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Abstract: Genetic model organisms have the potential of removing blind spots from the underlying
gene regulatory networks of human diseases. Allowing analyses under experimental conditions they
complement the insights gained from observational data. An inevitable requirement for a successful
trans-species transfer is an abstract but precise high-level characterization of experimental findings.
In this work, we provide a large-scale analysis of seven weak contractility/heart failure genotypes
of the model organism zebrafish which all share a weak contractility phenotype. In supervised
classification experiments, we screen for discriminative patterns that distinguish between observable
phenotypes (homozygous mutant individuals) as well as wild-type (homozygous wild-types) and
carriers (heterozygous individuals). As the method of choice we use semantic multi-classifier systems,
a knowledge-based approach which constructs hypotheses from a predefined vocabulary of high-level
terms (e.g., Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or Gene Ontology (GO)
terms). Evaluating these models leads to a compact description of the underlying processes and
guides the screening for new molecular markers of heart failure. Furthermore, we were able to
independently corroborate the identified processes in Wistar rats.

Keywords: Heart failure phenotypes; zebrafish; Wistar rat; semantic multi-classifier systems

1. Introduction

Human heart failure (HF) is the leading cause of hospitalization in Western world countries and
is associated with high morbidity and mortality thereby putting a large burden on health care costs [1].
Alarmingly, over the last decade, heart failure incidence further increased with a rate of about 1% per
year mostly attributed to demographic changes and an aging population [2]. However, up to now,
the molecular underpinnings of HF are still only poorly defined but are essential for the development
and the clinical implementation of targeted and tailored HF therapies. In this context, the use of
established model organisms such as mice and zebrafish to model human heart failure now enable
the systematic dissection and definition of the molecular etiology of HF. In recent years, we analyzed
several zebrafish lines suffering from heart failure which were identified in large-scale zebrafish
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forward genetics mutagenesis screens [3]. We characterized these HF zebrafish mutants phenotypically
and molecularly, identified the respective underlying genetic defects and verified the relevance in
human heart failure [4–7]. Nevertheless, the molecular networks and common denominators of HF in
these mutants are still unknown so far.

Findings from such model organisms can now be generalized via computational approaches
by identifying important processes. This augments translational approaches which try to bridge
the gap between experimental findings in varying model organisms and to transfer this knowledge
to humans. They face the challenge of aligning the behavior of homologous genes and signaling
pathways across species. The identification of stable marker signatures in binary or multi-categorial
comparisons can identify the most specific markers for a phenotype of interest [8–10] and subsequently
link it to a biological process. The generalizability of diagnostic models can be used to access the
importance of a marker signature [11–13]. Nevertheless, in very high-dimensional settings (n � m,
where n is the dimensionality and m is the cardinality of a dataset) the possibility of reconstructing
molecular dependencies in a poorly data-driven way might be limited due to the restricted amount
of data. In this case, the training of diagnostic models might be supported by semantic domain
knowledge [14,15] on the components of known high-level processes and in turn help to identify them.
In this work, we analyze the weak contractility/heart failure phenotype of zebrafish with the help of
semantic multi-classifier systems. This model type generates a high-level hypothesis on the underlying
processes which is then transferred from one model organism (zebrafish) to another (Wistar rat).

2. Results and Discussion

2.1. Zebrafish

Weak contractility as a common phenotype of HF is known to be caused by many different genetic
mutations [16,17]. Therefore, it can be seen as a diagnostic hypernym comprising a large plethora of
genetic backgrounds which lead to a common phenomenon. On a gene expression level, the common
structure among these genotypes might be revealed by a common gene signature (i.e., subset of genes)
that allows for a highly accurate categorization of all subclasses [10]. It can be seen as a hypothesis on
the underlying processes of HF. Interestingly, this analysis does not require identical gene expression
levels for all genetic subclasses. Genotype-dependent differences might be taken into account by
models that provide individual prototypes for each subclass.

