Supporting Information for

Tumor Uptake in Triazine Dendrimers Decorated with Four, Sixteen, and Sixty-Four PSMA-Targeted Ligands: Passive versus Active Tumor Targeting

Table of Contents

Synthetic Procedures	S2
Spectra	S17
Radio-HPLC	S41
Serum Stability Assay	S42

Synthetic Procedures

Compound 1. Boc-8-aminocaprylic acid (0.86 g, 3.32 mmol) was added to a solution of 1,1'carbonyldiimidazole (0.595 g, 3.67 mmol) in chloroform (25 mL). The reaction solution was stirred for 2 h at room temperature under nitrogen. A solution of N-Cbz-4,7,10-trioxa-1,13tridecanediamine (1.30 g, 3.67 mmol) in chloroform (25 mL) was added to the solution and then stirred at room temperature for 16 h. The solution was evaporated under vacuum. The residue was dissolved in dichloromethane, washed with brine, dried over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (from EA:Hex = 3:1 to DCM:MeOH = 10:1) to give 1 (1.6 g, 81%) as a clear oil. 1 H NMR (400 MHz, CDCl₃) δ 7.33-7.28 (m, 5H, Cbz), 5.07 (s, 2H, Cbz), 3.62-3.42 (m, 12H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), 3.30 $(m, 4H, NHCH_2CH_2CH_2CH_2O, CH_2CH_2NHBoc), 3.06 (br m, 2H, OCH_2CH_2CH_2NHCO), 2.13 (t, J = 0.000)$ 7.6, 2H, NHCOCH₂), 1.80-1.70 (m, 4H, OCH₂CH₂CH₂NH), 1.59 (br m, 2H, COCH₂CH₂), 1.43 (br s, 11H, C(CH₃)₃, CH₂CH₂NHBoc), 1.28 (br s, 6H, CH₂CH₂CH₂CH₂CH₂NHBoc); ¹³C NMR (100 MHz, CDCl₃) δ 173.2 (NHCOCH₂), 156.6 (OCONH), 156.1 (OCONH), 136.8 (Cbz), 128.4 (Cbz), 128.2 (Cbz), 127.9 (Cbz), 78.7 (C(CH₃)₃), 70.4 (two lines, OCH₂CH₂O), 70.1 (OCH₂CH₂O), 70.0 (OCH₂CH₂O), 69.7 (OCH₂CH₂CH₂), 69.4 (OCH₂CH₂CH₂), 66.3 (Cbz), 40.5 (NHCH₂), 39.0 (NHCH₂), 37.5 (NHCH₂), 36.5 (COCH₂), 29.9 (COCH₂CH₂CH₂CH₂), 29.5 (COCH₂CH₂CH₂), 29.1 (two lines, OCH₂CH₂CH₂), 29.0, (CH₂CH₂CH₂NHBoc), 28.4 (C(CH₃)₃), 26.6 (CH₂CH₂NHBoc), 25.6 (COCH₂CH₂); MS (ESI-TOF) calcd for C₃₁H₅₃N₃O₈ 595.3833, found $596.1948 (M + H)^{+}$

Compound 2. A solution of **1** (1.30 g, 2.18 mmol) in dichloromethane (15 mL) and trifluoroacetic acid (15 mL) was stirred for 2 h at room temperature and then evaporated under vacuum. The residue was dissolved in chloroform, washed with 1 M NaOH (aq), dried over

MgSO4, filtered, and evaporated under vacuum to give the deprotected amine (1.08 g, quantitative) as a white solid. DUPA-tris (t-Butyl ester) (0.550 g, 1.13 mmol), the deprotected amine (0.558 g, 1.13 mmol), and HBTU (0.850 g, 2.24 mmol) were suspended in dichloromethane (20 mL) under argon. DIPEA (0.78 mL, 4.49 mmol) was slowly added to the suspension in an ice bath and stirred for 30 min. The suspension was stirred at room temperature for an additional 16 h. The solution was evaporated under vacuum. The residue was dissolved in ethyl acetate, washed with 0.5 M HCl (aq), dried over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (DCM:MeOH = 10:1) to give 2 (1.0 g, 92%) as a clear oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.29 (m, 5H, Cbz), 5.09 (s, 2H, Cbz), 4.36-4.27 (m, 2H, COCHCH₂CH₂CO of DUPA), 3.63-3.49 (m, 12H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), 3.32 (m, 4H, CbzNHCH₂CH₂CH₂O, CH₂CH₂NH-DUPA), 3.19 (m, 2H, OCH₂CH₂CH₂NHCO), 2.32 (m, 2H, COCHCH₂CH₂COO of DUPA), 2.22-2.06 (m, 6H, NHCOCH₂, COCHCH₂CH₂COO and COCHCH₂CH₂CONH of DUPA), 1.88-1.71 (m, 6H, OCH₂CH₂CH₂NH, COCHCH₂CH₂CONH of DUPA), 1.60 (br m, 2H, COCH₂CH₂CH₂), 1.46-1.43 (br m, 29H, C(CH₃)₃, CH₂CH₂CH₂CH₂NH), 1.30 (br s, 6H, CH₂CH₂CH₂CH₂CH₂NH-DUPA); ¹³C NMR (100 MHz, CDCl₃) δ 173.2 (NHCOCH₂), 172.8 (CH₂CONH of DUPA), 172.4 (COO of DUPA), 172.2 (COO of DUPA), 171.9 (COO of DUPA), 157.8 (NHCONH of DUPA), 156.5 (OCONH), 136.7 (Cbz), 128.4 (Cbz), 128.0 (two lines, Cbz), 82.1 ($C(CH_3)_3$), 81.8 ($C(CH_3)_3$), 80.5 ($C(CH_3)_3$), 70.5 (OCH₂CH₂O), 70.4 (OCH₂CH₂O), 70.1 (two lines, OCH₂CH₂O), 69.9 (OCH₂CH₂CH₂), 69.6 (OCH₂CH₂CH₂), 66.4 (Cbz), 53.0 (COCHCH₂CH₂CO of DUPA), 52.9 (COCHCH₂CH₂CO of DUPA), 39.4 (NHCH₂), 39.2 (NHCH₂), 37.7 (NHCH₂), 36.6 (COCH₂CH₂CH₂), 32.5 (COCHCH₂CH₂CONH of DUPA), 31.6 (COCHCH₂CH₂COO of DUPA), 29.9 (COCH₂CH₂CH₂CH₂), 29.4 (two lines, OCH₂CH₂CH₂), 29.1 (COCH₂CH₂CH₂), 29.0

(COCHCH₂CH₂CONH of DUPA), 28.8 (COCHCH₂CH₂COO of DUPA), 28.0 (three lines, $(C(CH_3)_3)$, 26.6 (CH₂CH₂NH-DUPA), 25.6 (COCH₂CH₂CH₂CH₂); MS (ESI-TOF) calcd for $C_{49}H_{83}N_5O_{14}$ 965.5937, found 966.3426 (M + H)⁺.

Compound 3. Compound 2 (0.70 g, 0.724 mmol) was dissolved in ethyl acetate (10 mL) and methanol (10 mL) and followed by addition of 10% Pd on activated charcoal (70 mg). The reaction vessel was repeatedly degassed and flushed with hydrogen gas. The reaction mixture was stirred at room temperature with a hydrogen balloon for 24 h, filtered through a celite layer, and evaporated under vacuum. The resulting oil was triturated with hexane to give 3 (0.60 g, quantitative) as a white semi-solid. ¹H NMR (400 MHz, CDCl₃) δ 4.31-4.24 (br m, 2H, COCHCH₂CH₂CO of DUPA), 3.63-3.49 (m, 12H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), 3.32 (m, 2H, CH₂CH₂NH-DUPA), 3.20 (m, 4H, NH₂CH₂CH₂CH₂O, OCH₂CH₂CH₂NHCO), 2.36-2.31 (m, 4H, OCH₂CH₂CH₂NH₂, COCHCH₂CH₂COO of DUPA), 2.23 (t, J = 7.4, 2H, NHCOCH₂CH₂CH₂CH₂, 2.12-2.03 (m, 4H, COCHCH₂CH₂COO and COCHCH₂CH₂CONH of DUPA), 1.90-1.78 (m, 4H, OCH₂CH₂CH₂NHCO, COCHCH₂CH₂CONH of DUPA), 1.61 (br m, 2H, COCH₂CH₂CH₂), 1.50-1.43 (br m, 29H, C(CH₃)₃, CH₂CH₂CH₂CH₂NH), 1.32 (br s, 6H, CH₂CH₂CH₂CH₂CH₂NH-DUPA); ¹³C NMR (100 MHz, CDCl₃) δ 174.2 (NHCOCH₂), 173.0 (CH₂CONH of DUPA), 172.6 (COO of DUPA), 172.3 (COO of DUPA), 172.1 (COO of DUPA), 157.9 (NHCONH of DUPA), 81.8 (C(CH₃)₃), 81.6 (C(CH₃)₃), 80.4 (C(CH₃)₃), 70.3 (OCH₂CH₂O), 69.9 (OCH₂CH₂O), 69.7 (OCH₂CH₂O), 69.6 (OCH₂CH₂CH₂), 69.0 (OCH₂CH₂CH₂), 53.2 (COCHCH₂CH₂CO of DUPA), 53.0 (COCHCH₂CH₂CO of DUPA), 39.7 (NHCH₂), 39.4 (NHCH₂), 36.8 (COCH₂CH₂CH₂), 36.2 (CH₂NH₂), 32.5 (COCHCH₂CH₂CONH of DUPA), 31.6 (COCHCH₂CH₂COO of DUPA), 29.5 $(OCH_2CH_2CH_2),$ (COCH₂CH₂CH₂CH₂), 29.2 29.0 (COCH₂CH₂CH₂), 28.7 (COCHCH2CH2CONH of DUPA), 28.4 (COCHCH2CH2COO of DUPA), 28.0 (three lines,

 $(C(CH_3)_3)$, 26.4 $(CH_2CH_2NH-DUPA)$, 25.4 $(COCH_2CH_2CH_2)$; MS (ESI-TOF) calcd for $C_{41}H_{77}N_5O_{12}$ 831.5569, found 832.5791 $(M + H)^+$.

