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Abstract: A novel approach to generic (or generalized) robot programming and a novel simplified,
block-based programming environment, called “Assembly”, are introduced. The approach lever-
ages the newest graphical user interface automation tools and techniques to generate programs
in various proprietary robot programming environments by emulating user interactions in those
environments. The “Assembly” tool is used to generate robot-independent intermediary program
models, which are translated into robot-specific programs using a graphical user interface automation
toolchain. The generalizability of the approach to list, tree, and block-based programming is assessed
using three different robot programming environments, two of which are proprietary. The results of
this evaluation suggest that the proposed approach is feasible for an entire range of programming
models and thus enables the generation of programs in various proprietary robot programming envi-
ronments. In educational settings, the automated generation of programs fosters learning different
robot programming models by example. For experts, the proposed approach provides a means for
generating program (or task) templates, which can be adjusted to the needs of the application at
hand on the shop floor.

Keywords: generic robot programming; GUI automation; robotic process automation; graphical pro-
gramming; block-based programming

1. Introduction

Recent advances in safe, collaborative robotics technology and the increasing avail-
ability of open source robot hardware facilitated the emergence of numerous new vendors
entering the market with relatively inexpensive collaborative industrial robots. While this
development is welcome in a field that has been dominated by a few global players
for decades, the diversity of the often proprietary, vendor-provided robot programming
languages, models, and environments that are provided with these new robots is also
increasing rapidly. Although most vendors appear to pursue a common goal in creating
more intuitive means for programming robots using web-based programming environ-
ments, tablet-like devices as teach pendants, and concepts from the domain of smart phone
user experience and design, the resulting programming languages, models, and envi-
ronments are rarely compatible with one another. This poses challenges to application
integrators, who strive to innovate their robot fleet while reusing existing knowledge,
expertise, and code available in their organizations. In non-industrial applications, the het-
erogeneity of proprietary robot systems increases the need for specialized expertise and
thus hinders the democratization of the technology—that is, making it more accessible
to diverse non-expert users by simplifying (without homogenizing) programming and
lowering overall costs of operation. In this context, generic robot programming can help to
cope with the heterogeneity of robot systems in application scenarios, which go beyond
those envisioned by robot vendors.

Generic (or generalized) robot programming (GRP) refers to a programming system’s
support for writing a robot program in one programming language or model for which
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there are means for converting the program into vendor-specific program instructions or
commands [1–3]. By “program instructions or commands” it is meant both source code,
which needs to be compiled or interpreted before runtime, and instructions or messages,
which are interpreted by a target robot system or middleware at runtime. When online
programming is used, the instructions are sent to the robot immediately; whereas in offline
programming, an entire program is generated for a specific target system first, and then
downloaded (or deployed) to the robot [1,2]. The concept of GRP stands at the basis of
the so-called skill-oriented robot programming approach [2], which proposes a layered
architecture, in which “specific skills” (i.e., task-level automated handling functions, such as
pick and place) are created on top of so-called “generic skills” (i.e., generic robot behaviors
like motions), which interface the robot-independent specific skills with robot-dependent
machine controllers and sensor drivers [2]. GRP often uses code generation for interfacing
different robotic systems with robot-independent path planning, computational geometry,
and optimization algorithms into a layered architecture providing a “generation layer” with
open interfaces [3]. Modern frameworks, such as RAZER [4], take the GRP approach one
step further by integrating skill-based programming and parameter interface definitions
into web-based human-machine interfaces (HMIs), which can be used to program robots on
the shop floor. In all these approaches, the GRP concept is used to enable interfacing higher
level robot software components (i.e., skills), which can be created in various programming
languages, with different robots. Various commercial and open source GRP tools (e.g.,
the Robot Operating System (ROS) [5], RoboDK [6], Siemens’ Simatic Robot Integration [7],
“Drag&Bot” [8], RAZER [4], etc.), which are commonly used in the industrial domain,
require the development of robot drivers or code generators for each of the supported
robots. Once such drivers or generators exist, users are able to write generic robot programs
in one language and/or programming model (e.g., C++ or Python in the case of ROS, or a
graphical language or Python in RoboDK), whereas the system automatically converts
generic programs to robot-specific programs or instructions.

There are several problems with these approaches that the current paper seeks to
address. The development of (reliable) robot-specific drivers and code generators is costly
and often left to the open source community (e.g., in the case or ROS). Developing a
robot driver or code generator for one of the existing GRP environment requires ex-
pert knowledge “beyond just software, including hardware, mechanics, and physics“ [9]
(p. 600), and takes on average up to 25% of the entire development time [10],
especially in the case of online programming, when (near) real-time communication with
the robot is required (e.g., as it is the case with ROS). As García et al. [9] note, while the
members of the robot software developer community tends to use the same frameworks,
languages, and paradigms (i.e., ROS, C++, Python, object-oriented and component-based
programming), there appears to be little awareness within this community concerning the
importance of software engineering best practices for improving the quality and maintain-
ability of software in order to make it reusable and reliable. In addition, scarce or lacking
documentation of published robot software components [11,12] hinders the synthesis of a
set of common principles for developing drivers and code generators.