Seven distinct N-ethyl-N-nitrosourea (ENU)-induced zebrafish mutants all displaying severely
reduced contractile performance and finally a HF-like phenotype were subjected to RNA sequencing to
define transcriptional mRNA profiles. Dead beat mutant embryos suffer from the progressive reduction
of cardiac contractility due to a disturbed Vascular endothelial growth factor (VEGF)/Phospholipase C
(PLC) γ1 signaling cascade and thereby altered intracellular calcium transients in cardiomyocytes [18].
Mutation of the α1C L-type calcium channel subunit (C-LTCC) leads to fibrillating atria and
non-contractile ventricles in island beat mutant zebrafish embryos [19]. Furthermore, main squeeze
and lost contact mutant zebrafish embryos develop a HF-like phenotype due to the loss of function
of a novel component of the cardiac mechanical stretch sensor, Integrin-linked kinase [5,7]. Weak
atrium zebrafish mutants display severe cardiac dysfunction due to mutation of atrial myosin heavy
chain (myh6) [20], whereas carboxy-terminal truncation of cardiac essential myosin light chain-1
(cmlc1) leads to diminished cardiomyocyte contractility in homozygous mutant lazy susan zebrafish
embryos [21]. Finally, we also analyzed tell-tale heart mutant zebrafish embryos which suffer from
contractile dysfunction and a HF-like phenotype due to loss of cardiac myosin light chain 7 (myl7) [4].

In the following, we use semantic multi-classifier systems (S-MCS) for screening for such common
gene signatures. These systems are guided by external domain knowledge in form of vocabularies of
known gene signatures and processes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) were chosen for our experiments. To take into account effects of multiple genotypes
of the heart failure phenotype, the one nearest neighbor classifier (1-NN) was used as a multi-centric base
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classifier. The 1-NN was also used for non-semantic (data-driven) reference experiments. A summary
of all experiments can be found in Table 1. They are conducted as 10 × 10 cross-validation (CV)
experiments. Both S-MCS outperform the data-driven 1-NN by at least 17.0% accuracy.

Table 1. Results of the 10 × 10 cross-validation experiments (zebrafish). The average accuracy,
sensitivity (mutation) and specificity (control) is reported for the semantic multi classifier system
(S-MCS) and the 1-nearest neighbor (1-NN) classifier. Additionally, the five most frequently selected
KEGG pathways and GO terms are shown (%). The table additionally provides results of experiments
with vocabularies comprising 100 sets of randomly selected (with replacement) genes (cardinality per
set: 15 or 20). Median average accuracy, sensitivity, and specificity together with interquartile range
(IQR) are given.

Cross-validation performance (10 × 10 cross-validation (CV)):
Accuracy(Acc): Sensitivity(Sens): Specificity (Spec):

S-MCS (GO) 95.2% 95.8% 94.6%
S-MCS (KEGG) 91.5% 87.5% 95.4%
1-NN (all genes) 74.8% 79.2% 70.4%

Most Frequent GO Terms (%):
1. RNA Polymerase II Transcription Factor Binding 55%
2. Transaminase Activity 42%
3. Myoblast Differentiation 23%
4. Cellular Biogenic Amine Metabolic Process 19%
5. Hormone Activity 16%

Most Frequent KEGG Pathways (%):
1. Arginine biosynthesis 75%
2. Biosynthesis of unsaturated fatty acids 55%
3. Fatty acid elongation 37%
4. Alanine, aspartate and glutamate metabolism 29%
5. Cytokine-cytokine receptor interaction 29%

Random Vocabularies (100 repetitions, 10 × 10 cross-validation (CV)):
Acc: Sens: Spec:

S-MCS (100 × 15 rand. genes) median 91.6% 91.7% 92.9%
IQR [88.8– 94.6%] [87.1–94.6%] [88.3–95.5%]

S-MCS (100 × 20 rand. genes) median 92.6% 91.3% 93.5%
IQR [89.1–95.4%] [87.8–95.0%] [91.2–96.7%]

1-NN (100 rand. genes) median 78.5% 78.5% 78.8%
IQR [67.2–86.1%] [66.6–87.5%] [70.0–87.2%]

The highest classification accuracy was achieved by the S-MCS based on selected GO terms.
Mutants and controls were separated with an accuracy of 95.2%. For the mutant class, a sensitivity
of 95.8% was reached. The corresponding specificity was 94.6%. Within the top ranking of the five
most frequently selected terms already a steep descent in frequency can be observed (39% loss).
The two most frequently selected terms were selected in over 50% of all experiments. RNA polymerase
II transcription factor binding achieved a frequency of 55% followed by transaminase activity with a
frequency of 42%. The remaining three terms achieve frequencies of 23% (myoblast differentiation),
19% (cellular biogenic amine metabolic process) and 16% (hormone activity). The gene expression levels of
the top two GO terms can be found in Figure 1.

