of p53, it makes sense when considering that inactivated
autophagy by mutant p53 enforces cell survival. Consistent with this idea, a study has confirmed
that gain-of-function mutant p53 proteins inhibit the autophagic pathway and thereby enhance the
proliferation of pancreas and breast cancer cells. This counteractivity is accompanied by repression
of Beclin-1, DRAM, ATG12, and sestrin genes, as well as stimulation of AMPK–mTOR genes [103].
Several studies have demonstrated the mutual functional surveillance between autophagy and p53 in
the cell. Thus, on the one hand, mutant p53 suppresses autophagy while on the other hand autophagy
can trigger the degradation of mutant p53 in order to prevent tumorigenesis. On the molecular level,
this counter-surveillance mechanism is implemented by the reciprocal crosstalk of the two suppressor
genes Beclin-1 and p53 with regard to the regulation of autophagy, as outlined above [85]. By regulating
its de-ubiquitination, Beclin-1 directly controls the protein levels of p53, which is likely also reflected
by the phenotype of Beclin-1-deficient mice that mirror the ablated functions of the tumor suppressor
p53 [104,105]. Related to Beclin-1 mediated autophagy, the tumor suppressor protein p14ARF was also
found to be upregulated in p53-silenced or –inhibited cells, as well as in tumor cells and was able to
activate autophagy [87–89]. Vice versa, overexpression of p14ARF could suppress the proliferation of
p53-null cells [88]. However, several additional unexplored mechanisms must exist for p14ARF-elicited
autophagy as only a small fraction of its protein interacts with the BCL-xL/Beclin-1 complex.

Interestingly, a study that analyzed the regulation of autophagy in doxorubicin-treated
p53-proficient (p53+/+) or -deficient (p53−/−) mouse embryonic fibroblasts found that the p53
family members p63 and p73 are able to compensate for the loss of p53 [80,106]. Doxorubicin is
an antitumor antibiotic medication that is frequently used for chemotherapeutic treatment of many
different cancers. By chromatin immunoprecipitation sequencing analyses, it was unveiled that, in
response to doxorubicin and different stress stimuli, p53 family members translocate to the nucleus
and transcriptionally activate an extensive network of ATGs, such as ATG4a, ATG4c, ULK1, ULK2,
and UVRAG, as well as ATG5. In conclusion, basic p63 and p73 protein levels could possibly also
replace the inhibitory role of wild-type p53 in the cytoplasm of p53-deficient cells but this scenario
could be prevented by dominant-negative effects of mutant p53 proteins. Moreover, it was determined
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that resuming autophagy by p63 or p73 is essential for efficient tumor suppression and prevention of
cell transformation.

7. HDACi-Induced Autophagy Mediated by p53

Histone deacetylase (HDAC) inhibitors (HDACi) are a highly investigated class of anticancer
therapeutic agents with encouraging clinical activity against hematologic and solid tumors [107,108].
Their inhibitory effect on histone deacetylation is associated with chromatin relaxation and
re-expression of silenced genes including non-histone proteins, such as p53 [109]. Thus, it could
be demonstrated that HDACi, which prevent HDAC1 deacetylation, promote p53-induced
transcription [110]. Thereby, the important cellular tumor-suppressive activities such as regulation
of cell cycle arrest, differentiation, and cell death or the suppression of oncogenes can be
resumed [111,112]. Moreover, although the precise mechanisms of HDACi are still being elucidated
by protein acetylation posttranslational modification, the protein’s stability, proteasomal degradation,
cellular distribution including nuclear export, coactivator recruitment, and molecular interaction can be
modified [113–116]. For p53, several acetylation sites have been determined that either augment DNA
binding or cause a loss of transcriptional activity; for example, loss of p53-dependent p21 transcription
can be caused by deletion of the C-terminal acetylation residues [60,117–119].

Up to now, induction of caspase-induced apoptosis was determined as the preferred mode of
HDACi-mediated cell death engaging either the extrinsic or intrinsic pathway mostly by activating
death receptors or via their ability to stimulate ROS production, respectively [120–122]. Nevertheless,
a growing number of publications implies that HDACi, such as suberoylanilide hydroxamic acid
(SAHA), can alternatively or additionally activate autophagy as an anti-tumor response [123–132].
In the case of SAHA-induced autophagy, even a pro-survival mechanism could be verified that
opposes SAHA-mediated cytotoxicity and comes along with a delayed onset of apoptosis in tumor
cells [133,134]. As apoptosis resistance is encountered frequently, HDACi-triggered autophagy would
offer a favorable alternative possibility to eliminate tumor cells on the one hand while, on the other
hand, SAHA-induced apoptosis could also be efficiently enhanced by genetically/pharmacologically
blocking autophagy (e.g., chloroquine or 3-methyladenine) [133,135,136]. Consequently, lysosomal
integrity, cytosolic accumulation of cathepsin D, reduced expression of TRX, and high levels of ROS
generation were found. Hence, HDACi-induced autophagy was concluded to be an unpleasant
consequence of their mechanism of action.

