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Abstract: The application of robotics in construction is hindered by the site environment, which
is unstructured and subject to change. At the same time, however, buildings and corresponding
sites can be accurately described by Building Information Modeling (BIM). Such a model contains
geometric and semantic data about the construction and operation phases of the building and it is
already available at the design phase. We propose a method to leverage BIM for simple yet efficient
deployment of robotic systems for construction and operation of buildings. With our proposed
approach, BIM is used to provide the robot with a priori geometric and semantic information on the
environment and to store information on the operation progress. We present two applications that
verify the effectiveness of our proposed method. This system represents a step forward towards an
easier application of robots in construction.

Keywords: construction robotics; robot operating system; building information modeling; collabora-
tive robotics

1. Introduction

The building industry represents one of the main economies worldwide. In the
European Union, it generates about the 9% of gross domestic product [1]. Nonetheless,
construction is often plagued by various problems, such as inefficiency, low productivity,
a high number of accidents, low attractivity, and a general lack of innovation [2]. This
becomes even more evident when compared to other industries pushing towards Industry
4.0 [3], such as manufacturing, where flexible robotic solutions are arising [4]. Construction
tasks can be very demanding and they often concern the handling of heavy loads for
operations such as lowering, lifting, and carrying. Tasks are usually boring, repetitive,
fatigue intensive, and amongst the riskiest factors of musculoskeletal disorders in the
long run [5]. Moreover, demanding work must be performed throughout all the building
lifecycle, either for construction or regular facility operation, such as cleaning, internal
logistics, and sanitation. For these reasons, automation of construction and maintenance
operations is a promising and active research area that is expected to have a major role in
shaping the future of the building industry [6–8].

The knowledge of building data is critical for the application of robotic solutions
in construction and operation. This is because of two main hindering factors. First, the
unstructured and dynamic nature of construction sites poses a stronger challenge for
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robotic deployment in comparison to factories [8]. Second, each building has unique
characteristics in its geometry, typology, function, material, and appearance [8]. For
these reasons, a construction robot needs to be flexible and able to adapt to complex
environments that are always unique and change over time. Research has been carried out
to make robotic mapping, navigation, and semantic cognition of dynamic environments
reliable and robust [9,10]. However, a setup phase is almost always necessary, especially in
unknown environments. This often results in tedious and time-consuming manual work
that requires experience. Recently, deep learning-based classification and segmentation
algorithms have been developed [11], but adding semantic information to maps still
requires additional effort.

The basic idea of our approach is to exploit digital building models produced in the
building design phase to provide robotic systems with extensive semantic and geometric
knowledge of the building. Among the software tools for project design, Building Infor-
mation Modeling (BIM) is steadily spreading in the construction industry [12], so much
so that it is becoming a standard in the public sector of many countries worldwide [13].
The main advantage of BIM over Computer-Aided-Design tools is that it enables linking
of information to geometric 3D objects. For instance, a 3D object can store information
about its material, cost, producer, and construction scheduling time. For this reason, BIM
supposedly stores the building data under many so-called dimensions. For example, when
geometric data are connected to scheduling information, the model is referred to as 4D
BIM [12]. Since the time when the BIM methodology was under development, two of
its main goals have been (1) to provide a digital database for collaboration between the
stakeholders of the construction industry and (2) to store information in this database for
reuse in additional applications [14]. In line with these goals, the core contribution of this
paper is the creation of an interface between BIM and robotic systems to make the latter
accessible to construction stakeholders and to deliver to mobile robotic systems a priori
geometric and semantic knowledge of buildings extracted from the BIM database. This can
in turn ease the programming needed for their adoption and facilitate their deployment in
new environments.

After introducing the core method in Section 3, we indicate two applications that
have great potential to benefit from BIM integration in Section 4. The first application,
presented in our previous work [15], shows how BIM enables a robot to extract dangerous
areas and how this information can be used by a mobile robot to avoid them. That work
assumed the availability of an indoor tracking system to localize the robot. Therefore,
manual alignment of the tracking system with the BIM reference system was required.
Based on this application we developed a second application. In this case, we substituted
the localization provided by the tracking system with the one provided by the sensors
mounted on the robot itself. In this second application, BIM was used in a threefold way.
First, it was used to export the map of the building floor that is needed by the localization
algorithm. In this paper, we show that the transformation between the reference system
attached to the base link of the robot and the one linked to the BIM map can be retrieved
by applying the standard Adaptive Monte Carlo Localization (AMCL) algorithm [16] to
the static occupancy grid map of the floor extracted from the BIM project. In contrast
with classic blueprints, the BIM model includes most of the fixed static furniture. We
experimentally verified that the AMCL algorithm could overcome the problem of the
remaining small objects that were not mapped thanks to the probability distribution of its
beam model. Second, the navigation planning was improved by the a priori information
on the temporary working site inside the building and by the semantic description of
the rooms and storage areas. In particular, the robot could access information on the
different routes that connected its current position with the target location and about
possible obstacles blocking the way, such as maintenance work. Finally, we realized a
simple bidirectional information exchange with the BIM file. This was implemented with
the aim of using BIM as a steadily updated database to support collaboration with workers
and planners during the construction and maintenance operations.
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2. Related Works