The term RNA polymerase II transcription factor binding is represented by 21 markers. RNA
polymerase II (pol II) is one of three RNA polymerases in eukaryotic cells and responsible for the
production of mRNA as well as most microRNA and small nuclear RNA (snRNA). After transcription
factors and mediators have been recruited and bound to pol II transcription is initiated at the
promotor of the gene. Correct regulation and function of pol II activity is necessary for regular
tissue homeostasis. Loss of certain transcription factors such as TEADs (TEF family transcription
factors), GATA and FOG (fried of GATA) [22–28] result in pathophysiologic phenotypes [29] as they are
necessary for normal heart development (link to another term found: myoblast differentiation). TEADs
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directly interact with pol II and activate and regulate the expression of several genes involved in
cardiac muscle contraction (e.g., MYH6 and MYH7, aka myosin heavy chains α and β [22], SERCA2,
aka sarcoendoplasmic reticulum Ca2+-ATPase 2a [24], and others [23]). Loss or overexpression of
TEAD1 leads to several phenotypes associated with HF such as fibrosis, contractile dysfunction,
hypertrophy, and conduction defects [22–24]. DNA binding protein GATA4 and associated proteins
(e.g., MEF2a, aka myocyte-specific enhancer factor 2a, and FOG) are involved in cardiac development
and are upregulated in cardiac hypertrophy [25–28,30,31] (again tying in with the term myoblast
differentiation). Loss of these proteins or their interactions results in phenotypes of cardiac failure
including fibrosis, ventricular dilation, contractile dysfunction, hypoxia, and hypertrophy [25–28,30].
Many more transcription factors such as ankyrin, NELF (negative elongation factor) and SRF (serum
response factor) are also involved in maintaining correct cardiac function, and their deregulation results
in HF [29,32–34]. All in all, this shows that correct function of transcription factors and transcription
itself is necessary for healthy heart function.
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Figure 1. Heatmap of the two most frequently selected GO terms (RNA polymerase II transcription factor
binding (55.0%) and transaminase activity (42.0%)) in zebrafish. The figure provides the gene expression
levels of the genes these terms comprise. Within each term, the genes are ordered according their
Spearman correlation to the class label (mutant/control). Each gene was z-transformed individually.
Within each class, hierarchical clustering (average linkage) was used to organize the samples.

The RNA-Seq profiles represent the term transaminase activity by 25 markers. Transaminases are
enzymes which catalyze a reaction to transfer an amine group from an amino acid to a keto acid,
where the amine group replaces the keto group. In dilated left ventricles (due to pressure overload)
elevated levels of taurine, glutamine, glutamate, aspartate, and alanine have been found compared
to undilated heart tissue [35]. This may be due to increased glutamine and alanine metabolism to
compensate for anaerobic metabolic stress and energy deficiency in failing hearts [35]. Similarly,
ischemic hearts take up more glutamine and aspartate while producing increased levels of alanine in
anaplerotic reactions to feed the citric cycle (through transamination) [36]. This provides additional
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substrates for oxidation and antioxidants in times of stress [36,37]. In this respect, infusion of
L-glutamate after ischemic infarction seems to improve cardiac metabolism and reduce infarction
size and further tissue damage [38]. This all ties in with a similar pathway found in our analyses of
KEGG pathways—Alanine, aspartate and glutamate metabolism—reinforcing the importance of amino
acid metabolism in the energy metabolism and thus contractility of the heart.