DUPA-DCT. Cyanuric chloride (0.122 g, 0.662 mmol) was added to a solution of 3 (0.500 g, 0.600 mmol) and DIPEA (0.23 mL, 1.31 mmol) in THF (20 mL) at 0 °C, The solution was stirred at 0 °C for 1 h and evaporated under vacuum. The residue was dissolved in dichloromethane, washed with brine, dried over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (DCM:MeOH = 12:1) to give **DUPA-DCT** (0.53 g, 90%) as a white sticky solid. ¹H NMR (400 MHz, CDCl₃) δ 4.33-4.23 (br m, 2H, COCHCH₂CH₂CO of DUPA), 3.70-3.56 14H, C₃N₃-NHC**H**₂CH₂CH₂O, (m, $CH_2OCH_2CH_2OCH_2CH_2OCH_2)$, 3.37 (m, 2H, $CH_2CH_2NH-DUPA$), 3.25 (m, OCH₂CH₂CH₂NHCO), 2.41-2.05 (m, 8H, COCHCH₂CH₂COO of DUPA, NHCOCH₂CH₂CH₂, COCHCH2CH2COO and COCHCH2CH2CONH of DUPA), 1.93-1.78 (m, 6H, OCH2CH2CH2NH-C₃N₃, OCH₂CH₂CH₂NHCO, COCHCH₂CH₂CONH of DUPA), 1.63 (br, 2H, COCH₂CH₂CH₂), 1.54-1.44 (br m, 29H, C(CH₃)₃, CH₂CH₂CH₂CH₂NH), 1.32 (br s, 6H, CH₂CH₂CH₂CH₂CH₂NH-DUPA); ¹³C NMR (100 MHz, CDCl₃) δ 174.0 (NHCOCH₂), 173.6 (CH₂CONH of DUPA), 172.1 (COO of DUPA), 171.2 (COO of DUPA), 170.5 (COO of DUPA), 169.5 (C₃N₃), 165.5 (C₃N₃), 158.3 (NHCONH of DUPA), 82.1 (C(CH₃)₃), 82.0 (C(CH₃)₃), 80.5 (C(CH₃)₃), 70.5 (OCH₂CH₂O), 70.42 (OCH₂CH₂O), 70.2 (OCH₂CH₂O), 70.1 (OCH₂CH₂O), 69.7 (OCH₂CH₂CH₂), 69.6 (OCH₂CH₂CH₂), 53.2 (COCHCH₂CH₂CO of DUPA), 52.9 (COCHCH₂CH₂CO of DUPA), 40.0 (NHCH₂), 39.9 (NHCH₂), 37.9 (NHCH₂), 36.1 (COCH₂CH₂CH₂CH₂), 31.5 (COCHCH₂CH₂CONH of DUPA), 30.0 (COCHCH₂CH₂COO of DUPA), 28.9 (br two lines, COCH₂CH₂CH₂CH₂CH₂, OCH₂CH₂CH₂, COCH₂CH₂CH₂), 28.5 (COCHCH2CH2CONH of DUPA), 28.3 (COCHCH₂CH₂COO of DUPA), 28.0 (two lines, (C(CH₃)₃), 27.9 (C(CH₃)₃), 26.4 (CH₂CH₂NH-

DUPA), 25.6 (COCH₂CH₂CH₂); MS (ESI-TOF) calcd for $C_{44}H_{76}Cl_2N_8O_{12}$ 978.4960, found 979.6901 (M + H)⁺.

G1 Platform. DOTAGA-tetra (t-Bu ester) (0.189 g, 0.270 mmol), Triazine Core (0.440 g, 0.270 mmol), and HBTU (0.204 g, 0.538 mmol) were suspended in dichloromethane (20 mL) under argon. DIPEA (0.20 mL, 1.15 mmol) was slowly added to the suspension in an ice bath and stirred for 30 min. The suspension was stirred at room temperature for an additional 16 h. The solution was evaporated under vacuum. The residue was dissolved in ethyl acetate, washed with 0.1 M HCl (aq), dried over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (EA:DCM:MeOH = 4.5:4.5:1) to give **G1 Platform** (0.53) g, 85%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 3.73-3.26 (br m, 87H, NC**H₂CH₂NBoc**, CH₂OCH₂CH₂OCH₂CH₂OCH₂, NHCH₂CH₂CH₂O, NCH₂CH₂NBoc, CHCOO and CH₂COO of DOTA), 3.01-2.10 (m, 20H, DOTA), 1.83 (m, 12H, OCH₂CH₂CH₂NH), 1.47 (s, 72H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 176.6 (NHCO of DOTA), 175.1 (COO of DOTA), 172.8 (two lines, (COO of DOTA), 172.6 (COO of DOTA), 165.8 (C₃N₃), 165.0 (C₃N₃), 154.8 (NCOO), 82.3 (C(CH₃)₃ of DOTA), 82.0 (C(CH₃)₃ of DOTA), 81.9 (two lines, C(CH₃)₃ of DOTA), 79.8 (C(CH₃)₃ of Boc), 70.4 (OCH₂CH₂O), 70.1 (OCH₂CH₂O), 69.9 (OCH₂CH₂O), 69.3 (NHCH₂CH₂CH₂O), 69.1 (NHCH₂CH₂CH₂O), 60.3 (CH of DOTA), 55.8 (DOTA), 55.7 (DOTA), 55.5 (DOTA), 52.6 (DOTA), 52.5 (DOTA), 48.3 (DOTA), 47.9 (DOTA), 47.1 (DOTA), 44.1 (br, piperazine), 42.9 (piperazine), 38.2 (br m, NHCH₂), 37.0 (DOTA), 34.6 (DOTA), 29.5 (NHCH₂CH₂CH₂O), 28.9 ((NHCH₂CH₂CH₂O), 28.4 (C(CH₃)₃), 27.9 (C(CH₃)₃), 27.8 (C(CH₃)₃), 27.7 (C(CH₃)₃), 22.2 (DOTA); MS (ESI-TOF) calcd for C₁₁₀H₁₉₇N₂₇O₂₆ 2312.4923, found $2313.5491 (M + H)^{+}$.

G3 Platform. A solution of G1 Platform (0.17 g, 73.50 μmol) in 4 M HCl in dioxane (4 mL) was stirred at room temperature for 2 h and then evaporated under vacuum. The residue was dissolved in chloroform, washed with 1 M NaOH (aq), dried over MgSO₄, filtered, and evaporated under vacuum. The resulting compound was dissolved in a solution of Macromonomeric MCT (0.595 g, 0.411 mmol) and DIPEA (0.14 mL, 0.804 mmol) in THF (3 mL), methanol (0.15 mL), and H₂O (0.15 mL) and refluxed for 48 h. The solution was evaporated under vacuum. The residue was dissolved in dichloromethane, washed with brine, dried over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (from Ace: Hex = 2:1to DCM:MeOH = 7:1) to give **G3 Platform** (0.46 g, 83 % over two steps) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 3.73-3.26 (br m, 343H, C₃N₃-NCH₂CH₂N, NCH₂CH₂NBoc, CH₂OCH₂CH₂OCH₂CH₂OCH₂, NHCH₂CH₂CH₂O, NCH₂CH₂NBoc, CHCOO and CH₂COO of DOTA), 3.01-2.10 (m, 20H, DOTA with weak signals), 1.83 (br m, 44H, OCH₂CH₂CH₂NH), 1.48 (br m, 180H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 175.7 (DOTA with a weak signal), 173.0 (DOTA with a weak signal), 172.8 (DOTA with a weak signal), 172.7 (DOTA with a weak signal), 172.5 (DOTA with a weak signal), 166.3 (C_3N_3), 165.2 (C_3N_3), 154.8 (NCOO), 82.1 (C(CH₃)₃ of DOTA with a weak signal), 82.0 (two lines, $C(CH_3)_3$ of DOTA with a weak signal), 81.9 ($C(CH_3)_3$ of DOTA with a weak signal), 79.8 (C(CH₃)₃ of Boc), 70.6 (OCH₂CH₂O), 70.2 (br two lines, OCH₂CH₂O), 69.3 (br two lines, NHCH₂CH₂CH₂O), 60.5 (CH of DOTA with a weak signal), 55.8 (DOTA with a weak signal), 55.5 (DOTA with a weak signal), 52.7. (DOTA with a weak signal), 47.0 (DOTA with a weak signal), 44.0 (br, piperazine), 42.9 (piperazine), 38.2 (NHCH₂), 38.1 (NHCH₂), 36.8 (DOTA with a weak signal), 29.6 (NHCH₂CH₂CH₂O), 28.4 (C(CH₃)₃ of Boc), 27.9 (two lines, C(CH₃)₃ of DOTA), 27.8 (two lines, C(CH₃)₃ of DOTA); MS (ESI-TOF) calcd for $C_{350}H_{609}N_{111}O_{74}$ 7551.7303, found 7553.5735 (M + H)⁺.