Due to the inherent difficulties of covering a multitude of robots using a single pro-
gramming model, graphical GRP environments use a reduced subset of control structures.
For example, RoboDK does not support if-then-else and other basic conditional statements.
To use more advanced programming structures, users need to switch to textual program-
ming. In this context, with new and inexpensive (collaborative) robots entering the market
at an unprecedented pace, there is a need for new GRP approaches, which (1) allow the
inexpensive, flexible integration of new robots that come with their own programing mod-
els, (2) lower the cost of developing new and reliable robot drivers or code generators,
(3) simplify robot programming while providing a complete set of programming structures
to maximize flexibility and thus to foster the wide adoption of robots in and beyond in-
dustrial contexts, and (4) succeed in generating programs for closed robot programming
environments, which use binary or obfuscated proprietary program formats.
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Against this background, this paper introduces a novel approach to GRP, which
leverages graphical user interface (GUI) automation tools and techniques. Modern GUI
automation tools use computer vision and machine learning algorithms to process visual
elements in GUIs in near real time and to emulate user interactions in reaction to those
events. The proposed approach uses GUI automation to couple third-party programming
tools with proprietary (graphical) robot programming environments by enabling program
generation in those target environments while bypassing vendor-provided application
programming interfaces (APIs). In this sense, the contribution of the paper is twofold. First,
it introduces a novel web-based graphical robot programming environment, called Assem-
bly, which is used to generate an intermediary-level program model that conforms to a
generic robot programming interface (GRPI). Second, it illustrates both technically and
methodologically how GUI automation can be leveraged to generate robot programs in
various proprietary robot programming environments. As part of the approach, the pro-
gramming process is divided into a generic, robot-independent step, which can be carried
out anywhere using the web-based Assembly tool. In a second step, a robot-independent
GUI automation model, corresponding to the program, is generated using the Assembly
tool. In a third step, the user can connect a computer running a GUI automation tool,
such as SikuliX [13] or PyAutoGUI [14], to a target robot programming environment (e.g.,
an HMI hosted on a teach pendant) to generate a program in that environment. This saves
time and allows for maintaining a unified code base, from which programs for proprietary
target environments can easily be generated.

The design rationale behind this approach is to democratize collaborative robot pro-
gramming in makerspaces and other non-industrial contexts by facilitating an easy entry
into robotics using a simplified web-based, graphical programming environment and a
solution to the GRP problem based on an easily understandable and applicable technology,
such as GUI automation. The proposed approach thus aims to provide a viable, more ac-
cessible alternative to entrenched robotics “monocultures”, such as the expert-driven ROS
ecosystem [11], and commercial ecosystems controlled by robot manufacturers, which have
dominated the robot software landscape for decades. Similarly, Assembly aims to provide a
more straightforward alternative to Blockly and Scratch—the current de facto standards
for simplified programming in educational contexts. As García et al. [9] note, “[r]obots that
support humans by performing useful tasks . . . are booming worldwide” (p. 593), and this
is not likely to produce less diversity concerning robot users and usage scenarios. In this
sense, the hopes and expectations concerning Assembly are not primarily to be (re)used by
many but to inspire and encourage robot enthusiasts to create more diverse, accessible,
inclusive, and user-friendly “do-it-yourself” robot programming tools and to share them
online—ideally as web applications. The key ingredient in this configuration is, arguably,
represented by a generic robot programming interface, which builds on the “convention
over configuration” principle [15] to enable the loose coupling between various third-party
programming models and proprietary robot programming environments through GUI
automation and (possibly) other unconventional means.

The approach is evaluated based on a real application focused on generating programs
for a UR5 robot (i.e., a Universal Robots’ model 5 robot) installed in an Austrian makerspace
(i.e., a shared machine shop equipped with digital manufacturing technologies that are
leasable by members on premise) [16]. Over the past two decades, makerspaces emerged
as alternative, non-industrial locales in which advanced manufacturing technologies
(such as 3D printers, laser cutters, CNC machines, etc.) can be leased on-premise by
interested laypersons, who do not have to be affiliated with a specific institution. Recently,
collaborative robots also started to figure in makerspaces. Here, the challenge is twofold.
First, existing industrial safety norms and standards cannot be applied to the makerspace
context because member applications are not known in advance [17,18]. Second,
current robot programming environments are still designed with experts in mind and/or
require direct access to the robot. This makes it difficult for interested laypersons to learn
and practice robot programming remotely (e.g., at home) before getting access to a real
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robot. The approach to robot programming described in this paper specifically addresses
the latter issue.

The generalizability of the approach to list, tree, and block-based programming was
assessed using three different robot programming environments, two of which are pro-
prietary. In brief, the results of this evaluation suggest that the proposed approach to
generic robot programming by emulating user interactions in robot GUIs and HMIs is
feasible for an entire range of graphical (block, tree, or list-based) target robot program-
ming environments. For example, it can be used to generate programs in proprietary
graphical robot programming environments, which do not allow for importing programs
created using non-proprietary tools. In educational settings, the automated generation
of programs in a target graphical environment also fosters learning how to program in
that environment. The proposed approach can also be used to generate program or task
templates, which only require the adjustment of locations and waypoints in the robot’s
native graphical programming environment.

2. Related Work
2.1. Graphical Robot Programming

Proprietary robot programming environments, such as Universal Robots’ (UR)
Polyscope [19] and RoboDK® [6], provide rich graphical interfaces for creating procedural
programs organized in a tree-like structure. These programming environments require
a certain degree of computational thinking [20] on the part of robot operators. Other ap-
proaches to programming cobots recognize the need for operators to also (re)program
robots on the shop floor to some extent [4,8,21–24] in a way reminiscent of the DevOps
(development and operations) practices from software engineering. As a result, an increas-
ing number of these environments strive to be more intuitive. For example, the web-based
Franka Emika Desk [21] tool follows a simple task-oriented, multi-modal programming
approach. In Desk, programs can be created by dragging and dropping robot behaviors or
skills, called apps, in a sequence. This process is assisted by haptic guidance of the robotic
arm and control of the end effector (e.g., gripper). Other skill-oriented programming mod-
els, such as RAZER [4] and different research tools (e.g., [25,26]), focus on the provision of
robot skills by experts. Within this model, which is similar to that of Franka Emika Desk,
robot skills are implemented as plugin components, which embody complex automated
handling functions inspired by norms such as VDI 2680 [26]. Aligning skills with norm-
based automated handling functions allegedly helps to make robot programming more
intuitive for manufacturing professionals [27].