The semantic multi-classifier system based on the KEGG pathway collection achieved an accuracy
of 91.5%. The mutant class was detected with sensitivity of 87.5% and a specificity of 95.4%. The five
most frequently selected terms are selected in at least 29% of all experiments. The most prominent
terms are arginine biosynthesis (75%) and biosynthesis of unsaturated fatty acids (55%) followed by fatty
acid elongation (37%), alanine, aspartate, and glutamate metabolism (29%) and cytokine-cytokine receptor
interaction (29%). Figure 2 provides the gene expression levels of the top 2 terms.
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Figure 2. Heatmap of the two most frequently selected KEGG terms arginine biosynthesis (75%) and
biosynthesis of unsaturated fatty acids (55%) in zebrafish. The figure provides the gene expression levels
of the genes these terms comprise. Within each term, the genes are ordered according their Spearman
correlation to the class label (mutant/control). Each gene was z-transformed individually. Within each
class, hierarchical clustering (average linkage) was used to organize the samples.

Arginine biosynthesis is represented by 23 markers. Most arginine is synthesized in the kidneys;
however, most cells can synthesize arginine from citrulline [39]. By transaminating glutamine, proline,
and ornithine nearly every organ can produce arginine (via citrulline) though this is energetically
costly [39] (see transaminase activity above). In the cardiovascular system, arginine availability correlates
with endothelial function and cardiac contractility [40,41] since arginine is a necessary substrate for
nitric oxide (NO) synthesis [41–43]. Nitric oxide synthethase 2 is only expressed in cardiac tissue
during inflammatory responses such as ischemia, HF and aging [44]. In low doses NO is beneficial
for the heart [41,42,44]; however, this effect is eliminated during HF since hypoxia and increased
glutamine uptake both inhibit NO production [39,40,45].
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The RNA-Seq profiles comprise 24 markers for the term Biosynthesis of unsaturated fatty acids.
Most of the hearts energy is derived from fatty acid (FA) oxidation [46,47]. Usually, FAs are converted
into long-chain acyl-CoA esters, transported into the mitochondria and β-oxidized into acetyl-CoA for
the citric cycle [46]. During HF, however, the heart increases glucose metabolism while decreasing
FA oxidation leading to reduced energy output and contractility [47]. On the other hand, defects
in enzymes of mitochondrial FA synthesis result in a phenotype closely resembling failing or failed
heart with dysfunctional mitochondria [48]. Defects in other enzymes of FA synthesis also lead to HF
phenotypes with reduced contractility [49,50]. During aging, some unsaturated FAs in mitochondrial
cardiolipin are replaced with polyunsaturated FAs which is associated with heart dysfunction and
impaired contractility [51]. Overall, this leads to the conclusion that the metabolism of unsaturated
FAs plays an important role in cardiac function.

2.2. Cross-Species Experiment: Wistar Rats

To validate and prove the cardiac relevance of these findings, we next analyzed transcriptional
profiles derived from a cellular rat cardiomyocyte hypertrophy model and compared these
cardiomyocyte-specific profiles to our whole zebrafish data.

Originally aiming for the identification of new mechanosensitive genes in cardiomyocyte
hypertrophy and cardiac remodeling, we subjected neonatal rat ventricular cardiomyocytes (NRVCMs)
to cyclic biomechanical stretch for 2, 6, or 24 h (116% at 1 Hz) respectively. RNA isolated from these cells
was then analyzed using Agilent’s (Santa Clara, CA, USA) standard Rattus norvegicus 8x60K_60mer
mRNA microarrays. The heat map (Figure 3) shows leave one out CV experiments with semantic
1-NN classifiers. Gene expression profiles were thereby restricted to the most frequently selected
terms of the Danio rerio experiments. As a negative control we also analyzed the prediction based on
randomly selected gene sets. Using 1000 repeats of 100 randomly selected genes from the Wistar rat
we achieved a mean accuracy of 51.7% (interquartile range, IQR: [41.7–66.7%]).
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Figure 3. Leave one out cross-validation on rat data using the terms selected in the zebrafish
experiments. Additionally, an experiment based on the whole gene expression profiles is shown.
Each row indicates a separate experiment. The cell color denotes the predicted stretch time of a sample.
The axis on the right gives the overall accuracies (%) of the experiments.

