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Abstract: Finding fast motion functions to get from an initial state (distance, velocity, acceleration)
to a final one has been of interest for decades. For a solution to be practically relevant, restrictions
on jerk, acceleration and velocity have to be taken into account. Such solutions use optimization
algorithms or try to directly construct a motion function allowing online trajectory generation. In
this contribution, we follow the latter strategy and present an approach which first deals with the
situation where initial and final accelerations are 0, and then relates the general case as much as
possible to this situation. This leads to a classification with just four major cases. A continuity
argument guarantees full coverage of all situations which is not the case or is not clear for other
available algorithms. We present several examples that show the variety of different situations and,
thus, the complexity of the task. We also describe an implementation in MATLAB® and results from
a huge number of test runs regarding accuracy and efficiency, thus demonstrating that the algorithm
is suitable for online trajectory generation.

Keywords: online trajectory generation; fast motion functions; seven segment profile; jerk restriction

1. Introduction

For achieving high throughput in handling machines, one of the most basic tasks
consists of quickly moving from one position to the next one, taking into account machine
restrictions regarding velocity, acceleration and jerk. This task is generally known as
“path and trajectory planning” for robots and other automatic machines [1,2], and beside
short execution times, other goals such as low energy consumption or low jerk have been
considered in [3]. In this contribution, we restrict ourselves to a one-dimensional case
where a certain distance ∆s is given and a motion function s(t) is to be found, such that
symmetric restrictions regarding velocity v(t), acceleration a(t) and jerk j(t) apply, i.e.,
−jmax ≤ j(t) ≤ jmax, −amax ≤ a(t) ≤ amax and −vmax ≤ v(t) ≤ vmax.

The limit to the jerk function implicitly requires the acceleration function to be contin-
uous, whereas the jerk function is allowed to have discontinuities. This task can be sub-
divided into subtasks regarding the given initial and final states (velocity and acceleration).
In the classification given in the respective guideline of the German Association of Engi-
neers [4], 16 combinations are stated depending on whether the initial state (v(t0), a(t0)) is
(0, 0) (called “rest”: R), ( 6= 0, 0) (G), (0, 6= 0) (U) or ( 6= 0, 6= 0) (B) (German abbreviations).
The most well-known task is RR (“rest-to-rest”), which, in robotics, is usually called “point-
to-point motion”. Kröger and Wahl [5] provide a different classification that also includes
the types of restrictions, but for our purposes, the VDI classification suffices.

The task of finding a fast (sometimes also called “optimal”) motion function has
been investigated for several decades. Roughly, one can distinguish between two kinds
of approaches: In the first approach, the task is formulated as a restricted optimization
problem and then well-known or self-developed algorithms from the fields of parameter
optimization or optimal control are used [6–10]. The class of functions considered are
often spline functions [6,7,10]. Lin et al. [8] use a specific class of piecewise-defined
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functions (“seven segments”) which are optimized. Such approaches have the advantage
that optimization can take into account further aspects by modifying the objective (goal)
function, e.g., energy consumption or deviation from a certain path, and they can also
handle variable restrictions on velocity, acceleration and jerk. On the other hand, they
are more time-consuming, such that they are mainly used for so-called off-line trajectory
construction taking place in advance as opposed to on-line trajectory planning where the
trajectory is changed “on the fly” during a controller cycle due to unforeseen events [11,12].

The second approach constructs the motion function directly using piecewise-defined
functions [1,13–22]. We first consider the most basic task, RR. Choosing a piecewise
constant jerk function leads to the so-called seven-segment profile (depicted in Figure 1)
with continuous acceleration but discontinuous jerk, which has been fully specified in [1]
(pp. 90–93) and can be found in industrial implementations [13] (Section 11.2). The
approach has been extended to a 15-segment profile with piecewise constant snap in [1]
(pp. 107–114), making the jerk function continuous. Considerable improvements have
been achieved by using higher-order polynomials or the sigmoid function [14,15]. They
provide fast motion functions with continuity in higher-order derivatives (or even all
derivatives [15]) and are, hence, very suitable for vibration reduction. Smoothing can also
be achieved by applying moving averages, as is shown in [16]. It is open whether and how
the use of such advanced functions can be extended to motion tasks other than RR. When
non-zero values are prescribed for initial and/or final velocities and/or acceleration, direct
construction seems to be much harder. Nearly all contributions known to the author use the
relatively simple seven-segment profile since this already leads to complex computations.
The subtask GG (zero acceleration at initial and final states) has been dealt with for seven-
segment profiles by [17] and [1], but both solutions are incomplete (for [17], cf. Kröger [10]
(Section 4.1.2)) or can be improved (in [1], absolute values of the occurring minimal and
maximal acceleration are assumed to be equal even if they are lower than the limit value, cf.
Example 3.11, p. 84). Using, also, the seven-segment profile, Haschke et al. [18] developed
an algorithm for the subtask BR (arbitrary initial state, rest), and Kröger and Wahl [5] and
Kröger [12] provided a solution for the subtask BG, going through all possible branches
in their decision tree. Their work shows the complexity of the task since they could
provide only a small portion of their decision trees in their publications (cf. [5] (p. 106) for
information on the number of nodes in these trees).

For the general task BB (arbitrary values for initial and final velocities and accelera-
tions), Ezair et al. [19] developed a recursive algorithm which even enables them to handle
a case where initial and final values as well as restrictions are given for an arbitrary number
of derivatives and higher orders of continuity can be achieved, but only for order 2 (i.e.,
continuous acceleration); the algorithm is fast enough for online trajectory generation.
In this case, it provides a seven-segment profile but not necessarily the fastest one. As
we will show, there might be several seven-segment profiles solving the problem with
quite different execution times. Broquère [20] and Broquère et al. [21] present a complex
algorithm for the seven-segment profile but, as observed by Kröger [12] (Section 4.1.2), their
work does not provide a solution in all cases, and we will give examples in Section 4 for
configurations which are easily overseen. Recently, Sidobre and Desormeaux [22] modified
the work in [20,21] and developed an algorithm where they claim to be able to reduce the
general situation to just four simple sub-cases, but there is no proof, and the claim is not
supported by extensive test runs with random values for all input data.

It is the goal of this contribution to provide an algorithm for constructing a seven-
segment profile for the general BB task which provenly covers all possible situations, has a
clear systematic structure with manageable complexity and is efficient enough for being
suitable for online trajectory generation. Note that our results have some overlap with
those of Sidobre and Desormeaux [22], but we apply a different approach by reducing the
general BB task as much as possible to the GG subtask using intermediate velocities. We
do not claim to provide an optimal solution (although this might be the case) since we do
not have mathematical proof for this. Therefore, we just label our solution as “fast” since,
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at any time, at least one restriction is exactly fulfilled, but we also show that this does not
imply global optimality.

The paper is structured as follows: In the next section, we present the seven-segment
motion profile with modifications and recall the “acceleration–velocity plane” introduced
by Broquère et al. [20] and Broquère [21]. Section 3 models the subtask GG where initial
and final velocities are 0 and, based on this, Section 4 deals with the general task. Section 5
discusses implementation issues and describes the results of the validation in MATLAB®.
Section 6 summarizes the results and discusses further work.

2. Basic Models, Quantities and Visualizations

The task we want to solve in this contribution consists of finding a fast motion function
when the following eight values are given:

jmax, amax, vmax (each > 0), such that −jmax ≤ j(t) ≤ jmax, −amax ≤ a(t) ≤ amax and
−vmax ≤ v(t) ≤ vmax; initial conditions: vA, aA; end conditions: vE, aE; distance: ∆s
(arbitrary real numbers).

Note that the distance is meant to be the difference between the final and the initial
value of the path scale (∆s = sE − sA), not the “travelled distance”, which might be much
longer when the motion goes back first and then forward again.

As in [20–22], we work with a so-called 7-segment motion profile, shown in Figure 1.
It is based on a piecewise constant jerk function together with initial conditions on velocity
and acceleration. In this profile, the motion function has, at most, 4 segments where the
jerk is ±jmax and, at most, 3 segments with zero jerk. In the classical RR situation (“rest-
to-rest”, see Figure 1a), the sign pattern of the jerk segments is (+,−,−,+), but we allow
arbitrary patterns such as (+,−,+,−) to occur in order to have full coverage of all possible
configurations as will be seen later. Formally stated, we have:

j(t) = ±jmax in [t0, t1], [t2, t3], [t4, t5] and [t6, t7]; j(t) = 0 in [t1, t2], [t3, t4] and [t5, t6].

Note that all of these intervals might have zero length. In the example displayed in
Figure 1a, the maximal values for velocity and acceleration are reached, which need not
always be the case. Figure 1b provides an example for the general situation where vA, aA,
vE and aE are non-zero. In that example, only amax is reached and two of the potentially
seven segments have length zero.
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Figure 1. Seven-segment profile (a) for RR; (b) for BB—two segments with length 0.