Block-based programming (i.e., a programming model in which statements are repre-
sented as configurable graphical blocks linked to each other) is becoming increasingly pop-
ular for educational [28] and industrial robots [29,30]. The widely used Google Blockly [31]
tool has been shown to provide an easier entry for novice programmers than traditional
programming environments, such as UR’s Polyscope [19] and has been integrated into
ABB’s RobotStudio platform [32]. By offering more flexibility and a complete palette of
control structures and statements, block-based programming presents some advantages
over similar app-oriented approaches, such as Franka Emika Desk, which are often limited
in terms of the program structures that can be used [33]. The VDI 2680 automated function
symbols have also been used to decorate and guide the design of function blocks in an ex-
perimental constraint-based programming environment [26]. The way in which blocks are
connected and parameterized differs from one block-based model to another. Whereas in
Blockly, each block has a correspondent in textual programming, in Choregraph [34]—the
programming tool provided with Pepper and other humanoid robots—blocks are con-
nected with each other using lines and ports in a way that is reminiscent of function block
programming [35]. While line-based connections between (function) blocks facilitate the
representation of parallel computation and make data flow explicit, some researchers note
that Choregraph and other similar visual programming models result in “spaghetti code”,
which is difficult to decipher [36].
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List-based programming is a simple “no-code” programming model used by some pro-
prietary (generic) programming environments (e.g., [8,37]) as an alternative to text-based
programming. List-based programming is similar to block-based programming, with the
difference that blocks are represented as indented, fixed-size rows in a list. In addition,
each statement (i.e., row) is usually displayed including arguments and parameter values
and provides icons for reordering and deletion.

A comprehensive review of visual programming environments for end-user robot
programming is provided in [36].

2.2. Generic Robot Programming

Generic robot programming environments build upon a unified programming model
to support the programming and control of multiple robots from different vendors. There ap-
pear to be two main approaches employed by such environments—the robotic middleware
approach and the code generation approach. A good example for the former is the Robot
Operating System (ROS) [5], which supports a high number of robot systems. In ROS,
robots and other systems (e.g., cameras, end effectors, etc.) are wrapped as software nodes
(i.e., stand-alone components, which run in their own thread or process), which commu-
nicate with each other using the publish-subscribe pattern [38]. Programming in ROS is
usually done in C++ or Python, but support for other languages also exists. ROS also
supports code generation from a graphical state-machine language and system called
SMACH [39]. While ROS is a de facto standard in the domain of industrial robotics,
it entails several drawbacks. For example, ROS programs do not leverage the features
that are already implemented in the vendor-provided end-user programming environ-
ments. ROS uses an API (application programmable interface) developed for autonomous
robot functions (e.g., algorithmic path planning with obstacle avoidance and connectiv-
ity to other robots and machines) rather than for human–robot interaction. ROS also
requires advanced programming skills in C++ and/or Python, which some end users (e.g.,
industrial engineers, assembly workers, etc.) do not typically have, and does not offer
any domain-specific safety and security features, which are typically offered by propri-
etary programming environments. Some authors note that programs written for robotic
middleware, such as ROS, are difficult to reuse due to a lack of best software engineering
practices concerning the provision of ready-to-use (containerized) components in addi-
tion to source code [40]. These drawbacks suggest that, while ROS is perhaps the most
advanced industrial robot programming environment, having near real-time capabilities,
it also induces development costs that can render the wider adoption of robotics technol-
ogy, notably that of collaborative robots, financially infeasible. In practical application
scenarios, which nowadays also include non-industrial contexts, such as makerspaces [17],
pragmatic solutions are needed to facilitate the development of user-friendly, non-proprietary
robot programming tools [33].

Tools such as RoboDK® [6], ArtiMinds [41], and “Drag&Bot®” [8] leverage code
generation techniques to implement GRP for various industrial robots. These desktop
(i.e., RoboDK and ArtiMinds) or web-based (i.e., Drag&Bot) tools can be used to program
a wide range of robots using a common proprietary program model and robot-specific
simulators. The programs thus created can be translated into robot-specific (proprietary)
programming languages and downloaded to robots of different make and model. RoboDK,
for example, uses a tree-based programing model, which is similar to that of Universal
Robots’ Polyscope [19]. One disadvantage of these tools is that they provide a limited set
of control structures (e.g., RoboDK lacks basic conditional statements, such as if-then-else)
and limited interoperability with other programming environments (i.e., Drag&Bot cannot
import or export programs in other formats). In addition, with the notable exception of
ROS, generic robot programming environments are commercial, proprietary, and relatively
expensive.
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2.3. GUI Automation

Originally, GUI automation emerged as a technique in testing graphical user interfaces.
The approach has been used at least since the early 1990’s and has undergone major
developments ever since. Whereas in the early phase, GUI automation tools could only
manipulate the mouse and keyword of a computer in the absence of a real user by following
a script indicating the exact coordinates of different graphical elements on screen (e.g.,
buttons, text boxes, menu items), newer tools use image recognition to infer the coordinates
of the graphical elements of interest automatically. This opens up an entire range of new
application possibilities, which include interfacing different systems via the GUI rather
than the API of a system being controlled. Put simply, GUI automation can turn a system’s
GUI into an API in a non-intrusive way, thus empowering users to apply software-based
systems in ways that have not been foreseen by their original creators. For example,
GUI elements can be wrapped as objects [42,43] and used in other programs and models
for purposes that may well go beyond testing.

Modern GUI automation tools leverage computer vision and machine learning algo-
rithms to process visual elements in GUIs in near real time and to emulate the user inter-
actions required to react to those events. In the past decade, GUI automation has proven
effective in domains such as business process automation and public administration [44],
where it is used to automate workflows in enterprise software for business operations
and customer relations management as well as in mundane office software. Since both of
these software categories are known to induce vendor lock-in, GUI automation—which in
these domains is better known as robotic process automation (RPA) [45]—helps to avoid
outsourcing repetitive task with low added value by using so-called software robots to
automate them [45]. Currently, there are few known applications of GUI automation in the
industrial automation domain. Such techniques have been used, for example, to abstract
robotic control and perception functions and to integrate them in a GUI automation script-
ing language to the end of simplifying robot programming by performing visual pattern
recognition of objects in a ROS-based simulation [46]. GUI automation has also been used
to control the user interface of a welding robot for purposes of interoperability with other
systems and testing [47]. Other applications include testing NASA’s Spaceport command
and control system [48], automatic configuration of automation systems [49] as well as
anomaly [50] and intrusion [51,52] detection in industrial control systems. In previous
work [18], we used GUI automation to enhance the safety features of robot HMIs and to fa-
cilitate interoperability with other systems, such as 3D cameras. In the educational domain,
GUI automation was used to enable voice programming in Blockly [53]—an approach we
also evaluated for the case of industrial robots [18].