Biomechanical stretch is a typical inductor of cardiac hypertrophy [52], which in turn represents
an integral part of a process termed cardiac remodeling. In the later phases of cardiac remodeling and
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in addition to hypertrophy, fibrosis and apoptotic cell death take stage and finally lead to contractile
dysfunction [53]. Thus, the cardiomyocyte stretch model used here represents an excellent in vitro
model to resemble cardiomyocyte hypertrophy and early stages of cardiac remodeling. Interestingly,
the high-level processes revealed by our experiments could also be applied to classify this stretch
model of rats.

3. Conclusions

The major contribution of this work is a large-scale analysis of weak contractility phenotypes
observable in the model organism zebrafish. Overall 48 RNA-Seq profiles of seven weak contractility/
heart failure genotypes were analyzed. Our knowledge-based approach, a semantic multi-classifier
system, allows for the construction of diagnostic models, which can directly be interpreted in high-level
terms chosen from a predefined and accepted vocabulary. In our case, the collections of KEGG
pathways and GO terms are chosen.

In our study, we use both RNA-Seq and Microarrays in our transfer experiment from zebrafish to
rat data. Both platforms can determine gene expression levels, though RNA-Seq is better at quantifying
absolute expression levels as well as levels of very low and very high expressing genes [54–57].
Other than that, both platforms produce comparable results: they are highly reproducible and
comparable [58–60] and they agree on fold-change direction and significance values [57,61] (though
RNA-Seq usually finds more significantly differentially expressed genes [61]). Usually, microarrays are
the weaker platform when trying to find differentially expressed genes and determining expression
levels. However, RNA-Seq has its own inherent problems. RNA degradation is an issue with both
platforms; however, sample preparation for RNA-Seq is more complex the risk for introducing a
bias through RNA degradation is higher [55]. In addition, while RNA-Seq has better coverage of all
genes (since it is not dependent on probes) it has its own problems with uneven coverage, limiting
of sequencing depth and matching genes to the reference sequence [55,57]. Overall, both platforms
have their application-specific advantages and drawbacks. For our experimental setup, the arguments
usually used in favor of RNA-Seq (better coverage, finding of non-annotated genes, splice variants
and low-expressing genes) do not necessarily apply, since we can only use genes which are already
annotated and included in a term of the KEGG or GO databases. Since we generate our model on
RNA-Seq data and then apply it to microarray data the fine-grained nature of the expression levels is
already included in the model. Only coverage might be a problem when transferring the model to
microarray data: since microarrays can only evaluate genes for which they have probes, some genes
included in the model may not appear in the microarray data. Due to this, some discrepancies may
arise when comparing results. This one of the reasons for making the information transfer on a process
level. However, the key genes of each pathway are known and probed, so discrepancies should be
kept to a minimum. In addition, since we aim for transferability not only between platforms but also
between species small discrepancies are expected and out model can clearly withstand them.

Our findings demonstrate the applicability of the terms identified in the lower vertebrate model
zebrafish to the mammalian model system rat. As already described, transcriptional profiles were
obtained from embryonic zebrafish at 3 days of age. At this stage cardiogenesis, particularly cardiac
maturation, is still ongoing although strong rhythmic and sequential contractions of the atrium and
the ventricle are well established. Cardiomyocytes isolated from neonatal rat hearts at P1-3 do not
represent fully maturated adult cardiomyocytes as well, suggesting that both used model systems are
comparable, since their developmental time points and stages almost fully match. In future studies,
it will be interesting to compare our findings to adult heart failure models and test their transferability
and applicability.