BIM has been used as research ground for more than its original purpose as a project
planning tool thanks to its versatility. For instance, research has been carried out on obstacle-
free indoor route planning using BIM files [17]. In [18], the authors used an asymptotically
optimal derivative of the rapidly-exploring random tree algorithm to generate sampling-
based planning of collision-free paths in robotic navigation. BIM has also been linked with
computer vision with regard to object recognition. For example, in [19] it was suggested
that it was possible to use BIM with a high level of detail to recognize objects from site point
clouds. Based on these advances, the use of BIM has been extended to robotic navigation.
For instance, object recognition-based navigation was proposed in [20]. In that research,
real-life pictures were segmented and compared with a digital 3D object repository. Upon
recognition of the object and its real-world scale, the system updated the BIM file of the
building by adding the corresponding 3D object from the repository.

Expanding on object recognition, research has been carried out to use BIM for naviga-
tion in the context of construction monitoring. In [21], a 4D BIM file was used to retrieve
waypoints where the construction progress had to be monitored. After planning a route
comprising all the waypoints, the mobile robot navigated the site autonomously to collect
data. Obstacle detection was implemented to avoid collisions due to unforeseen changes
or mapping misalignments. In [22], the authors explored the use of BIM for the control of a
multi-agent robotic system. The system was based on the cooperation of an aerial and a
ground vehicle to collect 3D costmaps for monitoring the construction progress. Both these
works interfaced BIM with the Robot Operating System (ROS) [23]. Finally, BIM has also
been used to enable semantic navigation based on building topology for robotic platforms.
Indoor navigation based on various levels of top-down abstraction (i.e., building, floors,
rooms, subspaces) was proposed in [24]. In this work, the knowledge of the building was
used to generate hierarchical topological maps that were in turn used to compute path
planning iteratively from the top level.

In contrast to the above literature, our interface was developed to be part of a sys-
tem that actively takes part in the construction process; that is, a system that shares its
workspace with human workers and assists them during construction operations. In our
research the BIM model was meant as a medium to integrate the robot agent in the con-
struction process. The interface of the system was developed to be intuitive and useable by
workers with little experience of robotic devices in order to increase acceptance, which is
one of the main barriers to the on-site application of robotic systems [14]. Moreover, the
knowledge exchange between the model and the robot exploits the original scope of the
BIM database to reuse information and capture updates from workers during different
building phases.

3. Method

An overall summary of our applied research objectives is illustrated in Figure 1.
The BIM interface enabled a bidirectional connection between the robotic system and the
building database. In particular, the system could query the database for three kinds of
information stored in BIM objects: (1) their geometric description and location with respect
to the BIM file origin; (2) the information on construction scheduling, phasing, and process;
and (3) the other metadata stored in pre-set and custom BIM parameters that semantically
define the objects and areas of the environment. This information was provided a priori
to the robotic system before operation. The system’s goal, as shown on the rightmost
side of the picture, was to support construction and maintenance operation. The robotic
system itself was provided with sensors to align the building model with the real world.
The sensors were also employed to detect unforeseen obstacles, which were expected due
to the unstructured environment of the construction site. Finally, the system identified
workers in order to collaborate with them during operations. The same workers could
input information on the construction progress in order to update the initial parameter
value in the BIM database.



Robotics 2021, 10, 2 4 of 19

Figure 1. Conceptual representation of our applied research objectives. This paper focuses on the leftmost side. This section
explores how the information is retrieved from the open Building Information Modeling (BIM) (Industry Foundation
Classes (IFC)) project.

Our proposed pipeline for BIM integration was based on the Industry Foundation
Classes (IFC) [25]. In fact, BIM authoring software tools have the option of exporting
projects in the IFC format, making the information stored inside openly accessible. The IFC
format is standardized by the ISO 16739-1:2018 [26]. Its main purpose is to achieve and
promote the “open BIM” paradigm by creating a common, structured format for exchange
along the construction industry supply chain during the entire building lifecycle. Examples
of software tools that can be interfaced through IFC include modeling of architectural,
structural, and Mechanical Electrical Plumbing (MEP) elements, site scheduling, and facility
management. For this reason, the use of this format enables a strong connection to the
building industry standards.