In addition to the applications mentioned above, in the industrial robotics domain,
the problems which call for a solution based on RPA are mainly due to the heterogeneity
of proprietary automation software [9], which cannot be easily configured and modified
by users. Hence, users are dependent on vendor-provided software updates and plugins.
As a result, some companies choose to unify their robot fleets so as to use a single vendor
of trust. This, however, is a premise for vendor lock-in. In this context, GUI automation
offers a means to program and configure robots at a meta level, which allows for diverse
robotic systems to coexist on the shop floor.

3. Solution Approach

Figure 1 illustrates the proposed approach to generic robot programming by emulating
user interactions in different robot-specific graphical programming environments using
GUI automation (or RPA) tools and techniques. A user first creates a source program
in a non-proprietary GRP environment, such as Assembly, then exports a so-called RPA
model (i.e., a program in the language used by the RPA tool), which can be used within
an RPA environment to generate a target program in a proprietary robot programming
environment (e.g., the robot’s HMI provided with a teach pendant). The user can check,
adjust (e.g., robot poses and waypoints), test, and use the resulting program in the target
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robot’s HMI. As best practice, the adjustments made to the target program should also be
replicated in the source program to maintain consistency.
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Although parts of this process can be automated, in this paper, the detailed description
of each process step will assume that access to the robot’s HMI is available on the computer
hosting the GUI automation tool such that a user can manually trigger the generation of
the program in the target environment. In the case of UR’s Polyscope [9]—the robot HMI
which will be used as the main example in this paper—the URSim simulator, which is
provided as a virtual machine cost free on UR’s website [54], can be used as a proof of
concept. To access the HMI of a real UR robot remotely, RealVNC [55] can be used to mirror
UR’s HMI on another computer [51]. This allows for the proposed approach to work over
a direct remote connection to the target robot’s HMI hosted on a teach pendant. In the
following, each of these steps is described in more detail.

3.1. Assembly—A Generic Web-Based Graphical Environment for Simplified Robot Programming

Assembly is an open source simplified web-based robot programming environment,
which belongs to the category of visual robot programming environments for end user
development [36]. The tool builds on a new block-based programming model that is similar
to—but strives to be more straightforward than Blockly (see Figure 2). Assembly provides
an “Actor and task library”, from which items (i.e., actors or tasks) can be dragged and
dropped to form a sequential workflow. Actors implement basic robot behaviors, such as
moving in a certain way or actuating an end effector; or program control structures,
such as conditionals and loops. Actors can be added to the library by developers. A task
represents a parameterizable workflow composed of actors and other tasks. Tasks can be
stored as bookmarklets in the browser’s bookmarks bar. A bookmarklet is a HTML link
containing JavaScript commands that can be saved in the browser’s “favorites” bar, which—
when clicked—can enhance the functionality of the currently displayed web page [33].
In the case of Assembly, tasks are bookmarklets that generate a workflow corresponding to
a program that has previously been saved by the user. Clicking on a task bookmarklet will
also add that task to the library so that it can be used in other tasks.

The design rationale of Assembly is for programs to be written and read left to right,
like text in most Indo-European languages. The tool can be localized to other languages
and cultures by changing the progression direction of programs (e.g., from right to left or
top to bottom). Unlike in the case of textual programming languages or Blockly, there is no
explicit indentation, only a linear enchaining of actor instances, which form a workflow.
Instead, as shown in Figure 2, rounding and highlighting effects are used to indicate how an
actor relates to other actors placed before and/or after itself. A workflow may be conceived
of as a phrase of varying length and complexity, which—when properly formulated—
achieves the desired effect. Consequently, each actor instance may be regarded as a short



Robotics 2021, 10, 3 8 of 23

sentence in that phrase. At the same time, actors encompass the semantics necessary to
generate code in textual programming languages.
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Technically, a workflow is implemented as a sortable HTML list of items representing
actors and tasks, the order of which can be modified by the user. To implement such a
list, the “jQuery Sortable” library was used [56]. Assembly integrates a simple open source
generic 6-axis robot simulator and inverse kinematics library [57], which can be used to
define motion waypoints and to visualize robot moves. The simulator can be controlled
either by dragging the end effector or by setting the coordinates of a desired waypoint
using the provided controls for Cartesian coordinates and Euler angles. To memorize a
certain pose as a waypoint, the user must drag the “move to” actor to the workflow after
having reached the desire position using the simulator controls. Additional program logic
can be implemented by dragging and dropping other actors into the workflow.

Actors implementing control structures are composed of color-coded “head” (e.g.,
structures such as if, while, else, repeat, etc.) and “tail” (e.g., a closing accolade “}”) actors
(or elements) corresponding to an inline instruction, such as:

1. if(condition){ + actors/tasks + } else { + actors/tasks + }; or
2. while(condition){ + actors/tasks + }

Similar to Blockly, Assembly helps novice programmers to avoid syntax errors by
providing fixed structures that can be arranged in a sequence, whereby some program
behavior is achieved regardless of the structure of a program. The goal is for the pro-
grammer to (re)arrange the actors and tasks in a logical way until the desired behavior
is achieved. A minimum viable program can be implemented using the “move to” actor
alone. This actor displays a small icon reflecting the robot’s target pose as at that specific

https://assembly.comemak.at
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waypoint. After having understood the working principle of actors, one can implement
more advanced functionalities.

Besides the sequential orientation of programs, Assembly differs from Blockly in the
way in which it handles parameters and variables. Whereas Blockly allows users to
integrate variables and parameters into blocks, Assembly uses a special screen region called
Context (i.e., lower left-hand side in Figure 2), where parameters and variables can be
defined using an embedded JavaScript Object Notation (JSON) editor. The variables and
parameters thus defined can be used with control structures, which contain a dropdown list
that is automatically populated with compatible variables, and actors (e.g., the “dP—dR”
relative motion actor). To set parameters or variables before the execution of an actor or
task, Assembly provides two specialized gray-colored actors, whose icons match those of the
“Parameters” and “Variables” buttons in the Context, respectively. Following the Blackboard
design pattern [58], tasks and actors only communicate with each other by reading and
writing into a shared JSON object (i.e., the blackboard), which internally represents the
Context of the current task. Besides the “Parameters” and “Variables” sections, the Context
also contains a read-only “Robot” section which provides real-time access to the coordinates
of the robot during execution and a “Task” section, which allows users to parameterize
tasks.