As described before, RNA-Seq profiles were obtained using RNA samples prepared from whole
zebrafish embryos at 72 hpf. In contrast to the situation in mammalian cardiovascular disease model
systems such as mice, zebrafish embryos at 72 hpf which suffer from severe cardiovascular disorders
do usually not exhibit pronounced adverse secondary effects on development and function of other
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organ systems since e.g., hypoxia is assumed to be only minimal due to the fact that oxygen supply is
mostly supplied by passive diffusion from the surrounding water. Nevertheless, recent data derived
from transcriptional profiling of the zebrafish mutant steif (Unc45b-deficiency) which suffers from
severe striated muscle defects including cardiac contractile insufficiency displays the upregulation
of genes involved in hypoxia-response [62]. These findings imply that there might be at least a
transcriptional hypoxia-like response as a reflection of the cardiac defect, though it is not known
if this also reflects cellular hypoxia in vivo. Kajimura and coworker found that hypoxic stress in
the developing zebrafish embryo mainly results in embryonic growth retardation [63] which was
not observed in the heart failure zebrafish mutants used in our study, suggesting that—if present at
all—hypoxia-induced secondary effects are rather minimal here. Whether reduced cardiac contractile
performance and compromised blood flow led to other secondary physiological changes which might
impact the transcriptional profiles of our zebrafish mutants is yet unknown; however, we also did not
see any evidence of such effects.

Nevertheless, cardiac tissue was only a small fraction of the entire tissue mass used for
transcriptional profiling, insinuating that some of our zebrafish transcriptional findings might be only
associated with non-cardiac tissues and therefore not applicable to HF. To overcome this limitation,
bioinformatic evaluation of cardiac- or even cardiomyocyte-specific transcriptional profiles of our
heart failure zebrafish mutants will be fundamental. These experiments are already planned for the
near future. Additionally, to validate and prove the cardiac relevance of these whole-embryo findings,
we also analyzed transcriptional profiles derived from a cellular rat cardiomyocyte hypertrophy model
and compared these cardiomyocyte-specific profiles to our whole zebrafish data.

The most frequently selected terms of this analyses, RNA polymerase II transcription factor binding
(55%, GO) and transaminase activity (42%, GO) as well as arginine biosynthesis (75%, KEGG) and
biosynthesis of unsaturated FAs (55%, KEGG) fit well into the context of the weak contractility phenotype.
Focusing on the high-level terms also allowed an easy transfer from the model organism Danio rerio to
the model organism Wistar rat. From a statistical point of view, the selection frequency of the top GO
terms and KEGG pathways must be seen as a rare event. They are the only high-level terms out of 152
KEGG pathways and 4354 GO terms with a selection frequency of at least 40%. For both vocabularies,
the selection frequency drops to at most 16% within the corresponding top five lists.

In our zebrafish experiments, in comparison to their naive data-driven counterpart,
all selection-based approaches improved the CV accuracies. This effect cannot be explained by
random dimensionality or feature reduction on their own as shown by the experiments with the one
nearest neighbor classifier. Guided selection processes are needed to identify discriminating features.
In contrast to other approaches, our system is not focused on individual supportive markers. It also
takes into account disadvantageous genes and therefore leads to an assessment of gene sets. While in
general the proposed multi-classifier system can operate on random gene sets, the final model will
clearly lack the interpretation of known pathways and analyzed gene interactions. Interpretability can
only be achieved by incorporating existing domain knowledge in the analysis of complex datasets.

In terms of accuracy, both vocabularies led to comparable results. The semantic multi-classifier
systems achieved at least 91.5% CV accuracy. Our study provides a high-level roadmap on the
molecular processes on the weak contractility/heart failure phenotype in Danio rerio and its
corroboration on Wistar rats. This cross-species integration paves the way for a deeper molecular
investigation of the involved mechanisms.

4. Materials and Methods

4.1. Zebrafish Strains, Fractional Shortening Measurements, RNA Isolation and RNA Sequencing

All procedures and experiments in this study were carried out after appropriate institutional
approvals (Tierforschungszentrum (TFZ) Ulm University, No. 0183), which conform to the EU
Directive 2010/63/EU. Care and breeding of zebrafish (Danio rerio) was carried out as described
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in Kustermann et al. [64]. Fractional shortening was determined by measuring the diameters of
the ventricle at the end of contraction (systole) and relaxation (diastole) using the zebraFS software
(http://www.benegfx.de) [65]. RNAs from seven different weak contractility/heart failure zebrafish
mutant lines were extracted (25 embryos/sample) using the RNeasy Plus Mini Kit (Qiagen, Venlo,
The Netherlands) at 72 hpf and subjected to RNA sequencing (llumina HiSeq 2000, Core Facility
Genomics, Ulm University, Germany). Samples were collected at 72 hpf since at this specific and early
time point cardiac contractile dysfunction was nicely established in all lines without visibly affecting
overall embryonic development and morphology.