In order to visualize the change of velocity and acceleration in such seven-segment
motion functions, Broquère [20,21] introduced the velocity–acceleration plane, shown in
Figure 2. In this plane, motion functions are displayed mathematically as parametric curves
(v(t), a(t)), t ∈ [t0, t7]. When one assumes that j(t) = ±jmax or 0, then the curves “move”
along square root curves or horizontally (e.g., from a(t) = jmaxt and v(t) = 1

2 jmaxt2 one
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obtains a(v) =
√

2jmaxv). The square root curves can be of the kind a = ±
√

c1(v− c2)

(open to the right) or a = ±
√

c1(c2 − v) (open to the left) with constants c1, c2. We assume
that the horizontal motion only occurs when a(t) = ±amax since otherwise, faster motion
is possible. Motion along the square root curves is only possible clockwise since when
the acceleration is positive (resp. negative), the velocity must increase (resp. decrease).
The only points where a fast motion function might stay for a time of length >0 are the
points (±vmax,0). This is the case when there is a segment with zero jerk and acceleration.
Figure 2a shows a representation of the classical RR situation where vmax and amax are
reached. Note that only points within the area bounded by the left and right square root
curves and the horizontal lines at amax and −amax are admissible since only those points
can be reached from (0,0) and one can go back from there to (0,0) without violating the
restrictions (a larger opening of the square root curve corresponds to a higher value of jmax).
The velocity–acceleration plane has one particular “pitfall” where misunderstandings can
easily occur, so special care is called for: It does not show the distance ∆s, and this distance
heavily depends on where in the velocity–acceleration plane a curve is placed. The length
of the curve has nothing to do with the distance ∆s. The blue curve in Figure 2b depicts
the motion function of Figure 1b (with positive ∆s) in the velocity–acceleration plane. The
green curve has the same initial and end conditions but a negative value for ∆s.
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3. The Subtask GG: Zero Acceleration Initially and Finally

In this section, we consider a motion with zero acceleration initially and finally. Let vA
resp. vE be the initial resp. final velocity. We first determine the time T(vA, vE) necessary
to get from the initial to the final state by applying first maximal (minimal) jerk and then
minimal (maximal) jerk where in between the jerk might be zero and the acceleration
equal to ±amax. Examples are shown in Figure 3 in the velocity–acceleration plane. Type
1 depicts the situation where |vE − vA| is so small that maximal/minimal acceleration
is not reached, whereas in type 2, the latter is the case. When ±amax is just reached,
we have |vE − vA| = amax

2

jmax
, so type 1 occurs when |vE − vA| < amax

2

jmax
and type 2 when

|vE − vA| ≥ amax
2

jmax
.



Robotics 2021, 10, 25 5 of 26
Robotics 2021, 10, x FOR PEER REVIEW 5 of 27 
 

 

 
(a) 

 
(b) 

Figure 3. Switching between velocities: (a) positive acceleration; (b) negative acceleration. 

In type 1, the maximally reached acceleration is 𝑎௠ = 𝑗௠௔௫ ∙ ଶ், where T is the overall 

time. Hence, |𝑣ா − 𝑣஺| = 𝑎௠ ∙ ଶ் = 𝑗௠௔௫ ∙ ்మସ , and thus, 𝑇 = 2ට|௩ಶି௩ಲ|௝೘ೌೣ . The distance travelled 

in this case is 𝑆(𝑣஺, 𝑣ா) = ቀ௩ಲା௩ಶଶ ቁ ∙ 𝑇(𝑣஺, 𝑣ா) = (𝑣஺ + 𝑣ா) ∙ ට|௩ಶି௩ಲ|௝೘ೌೣ . In type 2, we have |𝑣ா − 𝑣஺| = ቀ𝑇 − ௔೘ೌೣ௝೘ೌೣ ቁ ∙ 𝑎௠௔௫, and hence, 𝑇 = |௩ಶି௩ಲ|௔೘ೌೣ + ௔೘ೌೣ௝೘ೌೣ . The distance travelled in this 

case is again 𝑆(𝑣஺, 𝑣ா) = ቀ௩ಲା௩ಶଶ ቁ ∙ 𝑇(𝑣஺, 𝑣ா) = ቀ௩ಲା௩ಶଶ ቁ ∙ ቀ|௩ಶି௩ಲ|௔೘ೌೣ + ௔೘ೌೣ௝೘ೌೣ ቁ. We summarize the 
result as follows: 

𝑇(𝑣஺, 𝑣ா) = ⎩⎪⎨
⎪⎧ 2ඨ|𝑣ா − 𝑣஺|𝑗௠௔௫  𝑖𝑓 |𝑣ா − 𝑣஺| < 𝑎௠௔௫ଶ𝑗௠௔௫|𝑣ா − 𝑣஺|𝑎௠௔௫ + 𝑎௠௔௫𝑗௠௔௫  𝑖𝑓 |𝑣ா − 𝑣஺| ≥ 𝑎௠௔௫ଶ𝑗௠௔௫

 (1)

𝑆(𝑣஺, 𝑣ா) = ⎩⎪⎨
⎪⎧ (𝑣஺ + 𝑣ா) ∙ ඨ|𝑣ா − 𝑣஺|𝑗௠௔௫  𝑖𝑓 |𝑣ா − 𝑣஺| < 𝑎௠௔௫ଶ𝑗௠௔௫൬𝑣஺ + 𝑣ா2 ൰ ∙ ቆ|𝑣ா − 𝑣஺|𝑎௠௔௫ + 𝑎௠௔௫𝑗௠௔௫ ቇ  𝑖𝑓 |𝑣ா − 𝑣஺| ≥ 𝑎௠௔௫ଶ𝑗௠௔௫

 (2)

Figure 3 shows examples for the GG situation, each of which works just for one spe-
cific given distance. For other distances, the curve goes from 𝑣஺ to an intermediate veloc-
ity 𝑣௠ and then further on to the final velocity 𝑣ா, as is shown in Figure 4 for three situ-
ations (𝑣௠ଵ > 𝑣ா, 𝑣௠ଶ < 𝑣஺, 𝑣஺ ≤ 𝑣௠ଷ ≤ 𝑣ா), where the third situation is not the fastest as 
we will see. 

Figure 3. Switching between velocities: (a) positive acceleration; (b) negative acceleration.

In type 1, the maximally reached acceleration is am = jmax· T2 , where T is the overall

time. Hence, |vE − vA| = am· T2 = jmax· T
2

4 , and thus, T = 2
√
|vE−vA |

jmax
. The distance travelled

in this case is S(vA, vE) =
(

vA+vE
2

)
·T(vA, vE) = (vA + vE)·

√
|vE−vA |

jmax
. In type 2, we have

|vE − vA| =
(

T − amax
jmax

)
·amax, and hence, T = |vE−vA |

amax
+ amax

jmax
. The distance travelled in this

case is again S(vA, vE) =
(

vA+vE
2

)
·T(vA, vE) =

(
vA+vE

2

)
·
(
|vE−vA |

amax
+ amax

jmax

)
. We summarize

the result as follows:

T(vA, vE) =


2
√
|vE−vA |

jmax
i f |vE − vA| < amax

2

jmax

|vE−vA |
amax

+ amax
jmax

i f |vE − vA| ≥ amax
2

jmax

(1)

S(vA, vE) =


(vA + vE)·

√
|vE−vA |

jmax
i f |vE − vA| < amax

2

jmax(
vA+vE

2

)
·
(
|vE−vA |

amax
+ amax

jmax

)
i f |vE − vA| ≥ amax

2

jmax

(2)

Figure 3 shows examples for the GG situation, each of which works just for one specific
given distance. For other distances, the curve goes from vA to an intermediate velocity
vm and then further on to the final velocity vE, as is shown in Figure 4 for three situations
(vm1 > vE, vm2 < vA, vA ≤ vm3 ≤ vE), where the third situation is not the fastest as we
will see.
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From (1) and (2), we can easily compute the overall time and distance when going via
an intermediate velocity vm:

T(vA, vE, vm) = T(vA, vm) + T(vm, vE) , S(vA, vE, vm) = S(vA, vm) + S(vm, vE) (3)

In order to visualize how the distance changes when vA and vE are fixed and vm runs
from vmin to vmax, one can plot S(vA, vE, vm) over vm, as shown in Figure 5a. For seeing
in one plot how T(vA, vE, vm) varies simultaneously, a parametric curve (S(vA, vE, vm),
T(vA, vE, vm), t ∈ [−vmax , vmax]) is adequate, as shown in Figure 5b. Both parts provide
interesting information which will also be of use for the general situation (Section 4). If
vm = vmax (resp. vm = vmin) and remains constant for a certain time interval, the distance
increases (resp. decreases) linearly with time. Therefore, in Figure 5b, the graph could be
extended linearly to the left and to the right. We further observe that the distance varies
continuously with vm, which follows mathematically from (2) and (3); therefore, for any
given distance, a solution can be found.