As persistent overexpression of the HDAC class II enzyme HDAC2 in malignant endometrial
stromal sarcoma was identified in a previous study, we aimed to clarify the therapeutic options of the
HDACi SAHA for therapeutic treatment of this tumor [137]. By using two different uterine sarcoma
cell lines as models in vitro, the cytotoxic efficiency of SAHA treatment was evaluated experimentally.
It resulted in cell cycle arrest at the G1/S transition, significantly accelerated cell death with associated
increased levels of p21, and reduced expression of HDAC2 and 7 [124,138,139]. In the course of their
closer molecular evaluation, different modes of cell death were unveiled in these cells in response to
SAHA. Either predominant autophagy in the case of endometrial stroma sarcoma-derived ESS-1 cells
or prevailing apoptosis in the case of carcinosarcoma-derived MES-SA cells were observed in vitro
and in xenografted tumors. Notably, in ESS-1 cells, SAHA-mediated dose-dependent autophagic
cell death was associated with attenuation of mTOR expression [102,124]. However, the question
remained which signaling pathways initiate SAHA-induced autophagy upstream of mTOR. Previous
publications in this context investigating cancer cell survival under nutrient deprivation observed
the transcriptional upregulation of LC3 by SAHA and its downregulation by p53 [126,140]. However,
autophagy cannot be activated merely by LC3. An explanation could be provided, however, by the
regulation of non-histone proteins, e.g., transcription factors via HDACi-mediated acetylation that
indirectly control mTOR-mediated autophagy.

By examining the key regulators of apoptosis and autophagy upstream of mTOR, the lack of
p53 protein and decreased levels of PUMA (p53 upregulated modulator of apoptosis) expression
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were presumed to be caused by an R213X nonsense mutation located in the transactivating domain
of p53 in ESS-1 cells [102]. Subsequently, we were able to overcome apoptosis resistance by rescuing
p53-deficiency. Consequently, the prevailing apoptotic cell death was testified for these cells by
increased PUMA and caspase-9 expression, activation of caspases-3 and -7, and PARP-1 cleavage.
Concurrent basic autophagy was confirmed by raised mTOR expression, leading to decreased
autophagosome formation as indicated by LC3 and MDC staining. As a proof-of-concept, several other
p53-deficient tumor cell lines undergoing SAHA-induced autophagy were employed in which
apoptosis resistance could also be reactivated.

In conclusion, these findings point to a master regulatory role for p53 with regard to SAHA- and
maybe also HDACi-mediated autophagic and apoptotic cell death in general (Figure 3) [132,141,142].
Consequently, p53 deficiency could provide an explanation for both apoptosis resistance and the
prevailing SAHA-induced autophagy in tumor cells. The suggested inhibitory role for the functional
wild-type p53 protein in SAHA-mediated autophagy is, furthermore, highly consistent with the
previous report by Tasdemir et al., indicating the additional crucial role of cytoplasmic p53 as a central
coordinator of autophagy that we discussed in the previous sections [81]. In summary, nuclear p53
protein facilitates autophagy while cytoplasmic p53 protein silences it. Thus, our data could give
important information about how SAHA treatment is connected to the mTOR signaling pathway,
which has been less explored so far. Nevertheless, future experiments need to address the exact
underlying molecular mechanisms that were found in the direct interference of SAHA with HDAC
activity responsible for deacetylating the non-histone protein p53. This idea can be supported by a
previous publication reporting about modified apoptosis in HepG2 cells by SAHA-induced acetylation
of p53 [143].

This study highlights again the need to address the context-specific function of the oncogenic
tumor suppressor p53 in promoting or impeding autophagy before tumor therapy should be applied.
In support of our study, increased acetylation of p53 by sirtinol was also identified as a molecular cause
of autophagic cell death besides other antiproliferative effects, such as cell cycle arrest and apoptosis,
in the breast cancer cell line MCF-7 [135]. Sirtinol is a specific inhibitor of the class III NAD-dependent
deacetylases SIRT1 and SIRT2 that execute essential functions in the regulation of mitosis, survival, and
senescence, and are known to target p53. In addition to increased acridine orange and MDC staining,
augmented expression of the autophagy marker LC3-II could also be detected after sirtinol treatment
of MCF-7 cells. Apoptosis induction that was attributed to increased autophagy induction by the
presence of p53 was documented by increased BAX expression, by decreased BCL-2 protein, and by
cytochrome c release. Inhibition of autophagy by 3-methyladenine led to an increase in apoptotic cell
death in these cells, strengthening the idea that p53 acts as a regulator of HDACi-induced cell fate.