The use of BIM makes it possible to extract useful information for a robot, such
as pmg maps, 3D voxel grids, room tags, and coordinates of loading and unloading
areas. With this aim, we proposed an ROS-based interface written in Python 3 that made
the information stored in the IFC accessible on demand. Geometrical information was
processed using the Open CASCADE library [27], which was bridged with Python by
the PythonOCC library [28]. The metadata stored in the IFC structure was accessed
through the open IFCOpenShell library [29]. ROS was used for its high modularity and
flexibility. Open CASCADE was used to perform 3D operations and process geometrical
information. IFCOpenShell, on the other hand, enabled the creation of objects linked
to their BIM property sets. Property sets made it possible to exchange standard and
custom characteristics of building objects with robotics. Standard parameters concerned
the topological definition of the building objects (e.g., doors, windows, and furniture), the
location of the objects with respect to the map origin, and other basic information, such
as their material. Custom parameters were created to expand the information beyond
standard characteristics, and they usually concerned data that was relevant to construction
and maintenance, such as scheduling, cost, and facility management.

In our research, the BIM interface was used for the creation of BIM-based time-
dependent occupancy maps for robotic navigation (see Figure 2). We implemented four-
dimensional scheduling metadata linked to BIM objects (i.e., planned starting and ending
construction dates), which were exploited to create different static maps of the same
building floor that followed the construction progress. These dates were specified through
custom parameters created in the BIM authoring software (i.e., Autodesk Revit© in this
case) before exporting the project in the IFC 2 × 3 format. Our pipeline parsed the IFC and
stored the information about the BIM objects it contained. Thereafter, it filtered them based
on two criteria: first, whether they posed a potential threat of collision with the mobile
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robot, and second, whether they had been built at the date and time at which the interface
inquired. The objects that were not filtered out after the geometric and scheduling analysis
were then sectioned by a plane. The meshes resulting from the intersection were plotted
into a pgm image file by exploiting the Qt-based 3D Viewer of Open CASCADE [30]. In
order to generate a grid map readable as an ROS costmap, that is, a binary map representing
the obstacles of the environment with black pixels over a white background [31], the camera
was set at the top of the picture and rendered it in black and white. Finally, the map was
integrated into the ROS navigation stack [32]. This was achieved by uploading the map on
the ROS node map_server [33]. This node loaded the yaml file linked to the map, which
contained additional information such as the map origin and scale. At the end of this
process, the map was successfully delivered to the robotic system.

Figure 2. Generation of time-dependent building maps and integration with the Robot Operating System (ROS).

As shown in Figure 1, the last objective of the BIM interface was the extraction and
modification of BIM object parameters. We focused on two specific BIM objects types
for the sake of providing examples of processing physical and nonphysical BIM entities.
Figure 3 shows the chain of elements, distinguished into IFC and relationship entities, that
connected the building floor to a specific element and its property sets. This figure focuses
on IfcSpaces [34] as representatives of nonphysical entities and on IfcEnergyConversionDe-
vices [35] as representatives of physical entities. In the open BIM definition, IfcSpaces are
three-dimensional volumes that define rooms that are actually or theoretically bounded.
Thus, they are meant to describe the functions of building rooms, such as, for instance,
meeting rooms, laboratories, and office spaces. The BIM interface extracted the geometric
description of these IfcSpaces linked to their function and room code. Other parameters
could concern, but were not limited to, storage spaces during the construction phase or
daily room occupation status during the building operation phase. IfcEnergyConversion-
Devices are an example of how MEP elements were represented in BIM. MEP elements
were chosen as they represent elements produced off-site that need to be installed during
the construction phase and regularly maintained during the operation phase. Thus, they
provide a comprehensive example of a BIM object characterized by specific information
parameters that are shared among stakeholders from different fields and that are used
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throughout the building lifecycle. They are characterized by the parameters of their off-site
producer, such as object code, serial number, and warranty information, and they are often
linked with external documents on the use and installation process. During construction,
they can be linked with parameters on scheduling, such as installation status and installa-
tion date. After these parameters were retrieved by the BIM interface, it was possible to
identify the line in the IFC project where the parameter content was stored to potentially
change its content. Upon importing the IFC into building software tools, the parameter
was listed with the updated information to provide feedback from the robotic system to
the construction stakeholders.

Figure 3. Extraction of property sets of physical and nonphysical building entities from the IFC file.