G5 Platform. A solution of G3 Platform (70 mg, 9.26 µmol) in 4 M HCl in dioxane (4 mL) was stirred at room temperature for 4 h and then evaporated under vacuum. The residue was dissolved in chloroform, washed with 1 M NaOH (aq), dried over MgSO₄, filtered, and evaporated under vacuum. The resulting compound was dissolved in a solution of Macromonomeric MCT (0.30 g, 0.207 mmol) and DIPEA (0.14 mL, 0.804 mmol) in THF (3 mL), methanol (0.15 mL), and H₂O (0.15 mL) and refluxed for 48 h. The solution was evaporated under vacuum. The residue was dissolved in dichloromethane, washed with brine, dried over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (from Ace:Hex = 2:1 to DCM:MeOH = 7:1) to give **G5 Platform** (0.20 g, 76% over two steps) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 3.73-3.43 (br m, 1360H, C₃N₃-NCH₂CH₂N, NCH₂CH₂NBoc, CH₂OCH₂CH₂OCH₂CH₂OCH₂, NHCH₂CH₂CH₂O, NCH₂CH₂NBoc), 1.83 (br m, 172H, OCH₂CH₂CH₂NH), 1.48 (612H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 166.3 (C₃N₃), 165.2 (C₃N₃), 154.8 (NCOO), 79.8 (C(CH₃)₃ of Boc), 70.6 (OCH₂CH₂O), 70.2 (br, OCH₂CH₂O), 69.3 (br two lines, NHCH₂CH₂CH₂O), 44.0 (br, piperazine), 42.9 (piperazine), 38.2 (NHCH₂), 38.1 (NHCH₂), 29.6 (NHCH₂CH₂CH₂O), 28.4 (C(CH₃)₃ of Boc), 27.9 (br, C(CH₃)₃ of DOTA with a weak signal); MS (ESI-TOF) calcd for $C_{1310}H_{2257}N_{447}O_{266}$ 28508.68, found 28521.13 (M + H)⁺. Compound 4. A solution of G1 Platform (0.13 g, 56.2 µmol) in 4 M HCl in dioxane (4 mL) was stirred at room temperature for 2 h and then evaporated under vacuum. The residue was dissolved in chloroform, washed with 1 M NaOH (aq), dried over MgSO4, filtered, and evaporated under vacuum. A solution of the deprotected G1 platform and DIPEA (0.14 mL, 0.804 mmol) in THF (3 mL), methanol (0.2 mL), and H₂O (0.2 mL) was cooled in an ice bath before **DUPA-DCT** (0.33 g, 0.337 mmol) was added. The reaction solution was warmed to room temperature and stirred for 24 h. The solution was evaporated under vacuum. The residue was dissolved in dichloromethane, washed with brine, dried over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (from Ace:Hex = 2:1 to DCM:MeOH = 7:1) to give 4 (0.27 g, 84% over two steps) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 4.34-4.23 (br m, 8H, COCHCH₂CH₂CO of DUPA), 3.84-3.19 (m, 159H, C₃N₃-NHCH₂CH₂CH₂O, NCH₂CH₂N, CH₂OCH₂CH₂OCH₂CH₂OCH₂, CH₂CH₂NH, CHCOO and CH₂COO of DOTA), 3.11-2.05 (m, 52H, COCHCH₂CH₂COO of DUPA, NHCOCH₂CH₂CH₂, COCHCH₂CH₂COO and COCHCH2CH2CONH of DUPA, DOTA), 1.90-1.76 (m, 36H, OCH2CH2CH2NH, COCHCH₂CH₂CONH of DUPA), 1.61 (br., 8H, COCH₂CH₂CH₂), 1.52-1.43 (br. m, 152H, C(CH₃)₃, CH₂CH₂CH₂CH₂CH₂NH), 1.31 (br s, 24H, CH₂CH₂CH₂CH₂CH₂NH-DUPA); ¹³C NMR (100 MHz, CDCl₃) δ 175.2 (COO of DOTA with a weak signal), 173.5 (NHCOCH₂), 173.3 (NHCOCH₂), 172.7 (br, COO of DOTA), 172.6 (COO of DUPA), 172.3 (COO of DUPA), 172.0 (COO of DUPA), $168.9 (C_3N_3)$, $166.2 (C_3N_3)$, $165.4 (C_3N_3)$, $165.2 (C_3N_3)$, $164.5 (C_3N_3)$, 157.9(NHCONH of DUPA), 82.2 (C(CH₃)₃ of DOTA), 82.1 (C(CH₃)₃ of DOTA), 82.0 (two lines, C(CH₃)₃ of DOTA), 81.8 (C(CH₃)₃ of DUPA), 81.5 (C(CH₃)₃ of DUPA), 80.4 (C(CH₃)₃ of DUPA), 70.5 (OCH₂CH₂O), 70.4 (OCH₂CH₂O), 70.1 (OCH₂CH₂O), 70.0 (OCH₂CH₂O), 69.8 (OCH₂CH₂O), 69.4 (NHCH₂CH₂CH₂O), 69.3 (NHCH₂CH₂CH₂O), 69.2 (NHCH₂CH₂CH₂O), 60.0 (CH of DOTA with a weak signal), 55.7 (DOTA with a weak signal), 55.4 (DOTA with a weak signal), 53.5 (DOTA with a weak signal), 53.0 (COCHCH₂CH₂CO of DUPA), 52.7 (DOTA with a weak signal), 48.4 (DOTA with a weak signal), 47.1 (DOTA with a weak signal), 43.3 (br, piperazine), 42.8 (br, piperazine), 41.9 (NHCH₂), 39.3 (NHCH₂), 38.9 (NHCH₂), 38.2 (NHCH₂), 38.1 (NHCH₂), 37.5 (NHCH₂), 37.3 (DOTA with a weak signal), 36.6 (COCH₂CH₂CH₂), 32.6 (COCHCH₂CH₂CONH DUPA), 31.6 (COCHCH₂CH₂COO of DUPA), 29.7 (NHCH₂CH₂CH₂O), 29.5 (NHCH₂CH₂CH₂O), 29.3 (NHCH₂CH₂CH₂O), 29.0 (COCH₂CH₂CH₂,

COCHCH₂CH₂CONH of DUPA), 28.7 (COCH₂CH₂CH₂CH₂, COCHCH₂CH₂CONH of DUPA), 28.0 (two lines, C(CH₃)₃), 27.9 (C(CH₃)₃), 27.8 (two lines, C(CH₃)₃), 26.6 (CH₂CH₂NH-DUPA), 25.6 (COCH₂CH₂CH₂); MS (ESI-TOF) calcd for C₂₆₆H₄₆₅Cl₄N₅₉O₆₆ 5682.3598, found 5687.7884 (M + H)⁺.

Compound 5. A solution of G3 Platform (0.13 g, 17.2 µmol) in 4 M HCl in dioxane (4 mL) was stirred at room temperature for 4 h and then evaporated under vacuum. The residue was dissolved in chloroform, washed with 1 M NaOH (aq), dried over MgSO4, filtered, and evaporated under vacuum. A solution of the deprotected G3 platform and DIPEA (0.19 mL, 1.09 mmol) in THF (3 mL), methanol (0.2 mL), and H₂O (0.2 mL) was cooled in an ice bath before **DUPA-DCT** (0.405 g, 0.413 mmol) was added. The reaction solution was warmed to room temperature and stirred for 48 h. The solution was evaporated under vacuum. The residue was dissolved in dichloromethane, washed with brine, dried over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (from Ace:Hex = 2:1 to DCM:MeOH = 7:1) to give 5 (0.28 g, 77% over two steps) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 4.36-4.27 (br m, 32H, COCHCH₂CH₂CO of DUPA), 3.84-3.19 (m, 631H, C₃N₃-NHCH₂CH₂CH₂O, NCH₂CH₂N, CH₂OCH₂CH₂OCH₂CH₂OCH₂, CH₂CH₂NH, CHCOO and CH₂COO of DOTA), 3.11-2.05 (m, 148H, COCHCH₂CH₂COO of DUPA, NHCOCH₂CH₂CH₂, COCHCH₂CH₂COO and COCHCH₂CH₂CONH of DUPA, DOTA), 1.90-1.76 (m, 140H, OCH₂CH₂CH₂NH, COCHCH₂CH₂CONH of DUPA), 1.60 (br, 32H, COCH₂CH₂CH₂), 1.52-1.43 (br m, 464H, C(CH₃)₃, CH₂CH₂CH₂CH₂CH₂NH), 1.31 (br s, 96H, CH₂CH₂CH₂CH₂CH₂CH₂NH-DUPA); ¹³C NMR (100 MHz, CDCl₃) δ 173.2 (NHCOCH₂), 172.8 (NHCOCH₂), 172.4 (COO of DUPA), 172.2 (COO of DUPA), 172.0 (COO of DUPA), 168.9 (C₃N₃), 166.2 (C₃N₃), 165.4 (C₃N₃), 165.2 (C₃N₃), 164.5 (C₃N₃), 157.9 (NHCONH of DUPA), 82.0 (C(CH₃)₃ of DUPA), 81.6 (C(CH₃)₃ of DUPA),

80.5 (C(CH₃)₃ of DUPA), 70.5 (OCH₂CH₂O), 70.4 (OCH₂CH₂O), 70.2 (OCH₂CH₂O), 70.1 (OCH₂CH₂O), 69.8 (OCH₂CH₂O), 69.4 (NHCH₂CH₂CH₂O), 69.3 (NHCH₂CH₂CH₂O), 53.0 (COCHCH₂CH₂CO of DUPA), 52.9 (COCHCH₂CH₂CO of DUPA), 43.3 (br, piperazine), 42.8 (br, piperazine), 41.7 (NHCH₂), 39.3 (NHCH₂), 38.8 (NHCH₂), 38.2 (NHCH₂), 38.1 (NHCH₂), 37.6 (NHCH₂), 36.6 (COCH₂CH₂CH₂O), 32.5 (COCHCH₂CH₂CONH of DUPA), 31.6 (COCHCH₂CH₂COO of DUPA), 29.8 (NHCH₂CH₂CH₂O), 29.5 (NHCH₂CH₂CH₂O), 29.3 (NHCH₂CH₂CH₂O), 29.1 (COCH₂CH₂CH₂O), 29.0 (COCHCH₂CH₂CONH₂ of DUPA), 28.8 (COCH₂CH₂CH₂O), 28.7 (COCHCH₂CH₂CONH of DUPA), 28.0 (two lines, C(CH₃)₃), 27.9 (C(CH₃)₃), 27.8 (C(CH₃)₃), 27.7 (C(CH₃)₃), 26.6 (CH₂CH₂NH-DUPA), 25.6 (COCH₂CH₂CH₂CH₂C); MS (ESI-TOF) calcd for C₉₇₄H₁₆₈₁C₁₁₆N₂₃₉O₂₃₄ 21031.20, found 21055.31 (M + H)⁺.