As opposed to Assembly, Blockly provides additional types of blocks that have pre-
defined structures and possibly multiple explicit parameters. While this provides custom
block creators with more possibilities and flexibility, defining everything (including vari-
ables) as a block can, arguably, lead to complicated, non-intuitive constructs for assignments
and expressions. Blocks taking many parameters may also expand horizontally or ver-
tically, thus taking up lots of space of the viewport for relatively simple logic. For these
reasons, Assembly strives to standardize actors in order to simplify their creation and use
by unexperienced programmers.

From a structural point of view, there are three main types of actors in Assembly:

3. Non-parameterizable actors, which do not use any parameters, such as the “else” or
“tail” actors;

4. Implicitly parameterizable actors, which use variables and parameters from the Context
but neither explicitly expose them nor require user-defined values for them, such as
movement and end effector actors;

5. Explicitly parameterizable actors, which expose one variable, the value of which needs
to be set by the user in order for the actor to produce a meaningful effect. This is the
case for control structures.

By separating the control flow (i.e., workflow) from the data flow (i.e., Context),
Assembly aims to facilitate an easy entry to novice programmers, while providing a so-called
“exit” strategy [31] for more advanced ones. The exit strategy consists in incentivizing users
to learn how to work with variables and expressions in the Context, which are required by
different control structures. At the same time, absolute novices can still create functional
workflow using non-parameterizable and implicitly parameterizable actors. Once the
logic, composition, structure, and expression format of an Assembly program are mastered,
the user can move on to textual programming.

By default, Assembly generates a JavaScript program, which can be inspected by
the user and copied to the clipboard. The basic structure of a language-specific code
generator in Assembly is that of a JSON object, which provides callback functions as object
properties corresponding to a specific actor, as shown in Figure 3. To generate a program,
Assembly iterates through the current workflow, represented as a list of actors, and calls
the function corresponding to the type of the actor being processed in the current iteration.
Assembly’s generic code generation algorithm can thus be easily coupled to other language-
specific generators.
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3.2. A Generic Robot Programming Interface (GRPI)

Figure 4 shows an UML diagram of a GRPI and its relations to the software compo-
nents that are necessary to generate a robot program from an RPA model. The package
RobotHMIAutomation contains a GRPI called IRobotProgramGenerator as well as sev-
eral implementations of that GRPI, e.g., for UR, Franka Emika Panda, and KUKA iisy
robots. The GRPI specifies a series of required fields and methods that need to be provided
or implemented by any robot-specific program generator class, module, or component.
The dependency of the RobotHMIAutomation package on an external RPA library is
explicitly illustrated using a dashed UML arrow. The RPA library used by the RobotH-
MIAutomation package should at least provide a click(Image) and a type(String) function.
For example, a call of the click(Image) function determines the RPA engine to emulate the
user action required to perform a left-mouse click upon the graphical element specified by
the provided image parameter. These images are specific to the proprietary robot program-
ming environment for which the robot program is being generated. They should thus be
considered as being inherent components of any implementation of the GRPI and should
be packaged together with that implementation.
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generator classes, components, or modules; a generic graphical user interface (GUI) automation (or robotic process
automation (RPA)) library; an RPA robot program model.

To facilitate the generation of programs in a proprietary target program environment,
a GRP environment must implement a generic RPA model generator, which conforms to
the IRobotProgramGenerator interface. This approach is similar to the Page Object design
pattern in GUI automation, which allows wrapping a GUI in an object-oriented way [42].
Figure 5 depicts an extract from the JSON object implementing such a generator in Assem-
bly. The SikuliCodeGenerator generates RPA models from robot programs created using
Assembly’s graphical editor. These models are designed to work with the Sikuli/SikuliX
RPA tool [13,59], which uses Python as its scripting language.
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Figure 6 shows the code generated by Assembly for the robot program depicted in
Figure 1; whereas Figure 7 depicts the program generated in UR’s proprietary HMI envi-
ronment (Polyscope) corresponding to the RPA model from Figure 6. The wrap() command
in Figure 6 corresponds to a closing accolade (i.e., “}”) in a C-style language and the “tail”
actors in Assembly. Depending on the programming model of the target robot system,
this command may, for example, close a conditional structure or a loop by wrapping up
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the elements pertaining to the respective program structure by generating a terminator
element or moving the program cursor to the same level as the corresponding program
structure. Hence, in this RPA model as in the GRPI, all control structures are prefixed by
start_, thus signaling that the command requires a wrap() element later on in the program;
whereas the subsequent elements of an articulated control structure, such as if-elseif-else,
will be prefixed by add_, as in add_elseif and add_else. Together with the wrap() instruction,
these prefixes facilitate the reconstruction of a program’s abstract syntax tree, which is a
necessary and sufficient condition for generating code or other program semantics in any
target programming model. This mechanism is illustrated in the next section in more detail
by the example of a URProgramGenerator for Universal Robots’ Polyscope HMI.
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3.3. Robot-Specific Program Generators

Robot-specific program generators are classes or other kinds of modular software
components, which emulate the user interactions required to create the program structures
corresponding to the different elements of a GRPI in a target robot’s native programming
environment (e.g., UR Polyscope, Franka Emika Desk, etc.). These generators must im-
plement the robot independent GRPI, thus bridging a GRP environment such as Assembly
with robot-specific environments. Robot program generators are analogous to robot drivers
in ROS but do not require advanced programming knowledge since they only use a lim-
ited number of the functions provided by any modern GUI automation library, such as
SikuliX [13] or PyAutoGUI [14].