Algorithm 1 shows the detailed process for the creation of the BIM-based maps.
It can be divided into three main parts. The first part of the algorithm (lines 3–20) is
the parsing of the IFC file and the filtering of relevant objects, summarizing the process
described in Figure 2. Physical and nonphysical objects are distinguished through their
IfcProductRepresentation [36] flag. Geometrical filtering is dependent on the lowest z
value of the bounding boxes for physical objects; that is, whether their base is located
above the mobile platform (line 6). This enabled filtering of all objects that posed no risk
of collision, such as, for example, the thermal panels installed on the ceiling. In contrast,
geometrical filtering of nonphysical objects focuses on those located on the ground level
(line 14) to identify holes on the floor slab. Time-dependent filtering is based on the
retrieval of the two custom parameters through the process shown in Figure 3 (lines 7–9).
Again, a distinction is necessary between physical and nonphysical objects. If the object
is physical, it is considered an obstacle after its construction starting date. This enabled
the simulation of the construction of building elements, such as walls and columns. If the
object is nonphysical, it is considered an obstacle only during the time between its starting
and ending date. This enabled the establishment of no-go areas in the navigation maps
during the time a hole in the floor slab was present. The second part of the algorithm
(lines 21–25) is the creation of the section of the objects that are not filtered out. The section
plane is located at the height of the robotic sensor to ease indoor localization. Through
Open CASCADE it is possible to retrieve the edges at the intersection between the section
plane and the BIM objects. The edges are used to create the 2D surfaces representing the
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section. The resulting surfaces are finally shown in the 3D viewer embedded in Open
CASCADE. The third and final part of the algorithm (lines 26–29) is the plotting of the map.
The viewer’s camera settings are used to create the black and white binary grid map. The
view is fit to the camera window and subsequently scaled, based on the resolution ratio,
given in pixel per meter, and the bounding box encompassing the building. The resolution,
the map origin and the link to the map picture are written into a yaml file and transmitted
to the map server.

Algorithm 1: Generation of BIM-based gridmaps.

Input: BIM model (IFC), floor number F, resolution R

1. Initialize 3D viewer V
2. Import of the ifc file IFC
3. For IfcProduct objects O in IFC in floor F
4. Create Bounding Box B
5. Create section plane S located at robot’s sensor z plane
6. If lowest z value of B ≤ robot height H
7. For Attributes linked to O
8. Parse for attribute “Starting Date” Ds and “Ending Date” De
9. End For
10. If O has Representation
11. If current date > Ds
12. Store O in product list L
13. End If
14. ElseIf O has no Representation & highest z value of B is equal to ground level
15. If Ds < current date < De
16. Store O in product list L
17. End If
18. End If
19. End If
20. End for
21. For objects in L
22. Generate edges list E at the intersection with S
23. Generate close wires list W from E
24. Generate surfaces list Sf from W
25. End for
26. Visualize surfaces Sf in V in black
27. Set Open CASCADE camera parameters (top view, white background, fit all)
28. Compute image dimensions (pixel) through R
29. Creation of pgm image containing the camera view

4. Applications Considered for Validation

The BIM interface was validated in two main applications with an increasing level of
complexity. In both application scenarios, we interfaced the BIM with a Mobile Robotic
Platform (MRP) to support site logistics; that is, the MRP followed an operator while
carrying heavy loads, such as construction material or equipment. To achieve this, the
development focused on three main parts: (1) a follow-me function, (2) dynamic obstacle
detection, and (3) the extraction of data from the BIM file to ease navigation.

In the first application, the problem was simplified using the following assumptions:
(1) a BIM file exists which has parameters for scheduling and for navigation; (2) the
MRP knows its starting position in the given BIM map; and (3) a global tracking system is
provided to locate both the MRP and the operator at any given time. The second application
was aimed at relaxing these three assumptions. Due to this, only the use of sensors mounted
on the MRP was permitted. This resulted in a solution that did not rely on a fixed tracking
system and that was able to locate itself on the BIM map. This, however, required new
assumptions, mainly: (1) the operator is constantly in the Field of View (FOV) of the MRP’s
camera for the follow-me functionality; (2) the platform moves only forwards; and (3) the
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BIM project of the building is available and it precisely represents reality (i.e., there are
no discrepancies between drawn and built elements). The second application was also
employed to test the use of semantic information extracted from the BIM projects with the
aim of its better integration into the construction and maintenance processes.