Compound 6. A solution of G5 Platform (0.15 g, 5.26 μmol) in 4 M HCl in dioxane (4 mL) was stirred at room temperature for 8 h and then evaporated under vacuum. The residue was dissolved in chloroform, washed with 1 M NaOH (aq), dried over MgSO4, filtered, and evaporated under vacuum. A solution of the deprotected G5 platform and DIPEA (0.19 mL, 1.09 mmol) in THF (3 mL), methanol (0.2 mL), and H₂O (0.2 mL) was cooled in an ice bath before **DUPA-DCT** (0.495 g, 0.505 mmol) was added. The reaction solution was warmed to room temperature and stirred for 48 h. The solution was evaporated under vacuum. The residue was dissolved in dichloromethane, washed with brine, dried over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (from Ace:Hex = 2:1 to DCM:MeOH = 7:1) to give 6 (0.30 g, 69% over two steps) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 4.34-4.27 (br m, 128H, COCHCH₂CH₂CO of DUPA), 3.84-3.16 (m, 2512H, C₃N₃-NHCH₂CH₂CH₂O, NCH₂CH₂N, CH₂OCH₂CH₂COCH₂CH₂COCH₂, CH₂CH₂NH, CHCOO and CH₂COO of DOTA), 3.11-2.06 (m, 532H, COCHCH₂CH₂COO of DUPA, NHCOCH₂CH₂CH₂C, COCHCH₂CH₂COO

and COCHCH2CH2CONH of DUPA, DOTA), 1.90-1.76 (m, 556H, OCH2CH2CH2NH, COCHCH₂CH₂CONH of DUPA), 1.59 (br. 128H, COCH₂CH₂CH₂), 1.52-1.43 (br m, 1892H, (100 MHz, CDCl₃) δ 173.3 (NHCOCH₂), 172.8 (NHCOCH₂), 172.4 (COO of DUPA), 172.2 (COO of DUPA), 172.0 (COO of DUPA), 168.9 (C₃N₃), 166.3 (C₃N₃), 165.4 (C₃N₃), 165.2 (C₃N₃), 164.5 (C₃N₃), 157.9 (NHCONH of DUPA), 81.9 (C(CH₃)₃ of DUPA), 81.7 (C(CH₃)₃ of DUPA), 80.5 (C(CH₃)₃ of DUPA), 70.5 (OCH₂CH₂O), 70.4 (OCH₂CH₂O), 70.2 (OCH₂CH₂O), 70.1 (OCH₂CH₂O), 69.9 (OCH₂CH₂O), 69.4 (NHCH₂CH₂CH₂O), 69.3 (NHCH₂CH₂CH₂O), 53.0 (COCHCH₂CH₂CO of DUPA), 52.9 (COCHCH₂CH₂CO of DUPA), 43.3 (br, piperazine), 42.9 (br, piperazine), 41.9 (NHCH₂), 39.4 (NHCH₂), 38.9 (NHCH₂), 38.2 (NHCH₂), 37.6 (NHCH₂), 36.6 (COCH₂CH₂CH₂CH₂), 32.6 (COCHCH₂CH₂CONH of DUPA), 31.6 (COCHCH₂CH₂COO of DUPA), 29.8 (NHCH₂CH₂CH₂O), 29.6 (NHCH₂CH₂CH₂O), 29.4 (NHCH₂CH₂CH₂O), 29.1 (COCH₂CH₂CH₂), 29.0 (COCHCH₂CH₂CONH₂ of DUPA), 28.8 (two lines, COCH₂CH₂CH₂CH₂CH₂, COCHCH₂CH₂CONH of DUPA), 28.1 (two lines, C(CH₃)₃), 28.0 (C(CH₃)₃), 26.7 (CH₂CH₂NH-DUPA), 25.6 (COCH₂CH₂CH₂).

G1-(DUPA)₄. A solution of 4-(aminomethyl)piperidine (0.16 g, 1.40 mmol) in THF (2 mL) was added to a solution of **4** (0.167 g, 29.4 μmol) in THF (3 mL). The solution was stirred at room temperature for 16 h and then evaporated under vacuum. The residue was dissolved in dichloromethane (30 mL), washed three times with brine, dried over MgSO₄, filtered, and evaporated under vacuum. The resulting compound was dissolved in 3 mL of a mixture of TFA/TIPS/H₂O (95/2.5/2.5) and stirred at room temperature for 16 h. The solution was evaporated under vacuum. The residue was dissolved in methanol. The resulting solution was evaporated under vacuum to give **G1-(DUPA)**₄ (0.15 g, quantitative) as a TFA salt. ¹H NMR (400 MHz,

CD₃OD) δ 4.34-4.23 (br m, 8H, COCHCH₂CH₂CO of DUPA), 4.01-3.14 (m, 167H, C₃N₃-NHCH2CH2CH2O, NCH2CH2N, CH2OCH2CH2OCH2CH2OCH2, CH2CH2NH, CHCOO and CH₂COO of DOTA, AMP), 3.04-2.05 (m, 68H, COCHCH₂CH₂COO of DUPA, NHCOCH₂CH₂CH₂CH₂COCHCH₂CH₂COO and COCHCH₂CH₂CONH of DUPA, DOTA, AMP), 1.91-1.74 (br m, 44H, OCH₂CH₂CH₂NH, COCHCH₂CH₂CO of DUPA), 1.59 (br, 8H, COCH₂CH₂CH₂), 1.49 (br, 8H, $CH_2CH_2CH_2CH_2NH)$, 1.39-1.26 (br m. 36H, CH₂CH₂CH₂CH₂CH₂NH-DUPA, AMP); ¹³C NMR (100 MHz, CD₃OD) δ 176.5 (two lines, COO), 176.0 (two lines, COO), 175.1 (br, NHCOCH₂), 175.0 (NHCOCH₂), 174.8 (NHCOCH₂), 163.3 (C₃N₃), 157.2 (NHCONH of DUPA), 71.6 (two lines, OCH₂CH₂O), 71.3 (two lines, OCH₂CH₂O), 70.0 (OCH₂CH₂O), 69.9 (OCH₂CH₂O), 69.8 (NHCH₂CH₂CH₂O), 69.7 (NHCH₂CH₂CH₂O), 55.9 (DOTA with a weak signal), 54.1 (DOTA with a weak signal), 53.9 (COCHCH₂CH₂CO of DUPA), 53.8 (COCHCH₂CH₂CO of DUPA), 52.9 (DOTA), 52.4 (DOTA), 45.5 (br, AMP), 44.9 (br, piperazine), 43.8 (br, piperazine, AMP), 40.6 (NHCH₂), 39.7 (NHCH₂), 39.3 (AMP), 38.0 (NHCH₂), 37.2 (NHCH₂), 36.7 (DOTA with a weak signal), 35.4 (COCH₂CH₂CH₂), 33.3 (COCHCH₂CH₂CO of DUPA), 31.2 (COCHCH₂CH₂CO of DUPA), 31.1 (COCHCH₂CH₂CO of DUPA), 30.5 (NHCH₂CH₂CH₂O), 30.3 (NHCH₂CH₂CH₂O), 30.2 (NHCH₂CH₂CH₂O), 30.1 (COCH₂CH₂CH₂), 30.0 (COCHCH₂CH₂CO of DUPA), 29.9 (AMP), 28.8 (COCH₂CH₂CH₂CH₂), 27.9 (CH₂CH₂NH-DUPA), 27.1 (COCH₂CH₂CH₂); MS (ESI-TOF) calcd for C₂₂₆H₃₈₉N₆₇O₆₆ 5097.9143, found 5100.5329 (M + H)⁺.

G3-(DUPA)₁₆. A solution of 4-(aminomethyl)piperidine (0.19 g, 1.66 mmol) in THF (2 mL) was added to a solution of **5** (0.182 g, 8.65 μmol) in THF (3 mL). The solution was stirred at room temperature for 16 h and then evaporated under vacuum. The residue was dissolved in dichloromethane (30 mL), washed three times with brine, dried over MgSO₄, filtered, and