Figure 8 shows an extract from a URProgramGenerator, which implements the IRobot-
ProgramGenerator interface and is designed to work with SikuliX. In the graphical user
interface of SikuliX, the click command, which emulates a left-button click in a designated
region (in this example, the designated region is the entire screen) allows for specifying the
target GUI element using a visible picture, which is captured directly on screen. A new
program generator can thus be created by reconstructing the steps required of a user to
create all the program structures specified by the GRPI. For example, generating a motion
instruction (i.e., moveTo) having a single waypoint requires emulating a series of clicks on
different elements of the target robot’s HMI (in this example, Universal Robots’ Polyscope)
and typing the coordinates of the target robot pose in the corresponding text fields in
the HMI. In the case of Polyscope, the wrap() instruction is implemented by emulating
two subsequent presses of the left arrow button on a generic keyboard, which moves the
program cursor out of the current control structure.
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The program generator also provides a series of auxiliary functions, including update-
Context and typeExp (not shown in Figure 8 but visible in the generated Polyscope program
in Figure 7). The updateContext function is used in connection with the initContext function
specified by the IRobotProgramGenerator interface. initContext replicates the parameters
and variables from the Context object in Assembly such that all variables available within
the scope of the source program be reconstructed in the target program. In the case of
Polyscope, initContext creates a script command (see line 2 in Figure 7), which creates all
the parameters and variables contained in the Context object. The updateContext function
is inserted by the generator before control structures in order to update all variables and
parameters (e.g., line 6 in Figure 7).

4. Evaluation

This section presents an evaluation of the proposed approach to GRP on the basis
of an application centered on the use of robots in makerspaces. After introducing this
application, we describe the infrastructure used in the makerspace to enable the generation
of robot programs for the Polyscope HMI of a UR5 robot and discuss some key non-
functional requirements, including development effort, program generation performance,
and reliability. Then, we present the results of an assessment of the generalizability of the
approach based on the creation and analysis of program generators for two additional
program models that are commonly used in robot programming (i.e., block-based and list-
based programming), which differ from the tree-based model used in Polyscope. Finally,
we discuss the benefits and limitations of the proposed approach based on the results of
this evaluation.

4.1. Application: Robotics in Makerspaces

Makerspaces are shared machine shops in which people that have diverse back-
grounds are provided with access to advanced manufacturing technologies, which typi-
cally include 3D printers, laser cutters, and other additive and subtractive manufacturing
systems. Makerspace members, who usually do not have specific institutional affilia-
tions, can use these technologies for their own creative, educational, or work-related pur-
poses, while paying a membership fee. With the recent advances in collaborative robotics,
more robots are being encountered in European makerspaces than ever before. This at-
tracts robot vendors that are increasingly interested in non-industrial markets as well as
companies and research institutions interested in leveraging the open innovation potential
in makerspaces [17]. In this sense, makerspaces pose new safety challenges, since member
applications are not usually known in advance. In this respect, makerspaces differ from
traditional industrial contexts, where robot applications must undergo safety certifications
before they can be used productively [17].

Since the number of robots in any makerspace is limited and machine hours may cost
additionally, makerspace members can benefit from learning and exercising generic robot
programming at home using a web-based tool such as Assembly before testing the programs
on the robots in the makerspace. Sketching and sharing an idea with other members
over a web-based robot programming environment also helps to identify potential safety
issues entailed by an application. These mostly autodidactic, preparatory practices of web-
based programming are complemented by the robotics trainings offered by makerspaces,
which emphasize safety but usually do not go into great details about programming,
since not all trainees have programming experience. Acquiring a basic background in robot
programming at home thus enables members to benefit from more advanced programming
trainings as well as from asking robotics trainers more precise and purposeful questions,
grounded in the goals and needs of the robotics projects they envision. This arguably
fosters a problem-oriented, constructivist learning environment [60,61] in the makerspace,
while the absolute basics are self-taught. In the makerspace, members can then translate
their robot programs for the different available robots, for example, to determine which
of them may be best suited for the task at hand. At the same time, using the GRPI,
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robotics trainers can develop program generators for the different robot types available in
the makerspace.

Safety is a challenging aspect in makerspace robotics, since—as opposed to an indus-
trial context—makerspace member applications are not known in advance and therefore
cannot be certified [17,18]. Therefore, makerspace members are responsible for their
own safety [17], whereas makerspace representatives need only configure the safety
setting in the robots’ native HMIs to ensure member safety (e.g., by enforcing strict,
password-protected speed and force limits). Makerspace members can thus generate
programs for any available robot without losing the safety-related and other features
provided by the robot’s native HMI. In addition, the task of translating a generic source
program into a robot-specific target one also stimulates users to learn how to work with
different robots and programming environments by example.

Figure 9 illustrates the usage scenario and infrastructure that can be used in the mak-
erspace to support program creation in Assembly at home and target program generation
for a typical robotic system (in this example, a UR5), composed of a robot arm, a control
computer, and a teach pendant hosting the HMI. To connect the toolchain used for program
generation (i.e., Assembly–SikuliX–Robot HMI), the HMI software hosted on the physical
teaching pendant is mirrored (or replicated) using a secure wired connection (e.g., USB,
Ethernet) and a remote monitoring and control tool (in this example, RealVNC) running
on a computer provided by the makerspace. Universal Robots allows mirroring the robot’s
HMI using a VNC server. Other vendors (e.g., KUKA, ABB, Fanuc) offer similar open or
proprietary solutions for remotely monitoring and controlling a robot’s HMI in operation.
The makerspace computer hosts the SikuliX GUI automation tool, which also provides
robot-specific program generators. This way, members can generate programs in a target
environment over a remote connection to the robot’s HMI. The setup in Figure 9 also en-
sures that members can work safely with collaborative robots by using the safety features
of the robot.
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Table 1 shows some key performance indicators of program generation using the
setup from Figure 9. Due to the latency of Polyscope, to which around 100 ms are added
by the remote connection, and around 25 ms by the image recognition algorithms from
the OpenCV library [62], which is used by SikuliX, the program generation is not as fast
as when using the URSim on a powerful computer (e.g., Intel i7 or equivalent with 16GB
RAM). The overall difference between the two setups in terms of total program generation
time is low because the generator uses a feed-forward strategy—i.e., it does not wait for a
success signals, which allows it to pipeline the generation of instructions. The relatively
slow performance of the program generation process can also be turned into a useful
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feature, which allows users to configure the speed of program generation in a target
environment to fit their learning pace.