The first application scenario was a robotic system to support site logistics during the
construction phase. The follow-me function on the MRP was developed using an indoor
tracking system to make use of its accurate measurements of the position and orientation
of the tracked bodies. The desired trajectory of the follow-me function was calculated by
tracking the position of both the MRP and the operator. These two objects could be tracked
thanks to spherical reflective markers that were fixed on the platform and on a construction
helmet, respectively. The relative positions were then translated into a world coordinate
system, which was defined by the tracking system. The implementation of dynamic
obstacle avoidance was realized through two planar LIDAR sensors. In the first application,
before the real system was tested, several simulations were performed. The setup consisted
of a PC running the ROS and Gazebo [37], an ROS-enabled software for robotic simulation.
The tracking system employed was produced by the company ART [38]. It consisted
of four tracking cameras, a computing unit in the form of a rack, and several marker
configurations. The MRP was a Clearpath Husky A200 [39]. This vehicle is specifically
designed for research activities in harsh outdoor environments. The user bay of the MRP
was equipped with a computing unit running the ROS and a network switch. The MRP
is equipped with two LIDAR sensors, respectively pointing forward and backward, each
with a 270◦ planar FOV. In addition, the MRP was equipped with an Inertial Measurement
Unit (IMU) that provided acceleration and angular velocity measurements in the Cartesian
coordinate system. The control PC was a Dell Latitude E6420 running Linux Ubuntu
16.04 and ROS Kinetic. This PC was needed to launch the overall control architecture, as
well as the bridge to the tracking system. The LIDAR sensors were connected over an
ethernet interface to the computer of the MRP. The MRP included a local network that
had a wireless connection to the external network. The external network consisted of a
router that connected the computing unit of the tracking system and the ROS-led PC. Since
the system included two computers running the ROS, a time synchronization of the two
systems was required. This synchronization was realized over the Network Time Protocol
deamon chrony [40], running both on the MRP and the control PC. An overview of the
different hardware components can be seen in the depiction of the setup shown in Figure 4.

The overall software architecture of the system is shown in Figure 5. Here, we
distinguished between nodes that we developed and those available as open-source nodes
or ROS packages. The PC on the MRP ran one of the master nodes named roscore. This node
interfaced the LIDAR scanner-generated messages (/laser) and a node that controlled the
MRP (husky_ctrl). A second roscore was run by the control PC. It enabled: (1) the art_bridge
node, which interfaced the data coming from the tracking system to tf-messages [41] in
the ROS, (2) a controller node for the follow-me algorithm, (3) the nav2d package [42],
visualized as the Operator node in Figure 5, that included nodes for various purposes (such
as mapping managing, trajectory planning, and obstacle avoidance), and (4) a node for
the map server, which fed the static map coming from the BIM-interface into the global
costmap.
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1 
 

 

Figure 4. Depiction of the laboratory setup for the experiment on the first application (Image adapted
from: live-style.it).

Figure 5. First software architecture based on the ROS.

The art_bridge node received the data from the ART tracking system over a User
Datagram Protocol interface and composed a tf message according to each coordinate frame
received. This use of tf-frames within the ROS enables their visualization (e.g., in Rviz [43]),
as well as the use of related coordinate system transformation tools. The tracking system
used a custom data format for each tracked coordinate frame. The follow_me_ctrl node
enabled the follow-me algorithm. The inputs of this node were the art_bridge tf messages,
while the output was a custom message type cmd, defined by the nav2d package. The node
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registered the current position of the vehicle and computed the vector to the target, which
was defined by the coordinate frame of the tracked helmet. Thanks to that, the desired turn
value and speed got calculated. When the MRP was close to the target, the system set its
velocity to 0 to stop the MRP in near proximity to the operator.

In the second application scenario, the same MRP and user bay equipment were
employed. The user bay contained a computing unit, a network switch, and an IMU, which
provided acceleration and angular velocity measurements in the Cartesian coordinate
system. Differently from before, only one LIDAR sensor with a 270◦ planar view was used.
The sensor was facing forward since one of the initial assumptions was that the MRP would
not move backwards. The sensor was mounted at a higher position to increase the ground
clearance. Additionally, an Intel RealSense D435 [44] was mounted on a frame to increase
the amount of input data. In particular, the data received from the camera were used to
identify the person the MRP was currently following and to distinguish them from other
people present in the MRP’s workspace. The data obtained by the camera were processed
by an Nvidia Jetson Xavier AGX Developer Kit [45], since the internal computing unit was
not suitable for computer vision tasks. The Jetson Xavier AGX was also placed in the user
bay. The two computing units and the LIDAR were connected through the network switch,
so that they worked in one local network. The RealSense was instead connected to the
Jetson Xavier AGX through a USB Type C cable. The internal computing unit of the MRP
was additionally connected via wireless, which allowed monitoring of the system from
another PC in the same network. Similarly to the previous setup, all computers had to be
time-synchronized to allow reliable time-stamped communication. An overview of the full
hardware setup for the second application is shown in Figure 6.