evaporated under vacuum. The resulting compound was dissolved in 3 mL of a mixture of TFA/TIPS/H₂O (95/2.5/2.5) and stirred at room temperature for 16 h. The solution was evaporated under vacuum. The residue was dissolved in methanol. The resulting solution was evaporated under vacuum to give G3-(DUPA)₁₆ (0.17 g, quantitative)as a TFA salt. ¹H NMR (400 MHz, CD₃OD) δ 4.33-4.25 (br m, 32H, COCHCH₂CH₂CO of DUPA), 4.01-3.15 (m, 663H, C₃N₃-NHCH2CH2CH2O, NCH2CH2N, CH2OCH2CH2OCH2CH2OCH2, CH2CH2NH, CHCOO and CH₂COO of DOTA, AMP), 3.10-2.05 (m, 212H, COCHCH₂CH₂COO of DUPA, NHCOCH₂CH₂CH₂CH₂COCHCH₂CH₂COO and COCHCH₂CH₂CONH of DUPA, DOTA, AMP), 1.91-1.73 (m, 172H, OCH₂CH₂CH₂NH, COCHCH₂CH₂CO of DUPA, AMP), 1.59 (br, 32H, COCH₂CH₂CH₂), 1.49 (br, 32H, CH₂CH₂CH₂CH₂NH), 1.39-1.23 (br m, 144H, CH₂CH₂CH₂CH₂CH₂CH₂NH-DUPA, AMP); ¹³C NMR (100 MHz, CD₃OD) δ 176.5 (COO), 176.4 (COO), 176.0 (COO), 175.9 (COO), 175.0 (NHCOCH₂), 174.8 (NHCOCH₂), 163.3 (C₃N₃), 163.0 (C₃N₃), 160.2 (NHCONH of DUPA), 157.2 (NHCONH of DUPA), 71.6 (two lines, OCH₂CH₂O), 71.3 (two lines, OCH₂CH₂O), 70.0 (OCH₂CH₂O), 69.8 (br, OCH₂CH₂O, NHCH₂CH₂CH₂O), 68.9 (NHCH₂CH₂CH₂O), 55.9 (DOTA with a weak signal), 53.9 (COCHCH₂CH₂CO of DUPA), 53.8 (COCHCH2CH2CO of DUPA), 52.9 (DOTA with a weak signal), 52.4 (DOTA with a weak signal), 45.4 (br, AMP), 44.9 (br, piperazine), 43.9 (AMP), 40.6 (NHCH₂), 39.7 (br, NHCH₂), 39.3 (AMP), 37.9 (NHCH₂), 37.2 (NHCH₂), 36.7 (DOTA with a weak signal), 35.4 (COCH₂CH₂CH₂CH₂), 33.3 (COCHCH₂CH₂CO of DUPA), 31.2 (COCHCH₂CH₂CO of DUPA), 31.1 (COCHCH₂CH₂CO of DUPA), 30.5 (NHCH₂CH₂CH₂O), 30.3 (NHCH₂CH₂CH₂O), 30.2 (NHCH₂CH₂CH₂O), 30.1 (COCH₂CH₂CH₂), 30.0 (COCHCH₂CH₂CO of DUPA), 29.9 (AMP), 28.8 (COCH₂CH₂CH₂CH₂), 27.9 (CH₂CH₂NH-DUPA), 27.0 (COCH₂CH₂CH₂); MS (ESI-TOF) calcd for $C_{862}H_{1473}N_{271}O_{234}$ 19366.17, found 19377.02 (M + H)⁺.

G5-(DUPA)₆₄. A solution of 4-(aminomethyl)piperidine (0.13 g, 1.14 mmol) in THF (2 mL) was added to a solution of 6 (0.122 g, 1.48 µmol) in THF (3 mL). The solution was stirred at room temperature for 16 h and then evaporated under vacuum. The residue was dissolved in dichloromethane (30 mL), washed three times with brine, dried over MgSO₄, filtered, and evaporated under vacuum. The resulting compound was dissolved in 3 mL of a mixture of TFA/TIPS/H₂O (95/2.5/2.5) and stirred at room temperature for 16 h. The solution was evaporated under vacuum. The residue was dissolved in methanol. The resulting solution was evaporated under vacuum to give G5-(DUPA)₆₄ (0.12 g, quantitative) as a TFA salt. ¹H NMR (400 MHz, CD₃OD) δ 4.34-4.25 (br m, 128H, COCHCH₂CH₂CO of DUPA), 4.01-3.15 (m, 2640H, C₃N₃-NHCH₂CH₂O, NCH₂CH₂N, CH₂OCH₂CH₂OCH₂CH₂OCH₂, CH₂CH₂NH, CHCOO and CH₂COO of DOTA, AMP), 3.11-2.06 (m, 788H, COCHCH₂CH₂COO of DUPA, NHCOCH₂CH₂CH₂CH₂COCHCH₂CH₂COO and COCHCH₂CH₂CONH of DUPA, DOTA, AMP), 1.95-1.72 (m, 684H, OCH₂CH₂CH₂NH, COCHCH₂CH₂CO of DUPA, AMP), 1.59 (br, 128H, COCH₂CH₂CH₂), 1.49 (br, 128H, CH₂CH₂CH₂CH₂NH), 1.49-1.24 (br m, 576H, CH₂CH₂CH₂CH₂CH₂NH-DUPA, AMP); ¹³C NMR (100 MHz, CD₃OD) δ 176.5 (two lines, NHCOCH₂), 176.4 (COO), 176.0 (COO), 175.9 (COO), 175.0 (NHCOCH₂), 174.8 (NHCOCH₂), 174.7 (NHCOCH₂), 164.0 (C₃N₃), 160.2 (NHCONH of DUPA), 157.3 (NHCONH of DUPA), 71.6 (OCH₂CH₂O), 71.3 (two lines, OCH₂CH₂O), 70.0 (OCH₂CH₂O), 69.9 (br, OCH₂CH₂O), 69.8 (br, NHCH₂CH₂CH₂O), 69.0 (NHCH₂CH₂CH₂O), 55.9 (DOTA), 53.9 (COCHCH₂CH₂CO of DUPA), 53.8 (COCHCH₂CH₂CO of DUPA), 45.5 (br, AMP), 45.0 (br, piperazine), 43.9 (AMP), 40.6 (NHCH₂), 39.7 (br, NHCH₂, AMP), 37.9 (NHCH₂), 37.2 (NHCH₂), 36.7 (DOTA with a weak signal), 35.4 (COCH₂CH₂CH₂), 33.3 (COCHCH₂CH₂CO of DUPA), 31.2 (COCHCH₂CH₂CO of DUPA), 31.1 (COCHCH₂CH₂CO of DUPA), 30.5 (NHCH₂CH₂CH₂O),

30.4 (NHCH₂CH₂CH₂O), 30.2 (NHCH₂CH₂CH₂O), 30.1 (br, COCH₂CH₂CH₂CH₂, COCHCH₂CH₂CO of DUPA), 29.6 (AMP), 28.9 (COCH₂CH₂CH₂CH₂CH₂), 27.9 (CH₂CH₂NH-DUPA), 27.1 (COCH₂CH₂CH₂CH₂).

Spectra

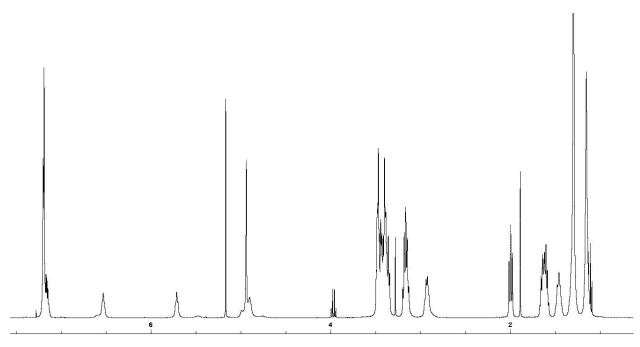


Figure S1. ¹H NMR spectrum of 1 (400 MHz, CDCl₃).

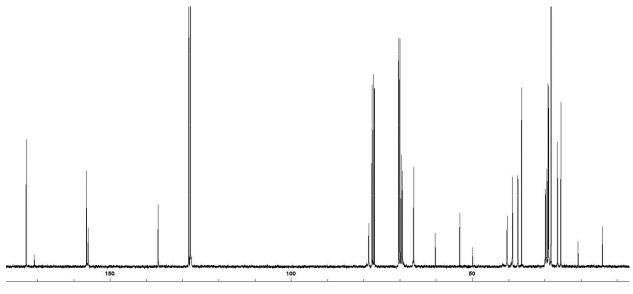


Figure S2. ¹³C NMR spectrum of 1 (100 MHz, CDCl₃).

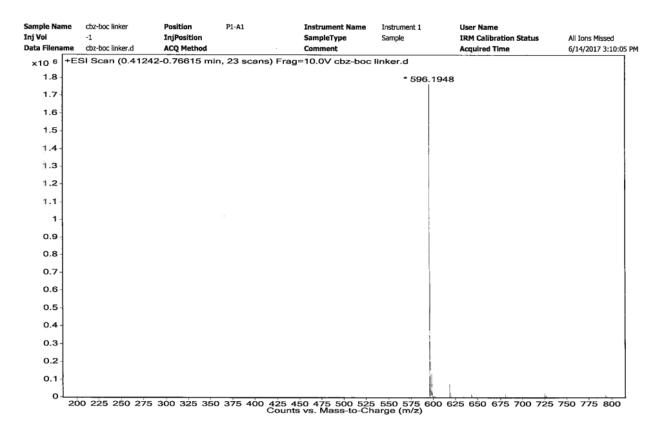


Figure S3. ESI-TOF mass spectrum of 1.

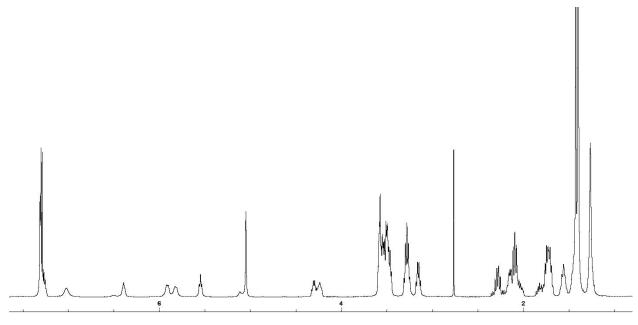


Figure S4. ¹H NMR spectrum of 2 (400 MHz, CDCl₃).

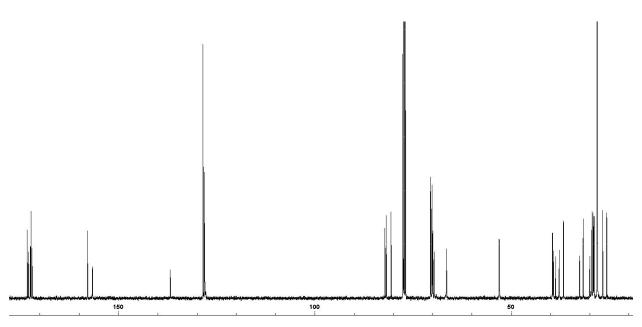


Figure S5. ¹³C NMR spectrum of 2 (100 MHz, CDCl₃).