Robotics 2021, 10, x FOR PEER REVIEW 6 of 27 
 

 

 
(a) 

 
(b) 

Figure 4. Examples for getting from 𝑣஺ to 𝑣ா: (a) velocity–acceleration plane; (b) velocity over time. 

From (1) and (2), we can easily compute the overall time and distance when going 
via an intermediate velocity 𝑣௠: 𝑇(𝑣஺, 𝑣ா, 𝑣௠) = 𝑇(𝑣஺, 𝑣௠) + 𝑇(𝑣௠, 𝑣ா) , 𝑆(𝑣஺, 𝑣ா, 𝑣௠) = 𝑆(𝑣஺, 𝑣௠) + 𝑆(𝑣௠, 𝑣ா) (3)

In order to visualize how the distance changes when 𝑣஺ and 𝑣ா are fixed and 𝑣௠ 
runs from 𝑣௠௜௡ to 𝑣௠௔௫, one can plot 𝑆(𝑣஺, 𝑣ா, 𝑣௠) over 𝑣௠, as shown in Figure 5a. For 
seeing in one plot how 𝑇(𝑣஺, 𝑣ா, 𝑣௠)  varies simultaneously, a parametric curve (𝑆(𝑣஺, 𝑣ா, 𝑣௠), 𝑇(𝑣஺, 𝑣ா, 𝑣௠), 𝑡 ∈ [−𝑣௠௔௫ , 𝑣௠௔௫]) is adequate, as shown in Figure 5b. Both 
parts provide interesting information which will also be of use for the general situation 
(Section 4). If 𝑣௠ = 𝑣௠௔௫ (resp. 𝑣௠ = 𝑣௠௜௡) and remains constant for a certain time inter-
val, the distance increases (resp. decreases) linearly with time. Therefore, in Figure 5b, the 
graph could be extended linearly to the left and to the right. We further observe that the 
distance varies continuously with 𝑣௠, which follows mathematically from (2), (3); there-
fore, for any given distance, a solution can be found. 

(a) (b) 

Figure 5. For 𝑣஺ > 0 and 𝑣ா > 0: (a) S over 𝑣௠; (b) T over S. 

The behavior shown in Figure 5a might be astonishing at first sight; the distance in-
creases first when 𝑣௠ is below 𝑣஺ before decreasing monotonously. We explain this us-
ing Figure 4b. Here, there are two controversial effects: decreasing 𝑣௠ makes the velocity 
curve lie “lower”, leading to a smaller integral (less distance); on the other hand, the time 
needed to get to 𝑣ா becomes larger, leading to a longer integration interval (larger dis-
tance). Obviously, in the long run, the first effect becomes dominant, but in the short term, 
the second one is dominant, leading to an increase in distance. This gives, already, an 

Figure 5. For vA > 0 and vE > 0: (a) S over vm; (b) T over S.

The behavior shown in Figure 5a might be astonishing at first sight; the distance
increases first when vm is below vA before decreasing monotonously. We explain this using
Figure 4b. Here, there are two controversial effects: decreasing vm makes the velocity
curve lie “lower”, leading to a smaller integral (less distance); on the other hand, the
time needed to get to vE becomes larger, leading to a longer integration interval (larger
distance). Obviously, in the long run, the first effect becomes dominant, but in the short
term, the second one is dominant, leading to an increase in distance. This gives, already, an
impression of the complexity of the situation, which is easily overlooked, leading to false
assumptions.

Figure 5a shows that depending on the given distance, there are up to five solutions to
the motion problem using an intermediate velocity vm. Five solutions occur when the given
distance is slightly above S(vA, vE). This also shows that the fact that, at any time, one of
the restrictions is taken does not guarantee optimality. Figure 5b shows which solution
is the fastest one; for a given distance, the lowest intersection of the vertical line at that
distance with the curve provides the best solution. One can also observe that the best time
is discontinuous over the given distance. In [22], Sidobre and Desormeaux also provide
examples for this phenomenon. They also use a parametric curve of distance over time
needed, but they use a different parameter (time).

For finding the best solution within the class of seven-segment functions, one has
to solve the equation S(vA, vE, vm) = ∆s. We will explain how to do this efficiently in
Section 5.



Robotics 2021, 10, 25 7 of 26

4. The General Task: Arbitrary Velocity and Acceleration, Initially and Finally

In this section, we consider the general case where initial and final velocities and
accelerations can be arbitrary. We start with introducing some auxiliary functions that
will be helpful in the later exposition. For an arbitrary admissible point (v0, a0) in the
velocity–acceleration plane, vb(v0, a0) is defined to be the velocity for which the following
holds: If you start at the point (vb(v0, a0), 0) and apply minimum (resp. maximum) jerk if
a0 < 0 (resp. a0 ≥ 0), then you reach (v0, a0). The index b here stands for “backward”, i.e.,
going backward from (v0, a0). Figure 6 illustrates the definitions. Analogously, v f (v0, a0)
is defined to be the velocity for which the following holds: If you start at the point (v0, a0)
and apply maximum (resp. minimum) jerk if a0 < 0 (resp. a0 ≥ 0), then you reach
(v f (v0, a0), 0). The index f here stands for “forward”. An easy computation yields:

vb(v, a) = v− sgn(a)·1
2

a2

jmax
, v f (v, a) = v + sgn(a)·1

2
a2

jmax
. (4)

Moreover, let Sb(v0, a0) be the additional distance when one goes from (vb(v0, a0), 0)
to (v0, a0), applying minimum (resp. maximum) jerk if a0 < 0 (resp. a0 ≥ 0). Analo-
gously, S f (v0, a0) is defined to be the distance when one goes from (v0, a0) to (v f (v0, a0), 0),
applying maximum (resp. minimum) jerk if a0 < 0 (resp. a0 ≥ 0). Again, an easy
computation shows:

Sb(v, a) = vb(v, a)
|a|

jmax
+

1
6
· a3

j2max
, S f (v, a) = v f (v, a)

|a|
jmax
− 1

6
· a3

j2max
(5)

Finally, let Ta(a0) be the time needed to go from a point (v, a0) (v arbitrary) to v f (v, a0)
(or, equivalently, to go from vb(v, a0) to (v, a0)), applying maximum resp. minimum jerk.
We have:

Ta(a) =
|a|

jmax
(6)
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If one changes the positive direction of the distance, then the original problem is
transformed into a problem with data −∆s, −vA, −aA, −vE and −aE which has the same
solution regarding time intervals, only the sign factors for jmax have to be changed (see
Broquère, 2011). Therefore, we can restrict ourselves to two main situations: aA ≤ 0 and
aE ≥ 0, or aA ≥ 0 and aE ≥ 0. The other combinations can be transformed into the former
ones by changing the positive direction of distance. These two main cases are further split
up into four sub-cases which depend additionally on vb(vA, aA), vb(vE, aE), v f (vA, aA) and
v f (vE, aE); see Table 1.
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Table 1. Basic cases in the BB situation.

Case Conditions on aA, aE Conditions on vb,vf

Case A aA ≤ 0 and aE ≥ 0 v f (vA, aA) ≤ vb(vE, aE)
Case B aA ≤ 0 and aE ≥ 0 v f (vA, aA) > vb(vE, aE)
Case C aA ≥ 0 and aE ≥ 0 vb(vA, aA) ≤ vb(vE, aE) and v f (vA, aA) ≤ v f (vE, aE)
Case D aA ≥ 0 and aE ≥ 0 vb(vA, aA) > vb(vE, aE) or v f (vA, aA) > v f (vE, aE)

From Table 1, it is logically clear that this is a complete coverage of all cases. We will
see that only in case C do we need a further division into two sub-cases. In the sequel, we
use the following abbreviations:

• A = (vA, aA), E = (vE, aE);
• vbA = vb(vA, aA), v f A = v f (vA, aA), vbE = vb(vE, aE), v f E = v f (vE, aE);
• SbA = Sb(vA, aA), S f A = S f (vA, aA), SbE = Sb(vE, aE), S f E = S f (vE, aE);
• TA = Ta(aA), TE = Ta(aE).

Our general procedure in the following treatment of the cases is based on the principle
that we try to relate the general case BB as much as possible to the special case GG by either
embedding the general case in a GG situation or extending a GG situation to the general
case BB. We discuss case A in detail, elaborating on the lines of argumentation, and will
then treat cases B–D shorter.

Case A: aA ≤ 0 and aE ≥ 0, v f A ≤ vbE

In this case, E lies “right of” A in the sense that E lies on a square root curve (open to
the right) right of the square root curve (open to the right) on which the point A lies or the
curves are identical.