A similar study investigated the anticancer effects of MHY2256, a further potent inhibitor of SIRT1
enzymatic activity as well as SIRT1, 2 and 3 expression levels in MCF-7 cells [144]. The results indicated
that inhibition of SIRT1 by MHY2256 causes increased acetylation of p53 at lysine 382. Consequently,
increased p53 levels provoked attenuated p53 degradation due to increased expression levels of the
ubiquitin ligase MDM2, an important negative regulator of p53. A role for Sirt1 in the regulation of
autophagy has subsequently been demonstrated more directly by increasing its expression transiently
and a transfer of the Sirt1 wild-type gene into mouse embryonic fibroblasts with a homozygous Sirt1
deletion [145]. In contrast, restoration of autophagy under starvation conditions of these cells was not
possible with a deacetylase-inactive mutant of Sirt1. As possible targets of Sirt1-mediated deacetylation
activity, the autophagy-related proteins Atg5, Atg7, and Atg8 were found to be significantly acetylated
in the absence of Sirt1.
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Figure 3. Illustration showing presumed mechanisms mediating suberoylanilide hydroxamic acid
(SAHA)-induced autophagy. (A) Acetylated cytoplasmic p53 protein that escapes deacetylating activity
by applying HDACi (histone deacetylase inhibitor) preferentially induces apoptotic cell death by direct
interaction with the Bcl-2 family of pro-apoptotic proteins. Concurrently, cytoplasmic p53 protein
inhibits autophagic cell death by inducing Beclin-1 degradation via the ubiquitin-specific peptidases
USP10 and USP13 and/or inhibiting the AMPK-mTOR-ULK1 signaling pathway. It is unclear whether
the canonical pathway is mediated by direct p53/FIP200 interaction or whether this represents an
extra pathway. TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits autophagy by
downregulation of glycolysis and a suppression of ROS formation. The p53 family members p63/p73
possibly also possess transcription-independent inhibitory functions for autophagy (dashed line).
(B) Mutant p53 (p53Mut) protein reverses the situation and predominantly activates autophagy due to
its inability to inhibit autophagy or stimulate apoptosis. Fork symbols: inhibition by indicated proteins.
Arrow lines: activation or interaction with indicated proteins. Double arrow: major pathway activity.
For abbreviations, see Figure 1.

8. Conclusions and Outlook

Autophagy is a basic process that is essential for normal cellular activity as its deregulation is
commonly encountered during the development of human tumors. Nevertheless, autophagy can be
compared to a two-edged sword and possesses an ambiguous role in tumor progression. Depending on
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the tumor entity and the molecular predisposition in terms of tumor mutations, it can either
promote or suppress tumorigenesis [16,31,146,147]. One important task of autophagy describing
a tumor-suppressive function lies in the prevention of genomic instability and genotoxic stress leading
to DNA damage [148]. The associated oncogenic transformation of the cell is precluded by the
disposal of damaged organelles and proteins that represent major sources of ROS. As a representative
example besides mutant p53 protein, autophagy regulates cellular levels of the p62/SQSTM1 protein
that is frequently mutated in human cancer, as well as upregulated in RAS oncogene-transformed
cells, and thereby suppresses the development of tumors [54]. By enhancing metabolic cellular
reorganization of transformed cells, however, autophagy supports tumor cells such as cancer stem
cells to overcome stressful conditions and promotes tumor survival [149,150]. Consistent reports
suggest that autophagy is a necessary step for establishing tumor formation during metabolic
stress [151,152]. This tumor-stimulating role of autophagy has triggered investigations to explore
the effects of cytotoxic agents in causing therapeutic resistance. Different studies have reported that
either pharmacological inhibition (e.g., by chloroquine or 3-methyladenine) of autophagy or genetic
inactivation of regulatory autophagy genes sensitize tumor cells to cell death induction upon treatment
with diverse compounds [153]. As autophagy is under the stimulatory control of tumor suppressor
networks and suppressive effects of oncogenes, the fact that especially these regulator molecules are
frequently mutated is of significant importance in this context [32]. p53 is one possible checkpoint
residing at the top of these tumor suppressor cascades that controls autophagy even before mTOR and
Beclin-1 complexes come into play.

In this review, we outlined the remarkable dual function of p53 in controlling autophagy
and eliciting an increased autophagic response by both transcriptional activation and deficiency
of p53 [64]. Thus, on the one hand, nuclear transcriptional activity of wild-type p53 activates several
pro-autophagic target genes in response to stress stimuli, such as oncogenic activation. On the other
hand, it was found that endogenous cytoplasmic p53 represses autophagy that is reactivated upon
depletion of a functional p53 protein. According to our recent finding of a genetic nonsense mutation
that causes a homozygous loss of p53 expression in uterine sarcoma cells, we concluded that p53
could also represent a “molecular crossing” with regard to HDACi treatment in tumor cells [102].
This seems plausible as non-histone proteins, such as p53, are direct targets of HDACs that are
regulated by HDACi whose interference with autophagy has been demonstrated previously. Thus,
depending on the mutational status of the tumor cell, HDACi treatment could provoke either
autophagy in the absence of the p53 protein or apoptosis in tumor cells harboring wild-type p53 protein.
These considerations gain particular importance when deciding about possible cancer therapeutics and
the anticipation of a potential clinical outcome in different types of tumors. Nevertheless, a clear-cut
strategy awaits further direct experimental evidence in this respect. Further research will also increase
our understanding of the principal molecular mechanisms of p53 that are involved in modulating
autophagy and apoptosis.
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