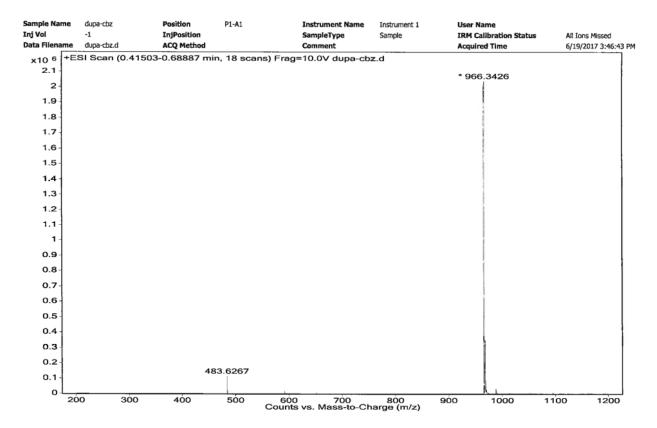


Figure S6. ESI-TOF mass spectrum of 2.

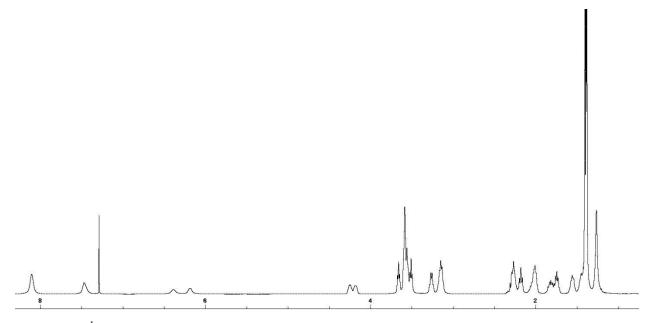


Figure S7. ¹H NMR spectrum of 3 (400 MHz, CDCl₃).

Figure S8. ¹³C NMR spectrum of 3 (100 MHz, CDCl₃).

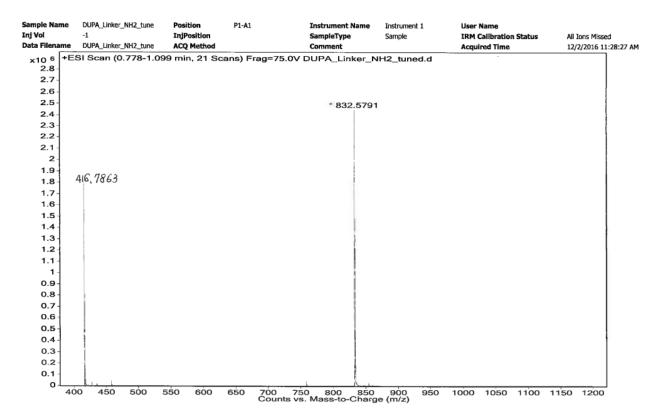


Figure S9. ESI-TOF mass spectrum of 3.

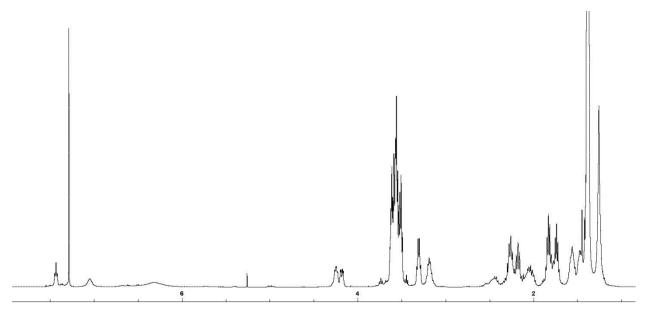
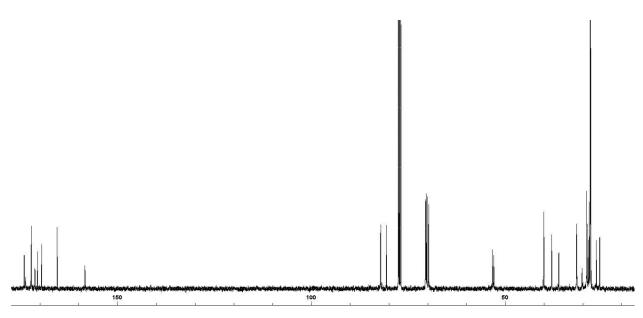



Figure S10. ¹H NMR spectrum of **DUPA-DCT** (400 MHz, CDCl₃).

Figure S11. ¹³C NMR spectrum of **DUPA-DCT** (100 MHz, CDCl₃).

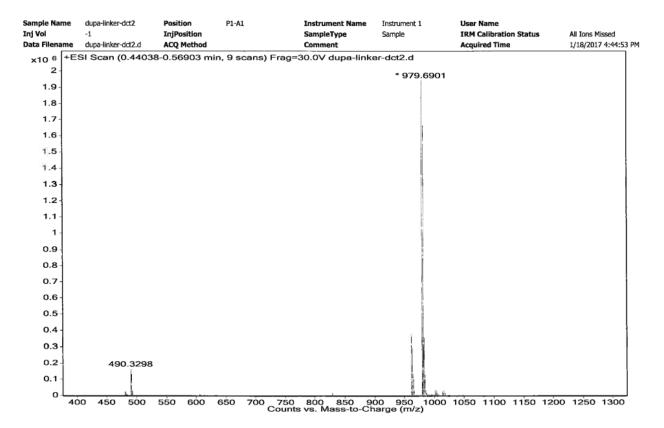


Figure S12. ESI-TOF mass spectrum of DUPA-DCT.

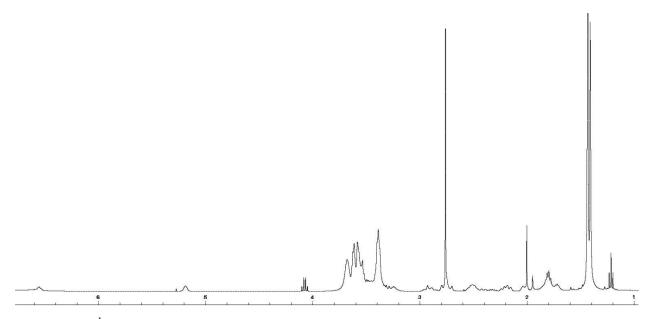


Figure S13. ¹H NMR spectrum of G1 Platform (400 MHz, CDCl₃).

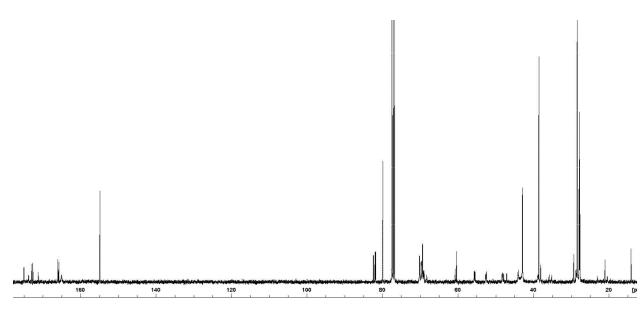


Figure S14. ¹³C NMR spectrum of G1 Platform (100 MHz, CDCl₃).

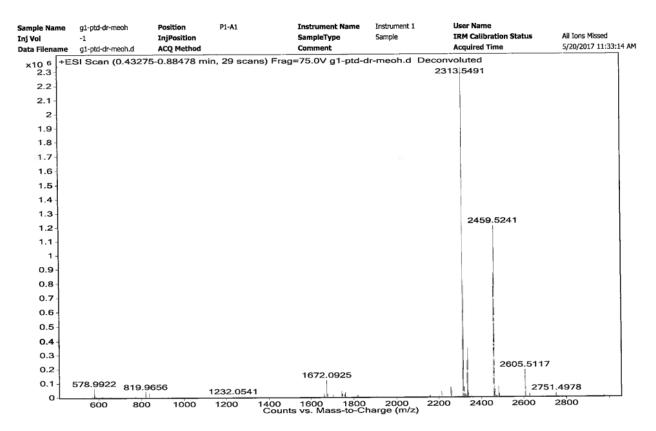


Figure S15. ESI-TOF mass spectrum of G1 Platform.

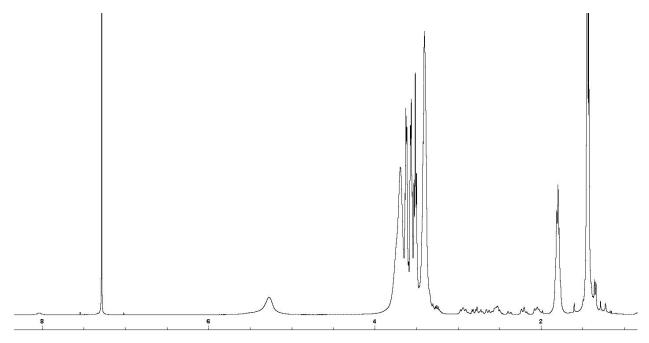


Figure S16. ¹H NMR spectrum of G3 Platform (400 MHz, CDCl₃).