For a certain subset of all distances ∆s, we can embed the task in a GG task for going
from (vbA, 0) to (v f E, 0) via a vm ≤ v f A as is shown in Figure 7a. Making vm smaller and
inserting a phase with constant velocity vmin enables us to realize arbitrarily small values
for ∆s (mathematically spoken: ∆s goes to −∞ when the length of the phase with constant
vmin goes to ∞). We get the corresponding distances by computing:

S(vm) = S(vbA, v f E, vm)− SbA − S f E for vm ≤ v f A (Part I) (7)

Note that this holds for vmin ≤ vm, but we will disregard, first, this restriction on vm
and allow vm to be arbitrarily small and correct that later.

We can similarly cover arbitrarily large distances by extending the GG task going from
(v f A, 0) to (vbE, 0) via a vm ≥ vbE, as is shown in Figure 7b. When vm reaches vmax, one can
insert a phase with constant velocity vmax. Again, we will disregard this restriction on vm
first and correct that later. We obtain the corresponding distances by computing:

S(vm) = S(v f A, vbE, vm) + S f A + SbE for vm ≥ vbE (Part III). (8)

As we will see in examples, there might be a gap between the interval of distances
covered in Part I and that covered in Part III. Distances in this gap can be achieved in
two ways.

We again extend the GG task going from (v f A, 0) to (vbE, 0) via a vm with vbE < vm <
v f E, where we let vm run from right to left (!), i.e., from v f E to vbE, and then “cut off” the
part going from vbE to vm and back to vbE (shown in Figure 7c as a dashed pink curve).
This continuously connects the distance covered in Part I when using vm = v f A with the
distance covered in Part III when using vm = vbE. Therefore, we have a full coverage of all
possible real distances. We obtain the corresponding distances by computing:

S(vm) = S(v f A, vbE, vm) + S f A + SbE − 2·S(vbE, vm) for vbE < vm < v f E (Part IIa). (9)
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Another way to close the gap is a bit more complicated and is shown in Figure 7d.
The first part up to point C is the same as in Part IIa, but then we have the sequence −jmax,
jmax, −jmax instead of jmax, −jmax, jmax in Part IIa. We can embed part of the curve in a GG
task going from (vbE, 0) to (v f E, 0) via a vm with v f A < vm < vbE, as is shown in Figure 7d.

Actually, v f A can be replaced by max
{

v f A, vbE −
a2

max
jmax

}
since at vbE −

a2
max

jmax
, the minimal

acceleration −amax is reached and going on to the left with vm does not further change the
distance ∆s since the parts added are cut off again later, as can be seen by drawing a figure
which is omitted here. We can compute the corresponding distances in the following way:

S(vm) = S(vbE, v f E, vm) + S(v f A, vbE) + S f A − S f E − 2·S(vbE, vm) for

max
{

v f A, vbE −
a2

max
jmax

}
< vm < vbE (Part IIb). (10)

In our experiments (see the examples below), we have encountered a situation where
a solution using Part IIb provides a shorter time than a solution using Part IIa, but then
the distances were already covered by Part I or III, which provided even shorter times.
However, since we have no mathematical proof that this is always the case, we simply
include both possibilities. As we will see in the implementation section, this adds only the
effort of finding the roots of three additional polynomials. Note that in case of v f A = vbE
or aE = 0, parts IIa/b do not occur.

For each of the parts, the times needed can be easily computed:

T(vm) = T(vbA, v f E, vm)− TA − TE for vm ≤ v f A (Part I). (11)

T(vm) = T(v f A, vbE, vm) + TA + TE for vm ≥ vbE (Part III). (12)

T(vm) = T(v f A, vbE, vm) + TA + TE − 2·T(vbE, vm) for vbE < vm < v f E (Part IIa). (13)

T(vm) = T(vbE, v f E, vm) + T(v f A, vbE) + TA − TE − 2·T(vbE, vm) for

max
{

v f A, vbE −
a2

max
jmax

}
< vm < vbE (Part IIb) (14)

As in the GG task, we can illustrate different situations by plotting (S(vm), T(vm)) as a
parametric curve for parts I–III. We present a few examples showing interesting situations
and behavior. In the examples, all distances have the unit m, velocities m/s, acceleration
m/s2 and jerk m/s3. Units are omitted for the sake of brevity. As restrictions, we have
chosen values similar as the ones used in [1]: jmax = 30, amax = 10, vmax = 20.

Example 1: No gap between Parts I and III, but Parts IIa or IIb are better.
Initial and final conditions: (vA, aA) = (10,−5), (vE, aE) = (18, 9). Note that the

colors used in the following figures have nothing to do with the colors used in Figure 7.
The corresponding curve is shown in Figure 8a, where the green part (Part I) goes on to
the left, covering arbitrarily small (negative) distances, and the black part (Part III) goes
on to the right, covering arbitrarily large distances. One can see that Parts I and III cover
all distances but Parts IIa and IIb provide solutions needing less time in the interval of
distances where they are valid. There is no huge difference between Parts IIa and IIb, but
when zooming in (Figure 8b), one can see that, in this example, the red part (Part IIa) is
better. Figure 8 also shows that for a given distance, there might be several solutions in
different parts or in the same part, as we have already recognized in the GG situation in
Section 3. For example, for the distance ∆s = 18, there are two solutions in Part I and one
solution each in Parts IIa and IIb.
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Example 2: No gap between Parts I and III, Parts IIa and IIb are not needed.
Initial and final conditions: (vA, aA) = (−18,−5), (vE, aE) = (−10, 9). We use the

same accelerations as in Example 1 but shift the velocities to the left by 28. In this way,
variations are also produced in [22].

The corresponding curve is shown in Figure 9a. Again, the green part (Part I) goes
on to the left, covering arbitrarily small (negative) distances, and the black part (Part III)
goes on to the right, covering arbitrarily large distances. Parts I and III cover all distances
and one of them provides the best solution, so Parts IIa and IIb are not needed. There is no
huge difference between Parts IIa and IIb, but when zooming in (Figure 9b), one can see
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that, in this example, the blue part (Part IIb) is better. Part IIb provides a solution where
the jerk changes sign three times (see Figure 7d), whereas in the solution of Part IIa, the
jerk changes sign only two times. Therefore, the conjecture that solutions with less changes
are better, which might look plausible at first sight, is wrong. What might be true is that
the best solution (here from Part I) always has the lowest number of sign changes, but we
do not have mathematical proof for this conjecture.
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Example 3: Gap between Parts I and III, Parts IIa or IIb are needed.
Initial and final conditions: (vA, aA) = (−1.5,−5), (vE, aE) = (6.5, 9). We use the

same accelerations as in Example 1 but shift the velocities by −11.5. For Parts I and III, the
remarks given in Examples 1 and 2 are still valid; see Figure 10. However, here, in both
parts, the distance changes monotonously. This example shows that without using the
constructions of Parts IIa or IIb, a certain range of distances (here, roughly from 1.4 to 3)
might not be covered. In the example, Part IIa provides the better solution and we have
not encountered an example of case A where Part IIb is best, but we do not have proof that
this is always so.
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Example 4: Best solution is in Part IIa where the curve is “bulging”.
Initial and final conditions: (vA, aA) = (−7.2,−5), (vE, aE) = (0.8, 9). We use the

same accelerations as in Example 1 but shift the velocities to the left by −17.2.
In this example, zooming shows that the red Part IIa curve “bulges” to the right

(Figure 11b) (cf. similar examples in [22]). Therefore, there is a small interval of distances to
the right by about −5.34 where Part IIa provides the best solution, ending at the S-value of
the utmost right point of the red curve. This example demonstrates that for finding the best
solution, it is, in general, not sufficient to just consider the interval of distances between the
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“end points” of the parts. If one considers the interval of S-values between the end points
of the red curve, then on that interval, the Part I curve (green) is always better. Therefore,
an approach working with “critical distances” as in [20] has its limits.
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The examples given above show that a visualization using a parametric (S, T) curve
allows to easily create a variety of examples for finding counter-examples to conjectures one
might have in mind. This has also been presented in [22] using a different parameterization.
Using vm allows us to easily recognize in which part the best solution occurs. Moreover,
the parameter vm has a direct meaning in the velocity–acceleration plane. One might
be inclined to look for further patterns to see in advance which part provides the best
solution, but even this small set of examples shows the variability. We will make no further
distinctions but just compute the solution(s) provided by each part and take the best one
(this approach is also used in [22]). We consider this as a sound compromise between
complexity (comprehensibility) on the one hand and computational effort on the other
hand. We find the best solution within the solutions provided by Parts I–III by inserting
the given distance in Equations (7)–(10) and computing vm. As we will see in the next
section, this requires finding the roots of polynomials. For each solution candidate, it is
checked whether vm is admissible (real and within the allowed range). For the admissible
ones, one computes the times and chooses the solution with lowest time. If vm < vmin
or vm > vmax, one sets vm = vmin resp. vm = vmax and inserts a phase with constant
(minimum or maximum) velocity.