Figure 6. Picture of the hardware setup for the second application: a Husky A200 MRP equipped
with LIDAR, Intel RealSense D435, and Nvidia Jetson Xavier AGX.

This new configuration prompted a modification of both the follow-me control and
the integration of the BIM-generated map. The follow-me function had to be modified to
comply with the new uncertainty of tracking a person in an unknown environment. A new
software architecture was proposed, which was based on the three subcategories presented
in [46]: perception, estimation, and control. The architecture focused on the estimation
of a target’s position. Perception described the incoming data from the different sources.
Estimation concerned the analysis and interpretation of this input data. Finally, control
established how the MRP reacted to given circumstances. One major focus was to keep
the architecture modular since packages for person tracking can become outdated in a
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short time. This meant that all the algorithms used for specific tasks could be exchanged
independently, without having to modify the overall system.

The perception module made use of incoming data from both the LIDAR and the
RealSense camera. Its goal was to obtain information on people, in particular on the target
to follow. This was achieved using a leg detector that parsed the 2D laser data to identify
people and obtain their 3D pose. Additionally, YOLO v3 object detection [47] was used
to obtain both poses and pictures of people by tacking the bounding boxes that YOLO
generates. The target position estimation itself was divided into different submodules:
person tracking, feature extraction, and re-identification. The person tracking module
estimated the next target position by using the information from older measurements. The
feature extraction module described each person with a descriptive array. This descriptive
array was then used by the re-identification module to learn the features of the target
person online, so that it could distinguish them from other people when the person tracking
module could not exactly establish who the target was. Finally, the control module did not
substantially change from the follow-me function developed in the first setup.

5. Application Results

In the first application, the BIM integration was used to increase the robustness of
robotic navigation. In particular, the BIM-generated time-dependent obstacle map was
superimposed onto the map based on the LIDAR sensors from the MRP in order to avoid
specific areas in certain time frames. The creation of the map followed the procedure shown
in Figure 2. We conducted experiments on the first application in a laboratory environment
to test the effectiveness of the proposed method. A simple IFC file was used that contained
only the lab boundaries (i.e., walls and access door) and an element in the center of the
room representing an unsafe area on the ground. The section plane was placed at the
same height of the LIDAR sensor. The no-go area could, for instance, highlight where
undetectable elements had been posed on the ground and which should not be moved by
the MRP (e.g., electrical cables, measuring tapes). We considered other small obstacles that
can be commonly found on construction sites, such as debris or unlevelled floor parts, to be
negligible since we expected that the MRP would be able to drive over them, as the LIDAR
was positioned under the plane passing through the center of the wheels. As shown in
Figure 7, there was no distinction between the BIM-generated virtual obstacles and the
ones dynamically detected by the LIDARs. Therefore, the MRP adjusted its trajectory to
avoid both.

The second application was tested in a simulation. The generation of the BIM-based
map followed the process of the previous setup shown in Figure 2. The BIM model used
contained the entire floor on which the laboratory with the initial fixed tracking system
was located. Two time-dependent IfcWall objects enclosed a specific area in which the MRP
was not supposed to navigate. This could simulate either the construction of new walls
on-site or the establishment of a no-go area. Differently from the first experiment, in this
application the BIM grid map was used by the AMCL algorithm to automatically align
with the BIM reference system. Another difference with respect to the first application
was the integration of semantic data that were extracted from the BIM model through the
process shown in Figure 3. In order to quantify the benefit of the proposed approach, we
developed a simulation to access and compare the time that the robot needed to reach a
target location using the grid map extracted from the BIM with the time needed when
a classic static map of the environment was available. To fully exploit the BIM data, the
following scenario was examined. The MRP was again employed to assist with logistics
during maintenance of thermal panels located on the building floor ceiling. The building
rooms were semantically identified thanks to the BIM interface. The MRP was called to a
room where required equipment and material was located by the operator and then loaded.
Thereafter, it started following the operator to the intended maintenance point. After the
work was completed, the parameter of the IFC file was updated.
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Figure 7. Visualization in Rviz of the laboratory costmap without (a) and with (b) the overlapping of the BIM map. As
shown in Figure 4, the obstacle in the center of the room was strictly virtual and its position on the lab floor was marked
with tape.