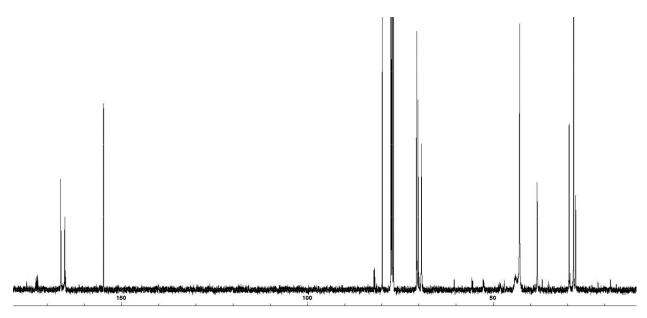


Figure S17. ¹³C NMR spectrum of G3 Platform (100 MHz, CDCl₃).

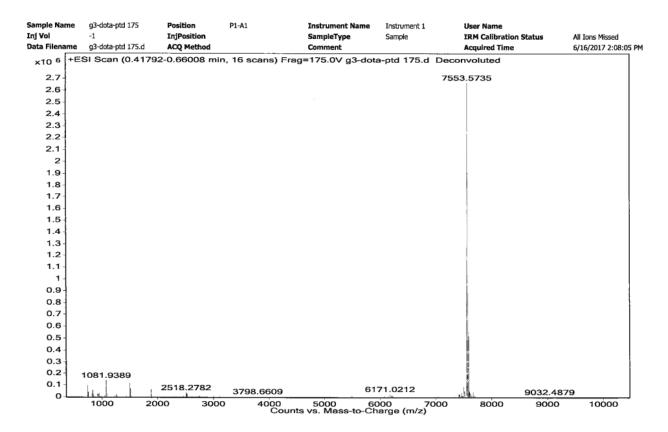


Figure S18. ESI-TOF mass spectrum of G3 Platform.

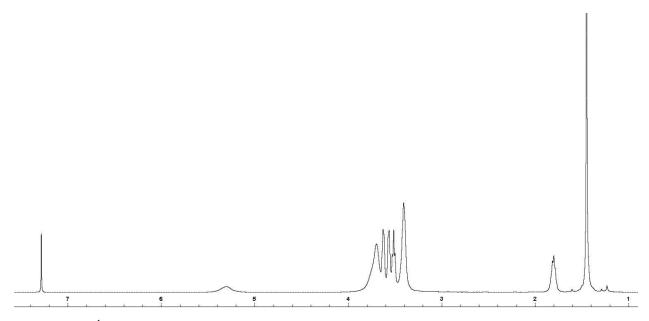


Figure S19. ¹H NMR spectrum of G5 Platform (400 MHz, CDCl₃).

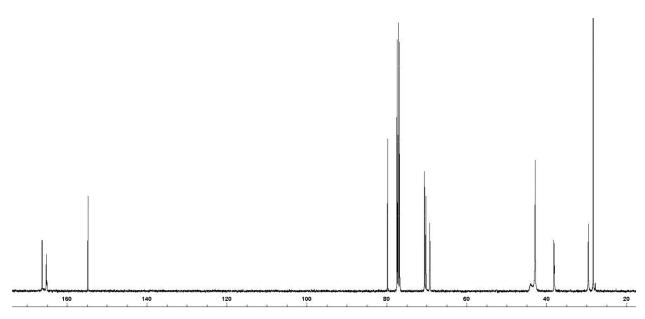


Figure S20. ¹³C NMR spectrum of G5 Platform (100 MHz, CDCl₃).

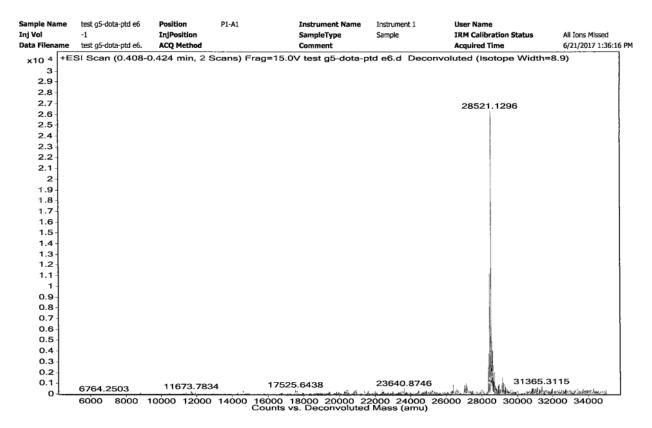


Figure S21. ESI-TOF mass spectrum of G5 Platform.

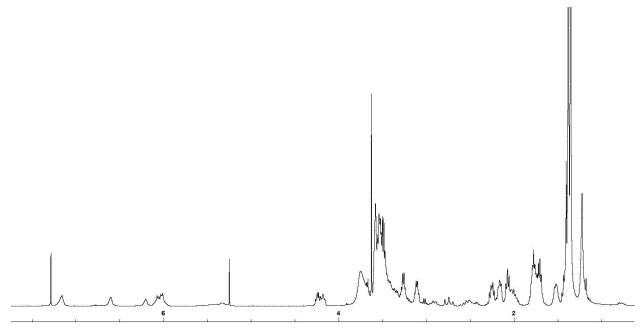


Figure S22. ¹H NMR spectrum of 4 (400 MHz, CDCl₃).

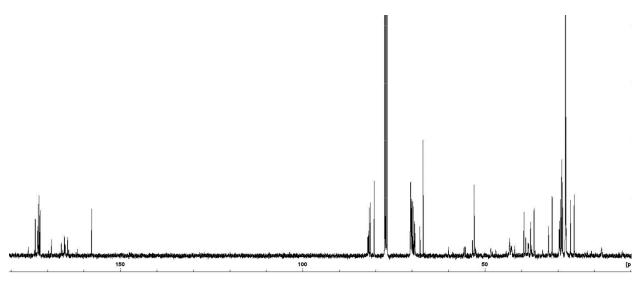


Figure S23. ¹³C NMR spectrum of 4 (100 MHz, CDCl₃).

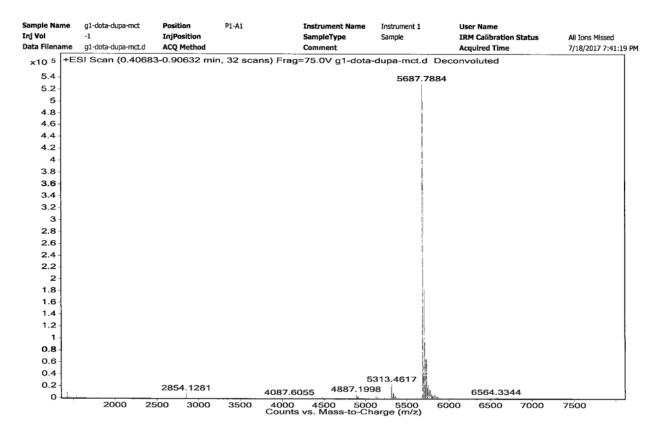


Figure S24. ESI-TOF mass spectrum of 4.

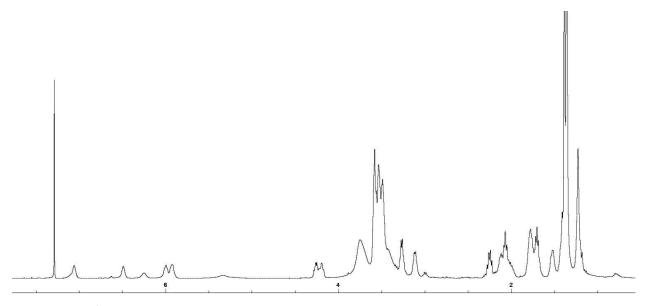


Figure S25. ¹H NMR spectrum of 5 (400 MHz, CDCl₃).

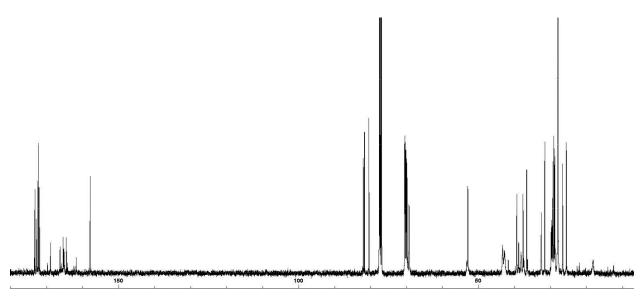


Figure S26. ¹³C NMR spectrum of 5 (100 MHz, CDCl₃).

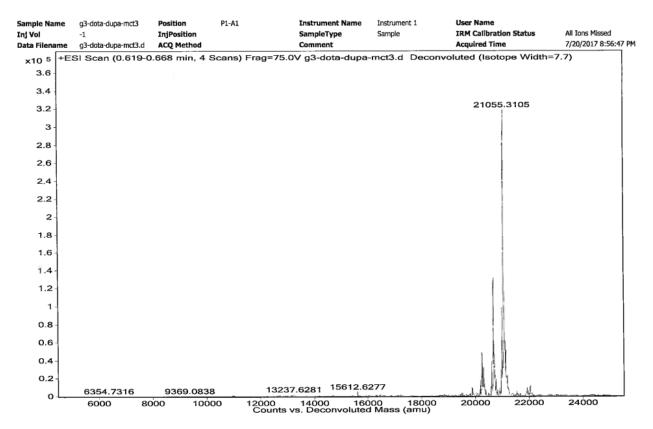


Figure S27 . ESI-TOF mass spectrum of 5.

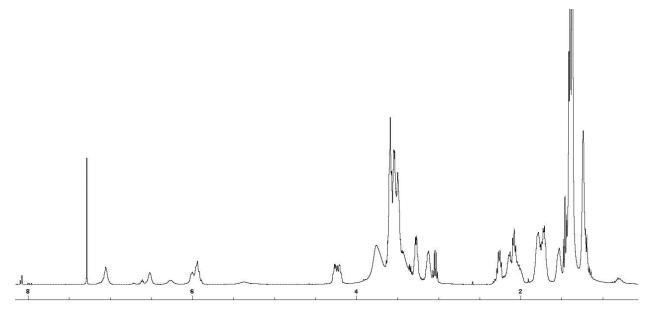


Figure S28. ¹H NMR spectrum of 6 (400 MHz, CDCl₃).