Case B: aA ≤ 0 and aE ≥ 0, v f A > vbE

In this case, E lies “left of” A in the sense that E lies on a square root curve (open to
the right) left of the square root curve (open to the right) that the point A lies on. We can
proceed in the same way as we did in case A and have, again, four parts, as shown in
Figure 12.
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Again, with Part I resp. III, we can realize arbitrarily small resp. large distances going
via intermediate velocities vm. Arguing as in case A, we obtain for Parts I and III the same
formulae as in (7) and (8) resp. (11) and (12), but the ranges for vm are different for Part I
vm ≤ vbE and for Part III vm ≥ v f A. The formulae for Parts IIa and IIb are different and
provided below.

S(vm) = S(v f A, vbE, vm) + S f A + SbE − 2·S
(

v f A, vm

)
for v f A < vm < vbA (Part IIa). (15)

S(vm) = S(v f A, vbE, vm) + S f A + SbE − 2·S
(

v f A, vm

)
for v f A < vm < vbA (Part IIa) for

max
{

vbE, v f A −
a2

max
jmax

}
< vm < v f A (Part IIb). (16)

T(vm) = T(v f A, vbE, vm) + TA + TE − 2·T
(

v f A, vm

)
for v f A < vm < vbA (Part IIa). (17)

T(vm) = T(vbA, v f A, vm) + T(v f A, vbE) + TE − TA − 2·T
(

v f A, vm

)
for

max
{

vbE, v f A −
a2

max
jmax

}
< vm < v f A (Part IIb). (18)

We omit examples for this case since they provide no new insights. The procedure for
computing the best solution follows the same lines as the one described in case A.

Case C: aA ≥ 0 and aE ≥ 0, vbA ≤ vbE and v f A ≤ v f E

In this case, E lies “right of” A in the sense that E lies in the area right of or on the
square root curve through A open to the right, and right of or on the square root curve
through A open to the left (Figure 13).
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Figure 13. Positioning of A and E in cases C and D.

We split this case up into two sub-cases (vbE ≤ v f A and vbE > v f A) that need partially
different treatments. The sub-cases are shown in Figure 14. In the first sub-case (left), we
have a closed curved quadrilateral ABED, whereas in the second one (right), we have a
curved pentagon, ABCED. Note that in the first sub-case, there might also occur a curved
pentagon when amax is reached, but this does not require a further distinction.
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Sub-Case Ca: vbE ≤ v f A

As in case A, we split up the construction of solutions for all distances into different
parts, as shown in Figure 15. With Part I resp. III, we can realize arbitrarily small resp. large
distances going via intermediate velocities vm ≤ vbE resp. vm ≥ v f A. If equality holds,
then Part I and Part III provide the same point and, hence, the same distance ∆s. Therefore,
Parts I and III already cover all distances but do not necessarily provide the shortest time.
Some distances can be realized better by going directly within the curved quadrilateral
ABED using the sequence jmax, −jmax, jmax in Part IIa or the sequence −jmax, jmax, −jmax in
Part IIb (see Figure 15c,d). We will give an example for this situation below.
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Figure 15. Case Ca. (a) Part I; (b) Part III; (c) Part IIa; (d) Part IIb.

Arguing as in case A, we obtain the following formulae for distances and times:

S(vm) = S(v f A, v f E, vm) + S f A − S f E for vm ≤ vbE (Part I). (19)

S(vm) = S(vbA, vbE, vm)− SbA + SbE for vm ≥ v f A (Part III). (20)

S(vm) = S(vbA, vbE, vm)− SbA + SbE − 2·S(vbE, vm) for v f A < vm < v f E (Part IIa). (21)

S(vm) = S(v f A, v f E, vm) + S f A − S f E − 2·S
(

v f A, vm

)
for vbA < vm < vbE (Part IIb). (22)

T(vm) = T(v f A, v f E, vm) + TA − TE for vm ≤ vbE (Part I). (23)

T(vm) = T(vbA, vbE, vm)− TA + TE for vm ≥ v f A (Part III). (24)

T(vm) = T(vbA, vbE, vm)− TA + TE − 2·T(vbE, vm) for v f A < vm < v f E (Part IIa) (25)

T(vm) = T(v f A, v f E, vm) + TA − TE − 2·T
(

v f A, vm

)
for vbA < vm < vbE (Part IIb). (26)

We provide some examples that give an insight into the variability of situations.
We use the same values for the restrictions as in the examples given for Case A, i.e.,
jmax = 30, amax = 10, vmax = 20. We have, again, one set of initial and final conditions
and shift this in the v-direction. The values used for producing Figure 16 are: (vA, aA) =
(−3.3, 8), (vE, aE) = (−0.3, 11.8).
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Figure 16. (a) Example 1; (b) example 2; (c): example 3; (d) example 3 with zoom.

Example 1: Shift = 0, i.e., we use exactly the data given above.
Example 2: Shift = 4, i.e., we use: (vA, aA) = (0.7, 8), (vE, aE) = (3.7, 11.8).
We recognize that the parts are no longer connected, but there are two “connectivity

components”, Parts I/III and IIa/b. It can also be seen that Parts I and III provide solutions
for all distances, but for the distances for which Parts IIa and IIb are applicable, they
provide shorter times. In example 1, Part IIb is better than Part IIa, and in example 2, it is
the other way around.

Example 3: Shift = 2.2, i.e., we use: (vA, aA) = (−1.1, 8), (vE, aE) = (1.9, 11.8).
In this example, we also recognize the disconnectedness. In addition, we see that both

the red curve (Part IIa) and the blue curve (Part IIb) “bulge”. Part IIb provides the shortest
solution within a range of distances from about 0.068 to about 0.074, whereas for Part IIa,
this holds for a range from about 0.074 to about 0.116. This again shows that an approach
considering different cases only between the distances reached at the boundary points of
the parts cannot always provide the best solution.

Sub-Case Cb: vbE > v f A

This case is depicted in Figure 14b. Regarding Part I resp. III, the same holds as was
stated for sub-case Ca, i.e., we can realize arbitrarily small resp. large distances going via
intermediate velocities, but here, vm ≤ v f A resp. vm ≥ vbE (see Figure 17a,b). Moreover, if
equality holds, then Part I and Part III do not provide the same point and, hence, the same
distance ∆s.
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In order to guarantee the continuity of covered distances, we again include two
other parts called Part IIa and IIb, using the sequence jmax, −jmax, jmax in Part IIa and the
sequence −jmax, jmax, −jmax in Part IIb (see Figure 17c,d). In Part IIa, the motion curve
starting at A moves up in the direction of D beyond the point F, then moves down to a
point on the curve CE and then up to E (see Figure 17c). This is much the same as shown
in Figure 15c for the previous sub-case Ca, but note that now, the motion curve must go
beyond F (otherwise one would need a sequence with three changes in jerk instead of two).
In Part IIb, the motion curve starting at A moves down in the direction of B, then moves
up to a point on the curve DE (which lies above the point G) and then down to E (see
Figure 17d). We checked that all possible distances are covered by using continuity: If in
Part I we choose vm = v f A, then we obtain the motion curve ABGE. This is also the motion
curve one obtains in Part IIb when one goes down to the point B. At the other “end” of
Part IIb, one obtains the motion curve ADE (i.e., going down by 0). This is also the motion
curve one obtains in Part IIa when one goes up from A to D. At the other “end” of Part IIa,
one obtains the motion curve AFCE. We also obtains this motion curve when we choose
vm = vbE in Part III. Therefore, Parts IIa and b fulfill the purpose to continuously connect
Parts I and III. As we will see in the examples, in this sub-case, the special situation might
occur that we need both Parts IIa and IIb to have a full coverage of all distances, whereas
in the other cases considered so far, only one of the parts was needed for this purpose.

The formulae for distances and time are the same as in the previous sub-case (i.e., Equa-
tions (19)–(26)) but the ranges for vm are different. Therefore, we just provide these ranges:

vm ≤ v f A (Part I), vm ≥ vbE (Part III) , vbE < vm < v f E (Part IIa), vbA < vm < v f A (Part IIb). (27)

We provide some examples that give an insight into the variability of situations and
the specifics of this sub-case. We use the same values for the restrictions as in the examples
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given for case A, i.e., jmax = 30, amax = 10, vmax = 20. We have, again, one set of initial and
final conditions and shift this in the v-direction: (vA, aA) = (0.5, 4.9), (vE, aE) = (2.76, 7.9).

Example 1: Shift = 0, i.e., we use exactly the data given above (Figure 18a).
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In this example, there is a gap between Parts I and III. Only Part IIa is needed to fill
the gap. It also provides the shortest time where it is valid. One can see how one goes
continuously from Part I via IIb and IIa to III as described above.

Example 2: Shift = −1.3, i.e., we use: (vA, aA) = (−0.8, 4.9), (vE, aE) = (1.46, 7.9)
(Figure 18b).

Here, both parts IIa and IIb are needed to cover all possible distances. For a certain
distance, there is only one part that covers that distance and is, hence, automatically the
best one.

Example 3: Shift =−1.05, i.e., we use: (vA, aA) = (−0.55, 4.9), (vE, aE) = (1.71, 7.9)
(Figure 18c).