As shown in Figure 8, the MRP was requested to navigate to the laboratory room
starting from a random valid pose. This was tested using the two maps described above.
In the first experiment (Figure 8a), the MRP reached the laboratory room following the
shortest path. The path did not consider the temporary obstacles in the environment since
the robot did not have any connection with the BIM model. In the second experiment
(Figure 8b), the MRP planned a different path since the original was blocked by the time-
dependent virtual obstacle. The BIM-generated map made it possible to plan the route
ahead. Without it, the MRP attempted the shortest path and was then blocked by the
temporary obstacle. As soon as it reached the obstacle, the system replanned the route to
reach the lab, passing through the obstacle-free eastern corridor. Thanks to the BIM map,
the system was thus able to plan the shortest obstacle-aware path for that time frame.

Figure 9 shows a comparison of the followed path in two scenarios. The dashed line
indicates the path followed when the temporary obstacle was not known a priori. In this
case, the MRP had to reach the temporary obstacle location before understanding that the
way was blocked. From there, it replanned its route. The continuous line represents the
path followed considering the presence of the temporary obstacle, as enabled by integration
with the BIM model. This represents an example in which the BIM integration strongly
aided navigation.

The experiment described was performed 4500 times for each map—for a total of
9000 times—in simulation. For every execution, a random starting pose of the robot was
automatically initialized. As the goal pose the robot was asked to reach the laboratory at
the top right corner. Figure 10 shows the distribution of the measured execution times
(including the planning and path following phases). The distribution clearly shows a higher
performance overall of the system with the a priori knowledge of BIM. The BIM-integrated
navigation execution times were between 50 and 125 s, depending on the path length.
Without provision of the BIM-based map, the same routes were completed with execution
times between 50 and 150 s due to the lack of prior knowledge about the temporary
obstacle. Thus, thanks to the BIM integration, the system generally performed the same
task in less time.
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Figure 8. Difference between BIM-based and regular global planning. The BIM environment, imported into Gazebo (a), was
rendered in two time-dependent maps: one (b) with the regular configuration and one (c) where the temporary obstacle
was modeled in the BIM file. The BIM-based map enabled the system to plan a longer but obstacle-free path to reach the
laboratory room. The planned path is visualized in green, the obstacles sensed by the LIDAR in red, and the occupied area
in yellow and black.

Figure 9. Comparison of the navigation paths with and without the BIM map. The route computed with the conventional
method (i.e., the shortest path between the start and the goal point) was replanned as soon as the temporary obstacle was
sensed by the LIDAR. A new route was computed, which overlapped with the one planned from the start in the BIM
integration mode thanks to the a priori construction scheduling knowledge.
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Figure 10. Comparison of the execution time with and without the BIM integration.

Figure 11 presents the time differences for the execution times of the navigation task
from the same starting location. In some of the experiments, the execution time was only
slightly inferior or even better without the use of the BIM map. This happened when the
random path did not intersect the temporary obstacle. In these cases, the BIM knowledge
did not improve the navigation time. In contrast, when the path passed through the area
where maintenance works were taking place, the BIM integration could save between 20
and 60 s of execution time. The distribution in Figure 11 is trimodal and it presents three
distinct peaks:

1. The first peak—the interval from −10 to +10 s—represents the cases in which the
path was not blocked by the maintenance works. In these cases, the position of the
starting pose intrinsically pushed the planner to plan a path that did not pass close
to the temporary obstacles and, therefore, the BIM integration did not improve the
navigation time.

2. The second peak—between +10 and +30 s—represents cases in which the starting
point was located on the upper side of the map. In these cases, the MRP could clearly
see during motion that there was an incoming obstacle blocking its path. Thanks to
this, the system was able to replan the navigation path more quickly. Moreover, due
to the typical Manhattan shape of the building room disposition, the length difference
between the two paths at the end of the navigation was minimal. In these cases, there
was a relevant time difference between the two compared scenarios.

3. The third peak—between 30 and 60 s—represents cases in which the BIM integration
was critical for path execution. This peak includes the example shown in Figure 9.
Here, the starting point was located in the lower side of the map. The MRP needed
to travel a significant part of the planned path to sense the obstacle and was then
forced to reverse its course. In contrast, the a priori knowledge of the maintenance
works made it possible to plan an obstacle-free path at the beginning of the execution.
This resulted in a major difference between the two execution times. Specifically, the
percentage of improvement reached up to 53%, with a mean value of 20%, in this
scenario.
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Figure 11. Time differences between the execution times.