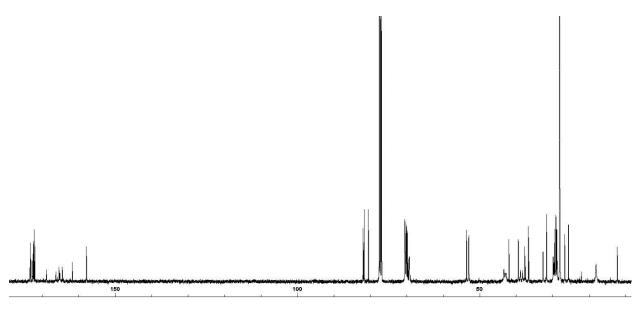


Figure S29. ¹³C NMR spectrum of 6 (100 MHz, CDCl₃).

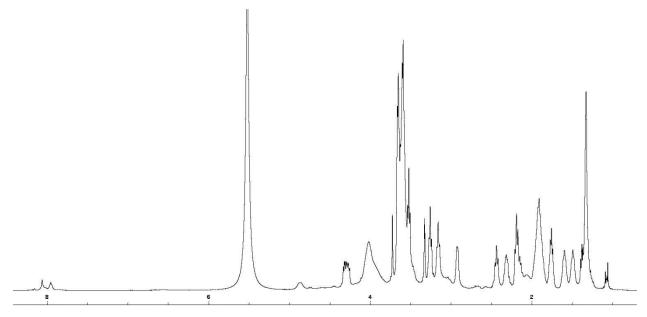


Figure S30. ¹H NMR spectrum of G1-(DUPA)₄ (400 MHz, CD₃OD).

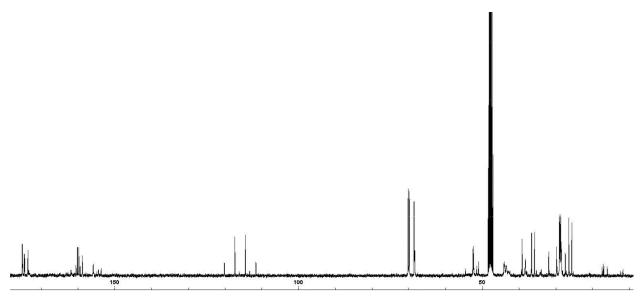


Figure S31. ¹³C NMR spectrum of G1-(DUPA)₄ (100 MHz, CD₃OD).

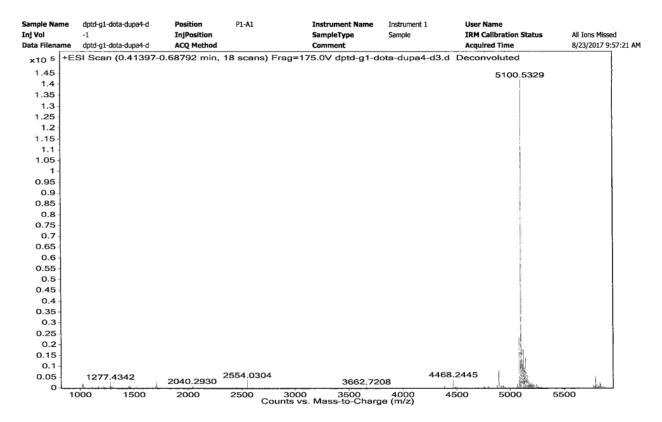
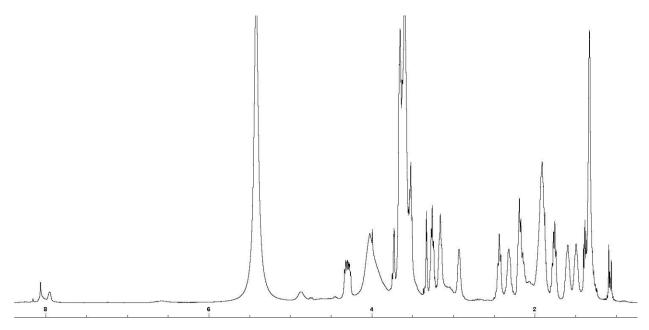
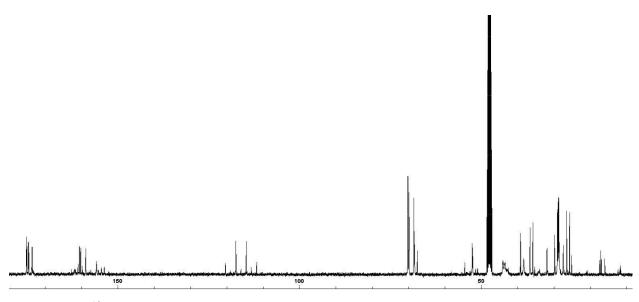




Figure S32. ESI-TOF mass spectrum of G1-(DUPA)₄.

Figure S33. ¹H NMR spectrum of **G3-(DUPA)**₁₆ (400 MHz, CD₃OD).

Figure S34. ¹³C NMR spectrum of **G3-(DUPA)**₁₆ (100 MHz, CD₃OD).

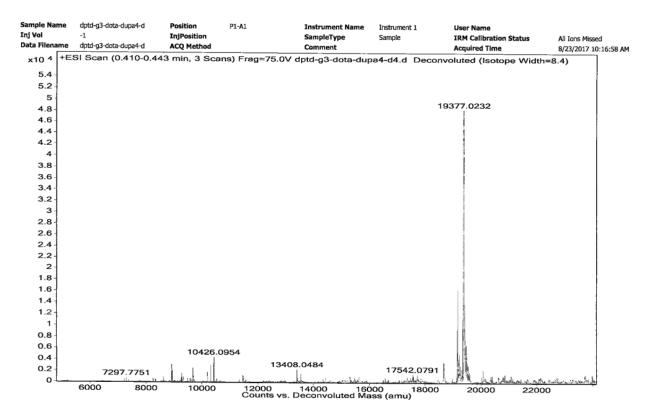
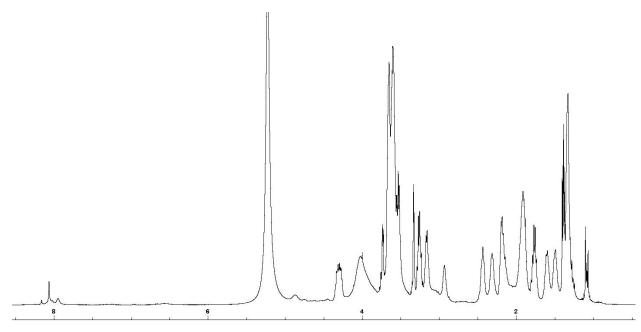
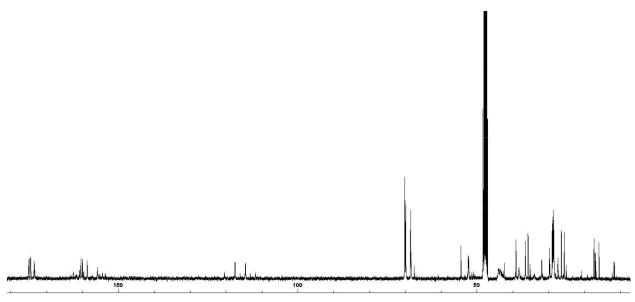




Figure S35. ESI-TOF mass spectrum of G3-(DUPA)₁₆.

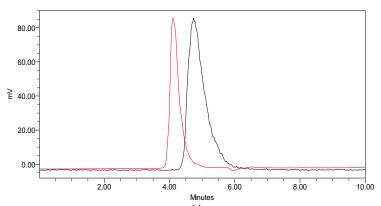


Figure S36. ¹H NMR spectrum of **G5-(DUPA)₆₄** (400 MHz, CD₃OD).

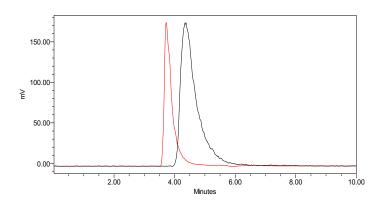


Figure S37. ¹³C NMR spectrum of **G5-(DUPA)**₆₄ (100 MHz, CD₃OD).

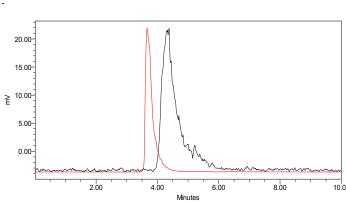

Radio-HPLC

Figure S38. Radio-HPLC of ⁶⁴Cu-labeled **G1-(DUPA)**₄ (red line: radioactivity detector, black line: UV-Vis detector).

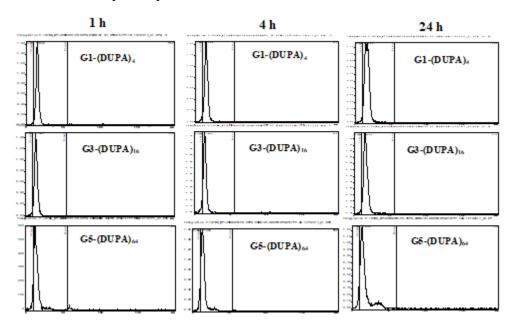


Figure S39. Radio-HPLC of ⁶⁴Cu-labeled **G3-(DUPA)**₁₆ (red line: radioactivity detector, black line: UV-Vis detector).

Figure S40. Radio-HPLC of ⁶⁴Cu-labeled **G5-(DUPA)**₆₄ (red line: radioactivity detector, black line: UV-Vis detector).

Serum Stability Assay

Figure S41. Serum stability assay of the ⁶⁴Cu-labeled dendrimers in rat serum (1 h, 4 h, and 24 h incubation).