This example looks, at first, similar to example 2, but when one zooms into the
interesting area, one can recognize that for some distances covered by Part IIb (blue), there
is also a coverage by Part IIa with a shorter time. Moreover, for some distances (e.g., 0.132),
there are even three solutions within Part IIb, one of them having the shortest time. This
again shows the variability of situations.

Case D: aA ≥ 0 and aE ≥ 0, vbA > vbE or v f A > v f E

This case is illustrated in Figure 19. Case D is the easiest one since it can be completely
reduced to the GG situation by a combination of embedding and extension and we just
need Parts I and III. Figure 19 shows situations when both of the two velocity conditions
are fulfilled, but it is easy to check that nothing changes when only one of them holds.
Consider the GG task for going from (v f A, 0) to (v f E, 0) via a vmI ≤ vbE. If one extends
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this by going from A to (v f A, 0) and cuts off the part going from E to (v f E, 0), one obtains
a motion curve from A to E with a certain distance. Making vmI smaller and inserting a
phase with velocity vmin enables us to realize arbitrarily small values for ∆s. Similarly, the
red motion curve can be constructed from the GG task going from (vbA, 0) to (vbE, 0) via a
vmI I ≥ v f A. Again, making vmI I larger and inserting a phase with velocity vmax enables us
to realize arbitrarily large values for ∆s. Since for vmI = vbE and vmI I = v f A we obtain the
same motion curve, we continuously cover all distances.

Robotics 2021, 10, x FOR PEER REVIEW 19 of 27 
 

 

This example looks, at first, similar to example 2, but when one zooms into the inter-
esting area, one can recognize that for some distances covered by Part IIb (blue), there is 
also a coverage by Part IIa with a shorter time. Moreover, for some distances (e.g., 0.132), 
there are even three solutions within Part IIb, one of them having the shortest time. This 
again shows the variability of situations. 
Case D: 𝑎஺ ≥ 0 and 𝑎ா ≥ 0, 𝑣௕஺ > 𝑣௕ா or 𝑣௙஺ > 𝑣௙ா 

This case is illustrated in Figure 19. Case D is the easiest one since it can be completely 
reduced to the GG situation by a combination of embedding and extension and we just 
need Parts I and III. Figure 19 shows situations when both of the two velocity conditions 
are fulfilled, but it is easy to check that nothing changes when only one of them holds. 
Consider the GG task for going from (𝑣௙஺, 0) to (𝑣௙ா, 0) via a 𝑣௠಺ ≤ 𝑣௕ா. If one extends 
this by going from A to (𝑣௙஺, 0) and cuts off the part going from E to (𝑣௙ா, 0), one obtains 
a motion curve from A to E with a certain distance. Making 𝑣௠಺ smaller and inserting a 
phase with velocity 𝑣௠௜௡ enables us to realize arbitrarily small values for Δs. Similarly, 
the red motion curve can be constructed from the GG task going from (𝑣௕஺, 0) to (𝑣௕ா, 0) 
via a 𝑣௠಺಺ ≥ 𝑣௙஺. Again, making 𝑣௠಺಺ larger and inserting a phase with velocity 𝑣௠௔௫ en-
ables us to realize arbitrarily large values for Δs. Since for 𝑣௠಺ = 𝑣௕ா and 𝑣௠಺಺ = 𝑣௙஺ we 
obtain the same motion curve, we continuously cover all distances. 

 
Figure 19. Case D. 

We obtain the same formulae for distances and times as for Parts I and III in Case Ca, 
i.e., Equations (19), (20), (23), (24) also hold in this case. Since there are no remarkable 
special situations occurring in this case, we give no examples. 

5. Implementation and Validation with MATLAB® 
In both the GG and the BB situations, beside splitting into several cases, which is easy 

to implement, the main task consists of solving an equation. In GG and in Parts I and III 
of the BB cases, the equation is of the type: 𝑤 = 𝑆(𝑣஺, 𝑣ா, 𝑣௠) = 𝑆(𝑣஺, 𝑣௠) + 𝑆(𝑣௠, 𝑣ா) (28)

where 𝑣௠ is unknown and the distance 𝑤 and the velocities 𝑣஺, 𝑣ா are given. The equa-
tions for Parts IIa and IIb in the BB situation (9), (10), (15), (16), (21) and (22) can be rewrit-
ten in the form: 𝑤 = 𝑆(𝑣஺, 𝑣௠) − 𝑆(𝑣௠, 𝑣ா). (29)

We abbreviate the difference on the right hand side as 𝑆௡௘௚(𝑣஺, 𝑣ா, 𝑣௠). 

Figure 19. Case D.

We obtain the same formulae for distances and times as for Parts I and III in Case
Ca, i.e., Equations (19), (20), (23), (24) also hold in this case. Since there are no remarkable
special situations occurring in this case, we give no examples.

5. Implementation and Validation with MATLAB®

In both the GG and the BB situations, beside splitting into several cases, which is easy
to implement, the main task consists of solving an equation. In GG and in Parts I and III of
the BB cases, the equation is of the type:

w = S(vA, vE, vm) = S(vA, vm) + S(vm, vE) (28)

where vm is unknown and the distance w and the velocities vA, vE are given. The equations
for Parts IIa and IIb in the BB situation (9), (10), (15), (16), (21) and (22) can be rewritten in
the form:

w = S(vA, vm)− S(vm, vE). (29)

We abbreviate the difference on the right hand side as Sneg(vA, vE, vm).
We split up Equation (28) into sub-cases depending on whether the maximum acceler-

ation is reached going from vA to vm resp. from vm to vE (cf. Equations (1) and (2)):

w = (vA + vm)·

√
|vm − vA|

jmax
+ (vm + vE)·

√
|vE − vm|

jmax
(30)

w = (vA + vm)·

√
|vm − vA|

jmax
+

(
vm + vE

2

)
·
(
|vE − vm|

amax
+

amax

jmax

)
(31)

w =

(
vA + vm

2

)
·
(
|vm − vA|

amax
+

amax

jmax

)
+ (vm + vE)·

√
|vE − vm|

jmax
(32)

w =

(
vA + vm

2

)
·
(
|vm − vA|

amax
+

amax

jmax

)
+

(
vm + vE

2

)
·
(
|vE − vm|

amax
+

amax

jmax

)
(33)
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An analogous set of equations can be produced for (29) using minus instead of plus
between the two parts. Moreover, a closer investigation of the interval where vm lies in
Parts IIa and IIb shows that sub-case (33) does not occur, so when considering Equation (29),
we can restrict ourselves to (30)–(32). Available numerical equation solvers for (28) and (29)
normally find, at most, one solution and then stop. Therefore, we transform the equations
symbolically into problems where all zeros of polynomials are to be found. For doing
this, we first remove the absolute values by making a further distinction between the
cases (α) vm ≤ vA, vE and (β) vm ≥ vA, vE (the overlap at equality does not matter). For
example, in case (α), we write vA − vm for |vm − vA|. Using a Computer Algebra System
(here, Maple®), one can then reduce the task of solving the equations (30)–(32) to find the
roots of polynomials of degree 4 and one obtains even a symbolic solution for (33).

We first consider the equation w = S(vA, vE, vm). The polynomials for Equations (30)–(32)
are given in Table A1 (Appendix A) in form of lists of coefficients (starting from the largest
power) and the solutions for Equation (33) are given directly. If we consider instead the
equation w = Sneg(vA, vE, vm), we obtain only polynomials for the modified Equations
(30)–(32), as shown in Table A2 (Equation (33) does not occur as stated above). Once all
zeros z of the polynomials for the (modified) Equations (30)–(32) have been found using a
polynomial root solver (here: MATLAB®), the solutions for Equations (30)–(32) for both
equations w = S(vA, vE, vm) and w = Sneg(vA, vE, vm) can be found according to Table A3
(provided by the Computer Algebra System).

All solution candidates are then further filtered:

• Only the real solutions (not the complex ones) are taken.
• It is tested whether the solutions fulfill the case conditions in (α) resp. (β).
• It is tested whether the solutions fulfill the requirements of Equations (30)–(33) regard-

ing reaching the maximum/minimum acceleration.
• Not all zeros of the polynomial might solve the original equation (only the implication

that all solutions of the equation can be found using zeros of the polynomials and the
computations given in Table A3 holds in general; there is no equivalence relationship).
Therefore, all zeros are tested (by insertion) and only those ones fulfilling the equation
are kept.

Only those solutions that pass the tests are then used for further processing. This
algorithm is described semi-formally in pseudo-code in Algorithm 1.

Algorithm 1. Solving w = S(vA, vE, vm) (resp. w = Sneg(vA, vE, vm)).