Table 1. Key performance indicators of program generation for the Universal Robots’ model 5 (UR5)
robot.

Indicator UR5 Robot URSim

HMI Latency 110 ms 40 ms
Remote connection/VM latency 100 ms 15 ms 1

Processing time per GUI element 25 ms 25 ms
Total program generation time 58 s 48 s

1 URSim runs in an Ubuntu virtual machine (VM), which induces some latency.

4.2. Generalizability

To assess the generalizability of the approach to other programming models, two ad-
ditional program generators were created for Blockly and a proprietary list-based pro-
gramming environment, called Robot Control [37], which is provided with IGUS®robots.
The rationale for this choice was twofold. First, block-based robot programming en-
vironments, which are provided with many educational (e.g., Dobot, UArm, Niryo,
etc.) and lightweight collaborative robots (e.g., ABB single-arm Yumi [63]), are increas-
ingly popular because they facilitate an easy entry into robotics programming. Similarly,
list-based programming environments represent a popular “no-code” alternative to textual
robot programming. For example, modern web-based generic programming environments,
such as Drag&Bot, build on list-based programming. Second, simplified block-based and
list-based environments usually do not provide means for importing (i.e., converting)
programs created using other tools.

The evaluation procedure was as follows. First, a simple test program was created in
Assembly and exported as an RPA model for the SikuliX environment. The content of that
RPA model was:

start_if(“a==b”)
moveTo(280,185,250,-150,-7,-180,50,60)
add_else();
start_if(“c==a”)
moveTo(260,185,250,-150,-7,-180,50,60)
wrap()
wrap()
start_if(“c==b”)
moveTo(270,185,250,-150,-7,-180,50,60)
wrap()

The aim with this program was to measure the implementation effort required to create
generators that are able to produce (1) motion statements and (2) control structures in diverse
target programming environments, and to assess the performance and complexity of those
generators when applied to the test program listed above. Figure 10 shows extracts from the
GRPI-conforming generators corresponding to the three robot programming environments
that were used in the evaluation (UR Polyscope, Blockly, and IGUS®Robot Control);
whereas Figure 11 shows the programs they produce in the respective environments.
The measured key indicators are presented in Table 2.
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Figure 10. Comparison of the key functions extracted from the corresponding robot-specific program generators
(implemented in Python within SikuliX), which were used to generate the test program in three different
programming environments.

First, it must be noted that it was technically possible to create program generators
for each of the target environments being tested with relatively little development effort.
The effort required to create these generators differed, with Blockly yielding the highest
value. The reason for this is that Blockly does not use a fixed program pane, like Polyscope
and Robot Control, which require users to create program elements at exact locations be-
low preceding statements or within different control statements using instruction-specific
control buttons or menu items. Therefore, Blockly’s keyboard navigation feature was used
whenever it provided a simpler solution than emulating the dragging and dropping of
elements using mouse control. In Blockly, keyboard control requires a certain amount
of time to learn and master. In addition, although the length of the Blockly generator is
approximately equal to the lengths of the other two, the relatively long combination of
keys required to navigate through the menus must be accompanied by more elaborate
comments in the code of the generator. Additionally, the generator functions for the if-then-
else statement in Blockly are sensibly more complex, which is an effect of the keyboard
navigation and the mechanism by which parameters are associated with different blocks.
It must also be emphasized that generation of native Blockly expressions is cumbersome,
which prompted the decision to implement a helper function that evaluates expressions
provided as strings rather than “spelling out” native Blockly expressions. Although with
enough ingenuity a patient programmer could implement an RPA model able to generate
native Blockly expressions, this was beyond the scope of this evaluation. In this sense,
it suffices to note that each (graphical) programming model uses (slightly) different ex-
pression syntax and semantics, which requires appropriate solutions or workarounds to
enable RPA-based program generation. The choice of keyboard navigation over drag-and-
drop programming may be regarded as a design tactic, which can be applied whenever
emulating keyboard rather than mouse interactions is more effective.
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corresponding to the test program.

Table 2. Key performance indicators of program generation for the UR5 robot.

Indicator Polyscope (URSim) Blockly Robot Control

Repeatability 100% 100% 100%
Implementation effort ~5 h ~8 h ~4 h

Complexity of generator low medium low
Generation time for test program 38.5 s 1 11.6 s 22.5 s

1 URSim runs in an Ubuntu virtual machine (VM), which induces some latency.

The results also suggest that list-based (i.e., Robot Control) and tree-based (i.e.,
Polyscope) programming are easier to emulate using an RPA approach than block-based
programming. This is likely because, in Blockly, Assembly, and other similar environments,
programs and statements are represented as sequences of blocks of different sizes and
shapes; whereas in Polyscope and Robot Control, the structure of statements is rather fixed
and more easily navigable, either by keyboard or by mouse. This is unsurprising since
Blockly’s aim is to facilitate a learner’s transition towards textual programming and thus to
foster creativity. By contrast, classic robot programming models are more straightforward
and do not have an exit strategy—i.e., a strategy to facilitate the user’s transition towards
textual programming [31].

Concerning the reliability of RPA-based program generation, repeatability arguably
provides a good indicator. The program generation process was repeated 50 times for
each target environment and, once a working setup was achieved, the OpenCV image
recognition algorithms integrated in SikuliX never failed on a 1920 × 1080 screen.

In terms of performance, thanks to the keyboard navigation feature, the Blockly
generator outperformed the other two generators. The relatively slow performance of the
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Polyscope generator can be explained by the fact that URSim (i.e., the Polyscope simulation
environment) runs in an Ubuntu virtual machine and uses a rather slow Java UI framework,
which induces some latency. For example, Polyscope uses modal dialogues for user inputs
(e.g., target locations), which take approximately 100 ms to pop up in the virtual machine.