Table 2 provides an overview on the collected dataset. Overall 48 samples of seven different
weak contractility heart failure genotypes are available. The dataset splits into 24 pairs of observable
mutant phenotypes and the corresponding controls. For each sample, an RNA-Seq profile of
31,953 measurements is recorded. A mutant was categorized as a member of weak contractility superclass
if it demonstrated significantly reduced ventricular fractional shortening (FS) measurements compared
to their wild-type siblings Figure 4; see also [4,5,18,21]):

Table 2. Overview of the analyzed dataset: The dataset comprises gene expression profiles of
48 whole-fish samples seven individual genotypes (rows) with a weak contractility. The genotypes
are named according to their observable heartbeat. For each genotype, the number of samples
(mutants(mut)/controls(crt)) is reported.

No. Genotype Samples (mut/crt)

1. dead beat (m582) (3/3)
2. island beat (m458) (6/6)
3. lazy susan (m647) (3/3)
4. lost contact (hu801) (3/3)
5. main squeeze (m347) (3/3)
6. tell-tale heart (m225) (3/3)
7. weak atrium (m229) (3/3)
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Figure 4. Ventricular fraction shortening of weak contractility/heart failure genotypes (zebrafish). For all
genotypes, the differences between mutants and controls were tested (n = 7, Wilcoxon-Rank-Sum tests,
Bonferroni correction for multiple testing). Significance levels are indicated as *: p < 0.05, **: p < 0.01,
***: p < 0.001.

4.2. Stretch Experiments in Neonatal Rat Ventricular Cardiomyocytes (NRVCMs)

Neonatal rat ventricular cardiomyocytes (NRCVMs) were isolated, cultured, and biomechanically
stretched as described previously [66]. In brief, NRVCM isolated from 1–3 days old Wistar rats
using standard techniques were subjected to cyclic biomechanical stretch for 2, 6, or 24 h using
the Flexcell FX-5000T-FLK system (Flexcell international, Dunn Labortechnik, Asbach, Germany).
The cells, seeded in a density of 1.5 × 106/well, were stretched on collagen I-coated plates (Bioflex

http://www.benegfx.de
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plates, Flexcell international, Dunn Labortechnik) to an extend of 116% at 1 Hz. Non-stretched
cells cultivated simultaneously on similarly prepared plates in the same incubator were used as
controls. NRVCMs were harvested for RNA isolation using TRIzol (Thermo Fisher Scientific, Waltham,
MA, USA) according to the manufacturer’s instructions for use. Desoxyribonuclease I (DNase I)
(Sigma-Aldrich, St. Louis, MO, USA) was used to digest potentially contaminating DNA. RNA was
further analyzed using Agilent’s standard Rattus norvegicus 8x60K_60mer mRNA microarrays.

4.3. Classification

The weak contractility phenotype is analyzed in a binary classification experiment. We are
interested in identifying a diagnostic model, a classifier, that allows the distinction between observed
mutant phenotype (y = 1) or control healthy phenotype (y = 0) on a sample-wise level. In this
context, each sample will be represented as a feature vector x = (x(1), . . . , x(n))T and interpreted by
the classifier. A diagnostic model will be seen as a function

c : X −→ Y (1)

mapping from the feature space X ∈ Rn to the space of class labels Y = {0, 1}.
A classifier is adapted for a classification task in a data-driven initial learning phase

l : C × T 7→ cT . (2)

Here, the final classification model cT is chosen from a predefined concept class C and adapted
according to a set of labeled training examples T = {(xi, yi)}

|T |
i=1. The subscript T will be omitted if

not necessary. In a second step, the generalization performance of a trained classifier is estimated on
an independent set of test or validation samples V = {

(
x′i, y′i

)
}|V|i=1. For our experiments the empirical

accuracy, sensitivity and specificity are chosen

accV =
1
|V| ∑

(x,y)∈V
I[c(x)=y], senV =

1
|V1| ∑

(x,y)∈V1

I[c(x)=y], speV =
1
|V0| ∑

(x,y)∈V0

I[c(x)=y]. (3)