Input: w, vA vE, amax, jmax, case (α or β)

Output: Candidates for vm

1. If case = α Then
2. Compute the zeros of polynomial (30) in Table A1 (resp. A2) listed under (α)
3. From the zeros compute candidates for vm according to Table A3 listed under (α)
4. For each candidate vm do
5. If vm is not real Then omit vm End If
6. If not (vm ≤ vA, vE ) Then omit vm End If % Not case α

7. If not
(
|vm − vA| < amax

2

jmax
and |vm − vE| < amax

2

jmax
) Then omit vm End If % necessary condition for (30)

8. If not (w = S(vA, vE, vm) )
(
resp. not

(
w = Sneg(vA, vE, vm)) Then omit vm End If % equation not solved

9. End For
10. Do the same (lines 2–9) for polynomials (31) and (32) adapting the inequalities in line 7
11. Compute candidates for vm directly from (33) in Table A1 (not applicable for w = Sneg(vA, vE, vm))
12. If applicable Then Do the same as in lines 4–9, adapting the inequalities in line 7 End if
13. else if case = β Then
14. Do the same as in case α now using the polynomials/expressions listed under case β in Table A1 (resp. A2)
15. End If
16. Return the remaining candidates for vm % might be the empty set
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If we have the BB task, we first determine which of the cases, A to D, is applicable
(or rewrite the problem by changing the direction of distance). In the respective case, we
determine the solutions for an equation of type w = S(vA, vE, vm) for Parts I and III and
the solutions for an equation of type w = Sneg(vA, vE, vm) for Parts IIa and IIb as described
above. Note that even for Parts I and III where we can relate the BB task to a GG task by
embedding or extension, we cannot simply use an algorithm for the GG task since we have
to take into account the restrictions on the interval where vm must lie. We have to determine
the zeros of, at most, 12 polynomials of degree 4 (four parts with three polynomials each
at most). Then, we additionally check whether the solutions for vm are within the given
range for the respective part (the ranges are given in the equations above) and drop those
who are not. If vm < vmin or vm > vmax, we insert a phase with constant velocity. We
then compute the lengths for the different time intervals in the seven-segment profile and
sum these up. The candidate with the lowest sum is then the best one within the set of all
candidates considered. The algorithm is described semi-formally in Algorithm 2.

Algorithm 2. Computing the time intervals and signs for the 7-segment profile.

Input: ∆s, vA, aA, vE, aE, jmax, amax, vmax

Output: Time vector [t1, t2, t3, t4, t5, t6, t7], sign vector for jmax in the intervals where j = ±jmax

1: If not case ∈ {A, B, Ca, Cb, D} Then
2: Set ∆s− ∆s, vA = −vA, aA = −aA, vE = −vE, aE = −aE
3: End If
4: If case = A Then
5: Call Algorithm 1 according to Equation (7)
6: For each vm returned
7: If condition on vm in Equation (7) is not fulfilled Then
8: omit vm
9: Else
10: If vm < −vmax Then Set vm = −vmax End If % Take into account restriction on v
11: Compute time vector and sign vector
12: End if
13: End For
14: Call Algorithm 1 according to Equation (8) and perform lines 6–13
15: Call Algorithm 1 with w = Sneg(vA, vE, vm) according to Equation (9) and perform lines 6–13
16: Call Algorithm 1 with w = Sneg(vA, vE, vm) according to Equation (10) and perform lines 6–13
17: Else If case = B
18: Execute lines 5–16 using the equations of case B
19: Else If case = Ca
20: Execute lines 5–16 using the equations of case Ca
21: Else If case = Cb
22: Execute lines 5–16 using the equations of case Cb
23: Else If case = D
24: Execute lines 5–16 using the equations of case D
25: End If
26: Return Time vector [t1, t2, t3, t4, t5, t6, t7] and sign vector for jmax where t7 = min

If we have a GG task, we can determine in advance which one of the Equations (30)–
(33) is applicable and determine whether we have case (α) or (β) (we omit the details).
Therefore, we would have to find the roots of at most one polynomial.

Regarding validation, we have to state first what we intend to validate. Since the
presented algorithm logically covers all possible situations by the continuity argument
we explained in the previous section, theoretically, there is no necessity for validation
otherwise than checking for a mistake in the argumentation that might come up during test
runs. What certainly needs validation is the implementation of the algorithm, particularly
regarding numerical issues such as cancellation effects (accuracy). Moreover, for checking
the algorithm’s suitability for online trajectory planning, it is also important to investigate
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efficiency, i.e., the time necessary for finding the solution. Our accuracy and efficiency
check was performed by having a huge number of test runs with randomly generated data
covering all the cases and parts described in Section 4. We used the following scheme:

• We first prescribe upper boundary values for jmax, amax, vmax, called jmaxb, amaxb, vmaxb,
and the largest distance ∆smax is considered. We choose 100 for each (units: m/s3,
m/s2, m/s, m) for our test runs to allow for a larger range but this is a bit arbitrary.

• Within the interval [0.0001·jmaxb, jmaxb], we generate a random value for jmax and
proceed analogously for amax, vmax. Moreover, for ∆s ∈ [−∆smax, ∆smax], we do so
randomly.

• Within the area in the velocity–acceleration plane that is bounded by the horizontal
lines at ±amax and the left and right square root curves shown in Figure 3, we choose
values for (vA, aA) and (vE, aE) randomly.

• Once the configuration [jmax, amax, vmax, ∆s, vA, aA, vE, aE] has been generated ran-
domly this way, a test run for computing the best function is performed and it is
checked whether the solution really gives the prescribed final velocity and accelera-
tion and the distance ∆s within a certain margin of error. If the error is larger than
10–7, the configuration producing it is recorded for further investigation.

Given this scheme, we made several runs with 107 random configurations which took
about 40 min each (depending on whether the profiler in MATLAB was turned on or off).
During the first test runs, we encountered, a few times, the situation that no solution was
found, which is in contradiction with the logical argumentation in Section 4. The reasons
were, as already assumed, of numerical origin and of two different kinds. In the first type
of situation, the solutions were at border points between different parts. Consider, for
example, case B: If there is a solution very close to the border for vm between Part IIa and
Part IIb (i.e., vm = v f A), then it might not be accepted in Part IIa because it is required
there that vm > v f A. By simply allowing equality here (which in theory means one has an
overlap between Parts IIa and III), one can avoid this problem. One could also allow a small
overlapping ε-interval here. The second type of situation where no solution was found
had its origin in the error margin for the distance in the computation of candidates (roots
of the polynomials). By enlarging the error margin, this type of problem could be avoided
in the subsequent runs. Since, in the final solution, the distance is again checked, this
does not lead to the acceptance of solutions with errors above a specified value. Actually,
since distances are computed using Equations (30)–(33), stated above in this section, we
might have typical cancellation effects when vA and vm or vE and vm have nearly the same
absolute value.

We performed a test run with 108 configurations, which provided a solution for all
configurations, so the numerical remedies reported above seem to work. Table 2 gives
information on errors. The maximum error in ∆s was 6.57 × 10−6 and there were only
15 configurations with errors in ∆s of more than 1 × 10−7. Therefore, we conclude that the
implementation provides acceptable results for realistic situations regarding the values for
jmax, amax and vmax.

Table 2. Largest errors in a test run with 108 configurations.

Run with Lower Bounds

Max. error ∆s 6.57 × 10−6 (m)
Max. error vE 4.67 × 10−12 (m/s)
Max. error aE 7.11 × 10−14 (m/s2)

Number of Errors in ∆s > = 10−7 15

Table 3 provides information on the case and part coverage. It shows that all cases
and parts were sufficiently covered except for Part IIb in cases A and B (in case D, Parts
IIa and IIb do not occur; see Section 4). In earlier test runs with less configurations, it was
nearly always the case that there was no example for Part IIb in cases A and B, and we



Robotics 2021, 10, 25 23 of 26

conjectured already in Section 4 that Part IIb might be unnecessary. A closer look at the
configurations that led to the 12 entries for Part IIb in cases A and B revealed that, again,
this is a numerical effect. As is shown in Figure 10, if the solution point is very close to
the “meeting point” of the curves for Parts IIa, IIb and III, it might happen that because of
round-off errors, IIb gives a lower time value than IIa, although zooming in shows that
Part IIb is above Part IIa. Practically, this does not really matter since the solutions provide
nearly the same time. Therefore, we still stick to our conjecture that in cases A and B, Part
IIb never contains the best solution.

Table 3. Coverage of cases and parts.

Case A Case B Case Ca Case Cb Case D

Part I 10,561,715 10,563,034 1,085,981 9,209,731 13,996,250
Part IIa 727,205 728316 17,555 691,269 0
Part IIb 3 9 17,756 692,692 0
Part III 13,710,379 13,713,522 1,087,589 9,206,664 13,990,330

Sum 24,999,302 25,004,881 2,208,881 19,800,356 27,986,580

Regarding efficiency, we wanted to investigate whether the computation of the best
function can be performed within a controller cycle which might be 1 ms (cf. [12]) or less,
and for very fast controllers, even 100 µs. In our computations, we used a desktop PC with
a Xeon E5-1630v4 processor with 3.7 GHz.