6. Discussion

The interface was validated on two applications with an increasing level of complexity.
In the first application, a BIM-based grid map was used to mark no-go areas for the
navigation of an MRP. Here, a fixed tracking system was used to identify the position of
the user and the robot. In the second application, the person tracking required only the
sensors mounted on the MRP, relaxing the need for a fixed system. This was pursued to
adapt the system to the requirements of construction sites.

With regard to the operation phase, the method is also for use with more detailed data
based on the real-time information about a building. This is possible through the integration
of 6D BIM data, specifically the dimension connected to Facility Management (FM) arriving
from FM tools or sensors, which is a current theme in BIM-related research [48]. If, for
example, a BIM database with real time information on room occupancy existed, navigation
could be further improved to avoid certain rooms or open spaces occupied within a certain
timeframe. This would be achievable by parsing the IFC file for IfcSpaces and reading
a parameter on time, date, and status of room occupancy. If the room were declared
occupied in the IFC at the time of use, the map delivered to the robot would render
the room inaccessible. As mentioned previously, another implementation performed
was a simple bidirectional information exchange in the context of updating the status of
construction and maintaining operations. This made it possible to acquire a BIM database
in which information on operations was constantly updated in the IFC file during building
construction and maintenance phases. This was achieved with a simple exchange through
a specific parameter linked to the BIM object representing the thermal panel discussed in
Section 3. Specifically, we used the BIM interface to identify the line in the IFC structure
where the property sets of a specific panel were stored through the process shown Figure 3.
As shown in Figure 12, we added parameters to the IFC file to simulate information on
the panel installation status and date of installation. The lines in which these parameters
were stored could be retrieved through the BIM interface. This made it possible to rewrite
the content of these parameters with updated input that was supposedly linked to the
real-world installation progress. This simulated a return of information from the site to
the BIM’s specific object. Although this implementation is still in an early stage, it can
enable any software tool capable of importing IFCs to acquire updated information on
construction operations. Therefore, it can generally ease the interface between the robotic
systems and the construction supply chain, which is one of the main barriers for application
of construction robots [8].
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Figure 12. Return of information about the construction status to the IFC file.

7. Conclusions

The paper presents the development of an interface to extract data from a BIM model
and make it accessible to mobile robotic systems. Thanks to the modularity of ROS, it is
possible to easily adapt the work presented in this paper for the control of systems with
different configurations. As BIM is steadily becoming a standard in the construction supply
chain, an interface with the BIM model will play a major role in the future employment of
robotic systems in the construction industry.

A future development goal of our research is to exploit the data registered by the MRP
to automatically update the construction progress in the IFC with the method used above.
There has been great interest in BIM-enabled autonomous mobile scanning systems in the
construction field in recent years. Developments range from research projects [49–51] to
startups launched on the market [52–55]. These usually involve using algorithms for object
recognition and Scan-vs-BIM or Scan-to-BIM methods [49]. Our proposed interface may be
used to enable the collection of the data needed for monitoring while concretely supporting
the construction progress.

Moreover, as an extension of this research, our results can remarkably facilitate the
deployment of robotic systems for service operations in buildings. Robotic service systems
are highly desirable in the current COVID-19 pandemic to reduce human exposure to
risks. Among other duties, suitably designed robots can be employed for disinfection
tasks. Several robotic solutions for disinfection have been recently developed, for instance,
based on ultraviolet light [56–60], spraying of disinfectant [60,61], or a combination of
both [60]. The navigation of the existing robotic systems is enabled using ROS and sensor
data [57,58,61], embedded navigation and localization with deep learning for semantic
environment mapping [56], and the use of predefined maps of areas to disinfect [60].
Our results enable us to enhance perception and navigation capabilities of robotic systems
thanks to the bidirectional connection to IFC files, where metadata is updated to be readable
on authoring BIM software tools. With respect to other existing approaches considering
disinfection operations, such integration can facilitate the detection of crucial areas and
critical components that need treatment within large facilities. Use of prior knowledge of
the buildings from BIM for robot control is promising for the reduction of time-consuming
programming of robot motion plans or the need to perform seek-and-identify missions.
This outlook summarizes the fundamental idea of our currently active project named
BALTO. The project builds on our proposed BIM-integrated robotics approaches towards
realizing simple-to-deploy robotic systems for precise disinfection operations in buildings.

Finally, future work will also address the evaluation of the actual applicability of the
system in an outdoor construction site. This environment is characterized by many more
challenges for robotic systems. Among these, the most relevant are the unstructured space
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subject to weather conditions, the very rough tolerance of operation (, and the collaboration
with workers not used to robotic systems [62]. We believe future advances in our interface
will be helpful in overcoming these issues and contributing to bridging the gap between
robotic systems and construction sites.
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