Here, V1 and V0 denote a restriction of V to the samples of class 1 or 0, respectively.
Each binary classification experiment is designed as a 10× 10 CV [67]. That is, the overall set of

samples S is partitioned into f = 10 folds Fi of approximately equal size. They are used to generate
independent pairs of training sets Ti = S \ Fi and validation sets Vi = Fi for individual classification
experiments. The ith classifier cTi is evaluated on Vi. The average accuracy, sensitivity and specificity
are reported. To minimize sampling effects the mean values of r = 10 permutations of S are provided.
Experiments are performed with the R-package (www.r-project.org) TunePareto [68].

4.4. Semantic Multi-Classifier Systems (S-MCS)

We use Semantic Multi-Classifier Systems (S-MCS) for our experiments [14,15]. A S-MCS is a
decision ensemble h : X −→ Y that integrates the predictions of several base classifiers

h(x) = u(c1(x), . . . , cl(x)), (4)

where u : Y1 × . . .×Yl −→ Y into one final prediction.
Each base classifier operates on an individual feature signature i = (i(1), . . . , i(k))T . It is

restricted to a limited set of input signals x(i) = (x(i
(1)), . . . , x(i

(k)))T . Each signature is coupled to a
commonly accepted interpretation (term) and chosen from a predefined vocabulary i ∈ I (Figure 5a).
This selection process is based on an internal 3× 3 CV on the training set of the corresponding base
classifier. The terms with the individual highest accuracies are chosen (Figure 5b). For our experiments
we chose an unweighted majority vote as combining scheme and an ensemble size of three base

www.r-project.org
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classifiers (Figure 5c). Semantic multi-classifier systems are trained for two vocabularies: the collection
of KEGG pathways [69] and the GO terms [70].

expert
term a

expert
term b

expert
term c

expert
term d

expert
term e

signature

a) Vocabulary

expert
term a

expert
term e

expert
term d

mixture
 experts  

c) Fusion

expert
term a

expert
term e

expert
term c

expert
term d

expert
term b

data

b) Evaluation/Selection

Figure 5. Schematic drawing of a semantic multi-classifier system (S-MCS): The training of a S-MCS
uses prior domain knowledge in form of a vocabulary of selected semantic terms (e.g., KEGG pathways
of GO terms) for the analysis of incoming gene expression profiles. Each term is analyzed independently
by a separate expert (classifier) which focuses on the chosen subset of measurements. The selection of
these experts is aggregated via a fusion architecture, leading to a “mixture of experts”.

4.5. Nearest Neighbor Classification

As a base classifier the one nearest neighbor classifier (1-NN) is chosen [71]. The 1-NN is a
member of the prototype-based classification k-NN algorithms which predict the class label of a query
sample v in the following way

c(v) = argmax
y∈Y

∣∣{(x, y) ∈ NNk(v,P)}
∣∣. (5)

Here, NNk(v,P) denotes the k nearest neighborhood of v in a set of prototypes P = {(xi, yi)}
|P|
i=1

NNk(v,P) =
{
(x, y) | rkDv (d(v, x)) ≤ k

}
(6)

and Dv = {d(v, x) | (x, y) ∈ P} the set of all pairwise Euclidian distances between v and P . The class
label of v is determined via a majority vote of the class labels of the selected candidates. In the case of
1-NN, k = 1 and P = T .

4.6. Pathways from Kyoto Encyclopedia of Genes and Genomes

The Kyoto Encyclopedia of Genes and Genomes comprises a collection of signaling pathways
for a large spectrum of model organisms [69]. For Danio rerio 167 signaling pathways are available.
For our experiments we restrict ourselves to those pathways that consist of at least 10 components
(152 terms).

4.7. Gene Ontology Terms

The Gene Ontology is one of the largest attempts to construct an organized and standardized
terminology for the categorization of gene products [70]. Its vocabulary is organized in a hierarchical
ontology covering three different domains: biological processes, associated cellular components and
molecular functions. Most of these terms are linked to manually curated gene lists. We again use those
GO terms that comprise at least 10 genes in Danio rerio (4354 terms).
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supervised the project.
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