It is not straightforward to generate valid efficiency data when running MATLAB func-
tions. As stated in Mathwork’s own performance white paper [23], there is much “noise”
to be taken into account, which might lead to considerable variation of times. This noise
includes scheduling of processes and threads by the operating system and use of different
memory caches. Moreover, the just-in-time compiler of MATLAB compiles a function once
and uses then the compiled version. The variation can be made visible by running the
best function with a fixed configuration several times, such that the computational work is
identical. This gave values between a few milliseconds and a few hundred microseconds.
We took this into account by repeating the computation for the same configuration several
times and then taking the lowest value. We measured the times for the best function finder
for 100,000 configurations, each repeated 1000 times, which provides a good coverage of
all cases and parts. The maximum time was 303 µs. The result already shows that a run of
the best function finder can be performed with a cycle time of 1 ms without any problem.
However, there is even considerable potential for improvement. One of the main tasks in
the best function finders is the computation of roots of the 12 polynomials of degree 4. In a
test run with 1,000,000 configurations with 20 repetitions each, we measured an average
time of 156 µs for computing the roots of the 12 polynomials. MATLAB’s roots function is
a general root-finding function for polynomials of an arbitrary degree. For polynomials of
degree 4 (also called “quartics”), there are many more efficient special solvers available.
For solving a quartic accurately and efficiently, Orellana and De Michele [24] needed less
than 0.5 µs on a dual-core i7 processor with 3.3 GHz. This means that by using such a
specific solver, we can reduce the effort for root finding to about 6 µs (12 polynomials).
That would cut the “worst case” time for computing the best function of about 303 µs by
half. Moreover, our current MATLAB code contains overhead for providing additional
information, and the code is split up into several small functions for making it better
readable. Modern compilers contain optimizers that try to reduce the overhead when
actually producing the executable code, e.g., by so-called “inlining”, where calls to “small
functions” are substituted by inserting the code of the functions into the calling function.
Orellana and De Michele [24] showed that by using a certain optimizer option, they could
reduce the time needed by about half. This indicates that the time needed for computing
the best function could even be brought well below 100 µs. This is comparable with the
time reported in [12] for the worst case (540 µs for six axes) and in [19] as average (74 µs
for one axis). Sidobre and Desormeaux [22] even achieved 2.5 µs, but the three-variable
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Newton method they applied after first obtaining an approximation did not always provide
the optimal solution. The most important criterion for online trajectory generation is not
the absolute time as long as the computation can be performed within one controller cycle.

6. Conclusions

In this contribution, we investigate how a fast motion function can be found when
restrictions for jerk, acceleration and velocity, initial and final values for velocity and
acceleration and the distance are given. Our approach applies a seven-segment motion
profile with piecewise constant jerk, which was already considered by other authors. We
developed an algorithm for computing such a profile which considers only four major cases
and, hence, has a manageable complexity. We investigate these cases systematically in the
velocity–acceleration plane, which provides an easily understandable visual explanation.
The investigation showed that there are often several seven-segment profiles fulfilling
the condition differing considerably in execution time. We take the best one, whereas the
algorithm by Ezair et al. [19] leads to just one of them. Since (like Sidobre/Desormeaux [22])
we do not have mathematical proof that there are no other seven-segment profiles with
shorter times, we only claim to have a “fast” solution, not necessarily an “optimal” one.
Moreover, a continuity argument proved that we cover all possible distances, whereas
in the work by Sidobre and Desormeaux [22] treating the same problem, only a brief
explanation but no proof is given.

We implemented our algorithm in MATLAB, where we reduced the computation
essentially to the finding of roots of up to 12 polynomials of degree 4, which can easily
be re-implemented. A large test run with 108 configurations showed that a solution was
always found and all cases as well as all parts were covered satisfactorily. This also supports
our claim of full coverage of all possible situations. Moreover, our timing experiments
showed that our algorithm is suitable for online trajectory generation. Although finding the
zeros of up to 12 polynomials makes our algorithm a bit slower than algorithms for special
situations (such as [12]), the additional cost is small since very fast solvers for quartics are
available.

There are also clear limitations to the approach using a seven-segment profile. Since
the jerk function is piecewise constant, the discontinuity might lead to unwanted vibrations.
As stated in the literature review, for special situations such as RR (“rest-to-rest”), smoother
functions have been designed. This deficit of the seven-segment approach might be reduced
by working with a 15-segment profile with continuous jerk. A feasible way for finding
such a profile in the general BB task might be to generalize the approach developed in
this contribution. A further limitation of the seven-segment approach is that it does not
handle variable constraints but only constant ones, and the constraints are assumed to
be symmetric, although it would be possible to modify our approach in order to include
asymmetric constraints.

We have not tested the applicability of seven-segment profiles experimentally since
this has already been performed by other authors (e.g., [12,22]), on whom we rely. In
real applications such as robotics, the situation we investigated in this article is only one
problem among many. Further considerations are necessary when there are several drives
that need coordination or when restrictions change and one has to turn the initial state into
an admissible one first. One can find strategies for this in [12,19,20,25].
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Appendix A

Table A1. Polynomials and solutions for w = S(vA, vE, vm).

List of Coefficients for (30)–(32) Resp. Solutions for (33)

Case (α)

(30)
[
j2maxvA − j2maxvE, 2j2maxw, jmaxv2

A − 2jmaxvAvE + jmaxv2
E,−4jmaxw·vE, jmaxw2 − v3

A − v2
AvE + vAv2

E + v3
E
]

(31)
[
j3max, 2amax j2max, a2

max jmax − 2j2maxvA,−4amax jmaxvA,−a2
maxvA − a2

maxvE + 2amax jmaxw + jmaxv2
A − jmaxv2

E
]

(32)
[
j3max, 2amax j2max, a2

max jmax − 2j2maxvE,−4amax jmaxvE,−a2
maxvA − a2

maxvE + 2amax jmaxw− jmaxv2
A + jmaxv2

E
]

(33) a2
max±
√

a4
max+2a2

max jmaxvA+2a2
max jmaxvE−4amax j2

maxw+2j2
maxv2

A+2j2
maxv2

E
2jmax

Case (β)

(30)
[
j2maxvA − j2maxvE, 2j2maxw,−jmaxv2

A + 2jmaxvAvE − jmaxv2
E, 4jmaxw·vE,−jmaxw2 − v3

A − v2
AvE + vAv2

E + v3
E
]

(31)
[
j3max, 2amax j2max, a2

max jmax + 2j2maxvA, 4amax jmaxvA, a2
maxvA + a2

maxvE − 2amax jmaxw + jmaxv2
A − jmaxv2

E
]

(32)
[
j3max, 2amax j2max, a2

max jmax + 2j2maxvE, 4amax jmaxvE, a2
maxvA + a2

maxvE − 2amax jmaxw− jmaxv2
A + jmaxv2

E
]

(33) −a2
max±
√

a4
max−2a2

max jmaxvA−2a2
max jmaxvE+4amax j2

maxw+2j2
maxv2

A+2j2
maxv2

E
2jmax

Table A2. Polynomials and solutions for w = Sneg(vA, vE, vm).

List of Coefficients for Modified (30)–(32)

Case (α)

(30)
[
j2maxvA − j2maxvE,−2j2maxw, jmaxv2

A − 2jmaxvAvE + jmaxv2
E, 4jmaxw·vE, jmaxw2 − v3

A − v2
AvE + vAv2

E + v3
E
]

(31)
[
j3max,−2amax j2max, a2

max jmax − 2j2maxvA, 4amax jmaxvA,−a2
maxvA − a2

maxvE − 2amax jmaxw + jmaxv2
A − jmaxv2

E
]

(32)
[
j3max,−2amax j2max, a2

max jmax − 2j2maxvE, 4amax jmaxvE,−a2
maxvA − a2

maxvE + 2amax jmaxw− jmaxv2
A + jmaxv2

E
]

Case (β)

(30)
[
j2maxvA − j2maxvE,−2j2maxw,−jmaxv2

A + 2jmaxvAvE − jmaxv2
E,−4jmaxw·vE,−jmaxw2 − v3

A − v2
AvE + vAv2

E + v3
E
]

(31)
[
j3max,−2amax j2max, a2

max jmax + 2j2maxvA,−4amax jmaxvA, a2
maxvA + a2

maxvE + 2amax jmaxw + jmaxv2
A − jmaxv2

E
]

(32)
[
j3max,−2amax j2max, a2

max jmax + 2j2maxvE,−4amax jmaxvE, a2
maxvA + a2

maxvE − 2amax jmaxw− jmaxv2
A + jmaxv2

E
]

Table A3. Solution candidates for vm.

Case (α)

(30) −z2 jmax + vE
(31) −z2 jmax + vA
(32) −z2 jmax + vE

Case (β)

(30) z2 jmax + vE
(31) z2 jmax + vA
(32) z2 jmax + vE
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