5. Discussion

Overall, the evaluation results suggest that the proposed approach to generic robot
programming by emulating user interactions in an entire range of graphical (block, tree,
or list-based) target robot programming environments. Textual robot programming envi-
ronments were not evaluated as targets since code generation is a well-studied and easily
solvable problem. In addition, Assembly generates RPA models in Python, which demon-
strates the systems’ capability to generate GRPI-conforming code. The evaluation suggests
that there are several usage scenarios in which the proposed approach presents advantages
over existing GRP approaches.

In a first scenario, the proposed approach can be used to generate programs in propri-
etary graphical robot programming environments, which do not allow importing programs
created using other tools. This is the case both for IGUS®Robot Control and Blockly
(which is used for example with ABB’s one-armed Yumi robot). With such environments,
users are provided with no other option than to recreate existing programs whenever
the latter needs to be ported to a new robot, which uses a proprietary programming
model. This category of robots also includes the newest generation of low cost cobots,
such as—for example—the Franka Emika Panda robot, which uses a proprietary web-based
programming environment.

In a second scenario, the members of shared machine shops, such as makerspaces,
can benefit from the approach by creating robot programs at home and converting them
for an entire range of target programming environments in the makerspace. This helps to
democratize robot technology by providing inexpensive online access to simplified robot
programming, which encourages people who do not typically have access to robots to
explore the potential and limits of this technology.

In a third scenario, the automated generation of programs in a target graphical envi-
ronment fosters learning how to program in the respective target environment. Tools such
as SikuliX provide means for easily configuring the pace at which user interactions are
emulated (e.g., by configuring the “mouse move delay” parameter). This way, program gen-
eration can be adapted to the learning pace of the learner. This also fosters learning to
program by example, whereby the examples must be adjusted to fit the requirements of a
particular application.

For experts, this way of programming robots may be regarded as a form of test-driven
development, in which an application is defined by a series of test cases that need to be
passed. In this context, the proposed approach can be used to generate program stubs,
which only require the adjustment of locations and waypoints. Generated programs may
thus be regarded as design patterns or robot skills, which can be configured and tested on
the shop floor.

5.1. Relationship with Component-Based and Model-Driven Robotics Software Engineering

The approach to GRP by GUI automation introduced in this paper shares some
similarities with existing component-based [64] and model-driven [65] robotics software
engineering approaches. Designing component-based robot software entails mapping
various cohesive functionalities to components in order to separate design concerns and
produce reusable software building blocks [64]. Furthermore, reusable components should
be hardware-independent and interoperable with different software development tech-
nologies and control paradigms [64]. In this sense, the robot program generators intro-
duced in Section 3.3 help to abstract dependencies on robot-specific hardware and soft-
ware, thus enabling the development of reusable components on top of a common GRPI.
Nevertheless, imposing restrictions upon the architecture of components is beyond the



Robotics 2021, 10, 3 20 of 23

scope of the approach. Whereas in autonomous robotic applications, componentization and
object-orientation help to produce reusable robot software, in practical contexts (e.g., on the
factory shop floor and in makerspaces) and in human-robot collaboration applications,
developers are confronted with safety, interoperability, and integration issues against the
background of time pressure, resource scarcity, and lack of software engineering expertise.
In this context, the proposed approach provides a frugal, yet effective solution to imple-
menting result-oriented robot-independent applications in an agile and pragmatic way.
At the same time, for users who are more interested in robotics research and advanced,
(semi-)autonomous applications, the GRPI provides a required interface and contract that
can be used by components, as described in [64].

The proposed approach fully supports model-driven robot programming and software
engineering [65]. Within this approach, a domain-specific language and/or modeling envi-
ronment is used to derive an abstract representation of a real system or phenomenon [65].
In practical terms, the application logic is represented using textual and/or visual seman-
tics, whereby the result is regarded as an (executable) model. Block-based programming
environments, such as Blockly and Assembly, are good examples of model-based software
authoring tools. Other notable examples include BPMN (Business Process Modeling No-
tation), which has been used to model and simulate multi-robot architectures [66] and to
represent manufacturing processes [67], and the VDI Norm 2680 [27], which has been used
to create a constraint-based programming system for industrial robot arms [26]. In this
context, the GRPI can be used to interface various modeling languages and environments
with robot-specific programming environments. RPA models and robot code generators
enable the inclusion of a wide range of robots into high level model representations with
relatively little efforts.

5.2. Limitations and Future Work

Despite the successful development of generators for three dissimilar programming
models, users should expect some difficulties if keyboard navigation is not supported in
some target environments. In such cases, generating some instructions may not be possible
without complex workarounds, which might render the image recognition process less
reliable. In this sense, evaluation studies should be conducted with more diverse target
environments, which heavily rely on mouse or touch-based control.

The relatively long time taken by all generators suggests that users should take into
consideration possible delays due to the need of generating target programs repeatedly.
In scenarios where program generation needs to be carried out in (near) real time automati-
cally, the approach might thus be inappropriate. The performance of RPA-based program
generation is also contingent on the latency of the target environment and will never be as
fast as generating textual programs.

Although the time required to develop program generators is comparable to that
of developing any other code generator, the proposed approach facilitates test driven
development of generators by requiring developers to code in small increments while
visually inspecting the result of the generator in the target environment feature by fea-
ture. Compared to developing a ROS driver, the required software engineering expertise
and development time (including design, code instrumentation, and testing) of program
generators is low. However, developing a program generator for complex environments,
such as Blockly, requires ingenuity and computational thinking. In addition, as opposed
to official APIs, there currently exists no specialized technical support or documentation
about how to automate the HMIs of different robots. In this context, the target system’s user
manual can provide a valuable source of information. Regarding the means for integrating
a generated robot program with other systems using GUI automation technique, details are
provided in [18].

Whereas in non-industrial, educational contexts, the approach presents several ad-
vantages over other approaches (e.g., robotic middleware and robot programming using
a teach pendant), an assessment of the utility of the approach in industrial contexts is
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still needed. Such an assessment could, for example, focus on program generation for
legacy robot HMIs. Finally, a comprehensive evaluation of the approach with a significant
number of users (with and without an industrial background) focused on the usability of
the Assembly tool was not yet carried out and is currently in planning.

Supplementary Materials: The source code of the Assembly tool is available under the Apache 2.0
license at: https://github.com/CoMeMak/assembly.
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