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Abstract: Dynamic programming techniques have proven much more flexible than calculus of
variations and other techniques in performing redundancy resolution through global optimization of
performance indices. When the state and input spaces are discrete, and the time horizon is finite,
they can easily accommodate generic constraints and objective functions and find Pareto-optimal
sets. Several implementations have been proposed in previous works, but either they do not ensure
the achievement of the globally optimal solution, or they have not been demonstrated on robots of
practical relevance. In this communication, recent advances in dynamic programming redundancy
resolution, so far only demonstrated on simple planar robots, are extended to be used with generic
kinematic structures. This is done by expanding the Robot Operating System (ROS) and proposing a
novel architecture meeting the requirements of maintainability, re-usability, modularity and flexibility
that are usually required to robotic software libraries. The proposed ROS extension integrates
seamlessly with the other software components of the ROS ecosystem, so as to encourage the reuse
of the available visualization and analysis tools. The new architecture is demonstrated on a 7-DOF
robot with a six-dimensional task, and topological analyses are carried out on both its state space and
resulting joint-space solution.

Keywords: dynamic programming; redundancy resolution; redundant robot; inverse kinematics;
ROS; industrial manipulator

1. Introduction

When a robot is redundant with respect to its task, the inverse kinematics problem ad-
mits an infinite set of solutions almost everywhere in its workspace. It results in augmented
dexterity that can be exploited to achieve several objectives, which are usually desirable
for a multitude of real applications, such as obstacle avoidance and constrained motions,
improvement of manipulability and local or global optimization of generic performance
indices [1]. Choosing the joint-space configuration in agreement with the criteria above for
each point of the given end-effector trajectory is usually referred to as redundancy resolution.

Redundancy resolution via global optimization of performance indices is of particular
interest in real applications as it allows saving resources, such as energy and time, and
consequently maximizing the use of the robotic asset. On the other hand, such a technique
requires time to provide a solution, therefore it is only suited for off-line planning scenarios.
In space applications of exploration and construction, the minimization of energy translates
into increasing the number of operations that can be completed within the available energy
budget. In manufacturing industries, redundancy can be exploited to perform tasks as fast
as possible, so as to increase the plant throughput. Both applications are characterized by an
off-line programming approach, where the controller references either are generated a long
time before they are executed, as in space applications with windowed communications, or
are computed once and executed several times, as in automated manufacturing.
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If the environment in which the robotic asset operates is subject to contingencies, there
still is a chance to optimize the resources by coupling the off-line planner with an on-board
planner. The latter should allow for the execution of the trajectory computed off-line, so
that resources are still globally optimized, until some unplanned event arises, in which case
the plan has to be modified. Yet the modifications could be implemented in a neighborhood
of the globally optimal solution.

In the literature, the problem of maximizing or minimizing an integral function, subject
to geometric or differential constraints, is addressed by making use of calculus of varia-
tions, either through the Euler-Lagrange formulation [2] or the Pontryagin’s maximum
principle [3], dynamic programming (DP) [4,5], or other numerical optimization techniques,
as by Shen et al. [6], among the others. Calculus of variations only provides necessary
conditions for optimality and is, therefore, prone to sub-optimal solutions. Such conditions
are given in the form of second-order differential equations and related boundary condi-
tions. When initial and final joint positions are not assigned, velocities are constrained at
the beginning and at the end of the trajectory. This results in a Two-Point Boundary Value
Problem (TPBVP) made of a system of non-linear differential equations. Such problems
rarely have a closed-form solution and numerical methods are usually employed [7,8].
Unfortunately, on the practical side, off-the-shelf numeric solvers do not guarantee the
achievement of a solution, if it exists, and the successful computation might depend on a
suitable choice of an initial guess [7]. Lastly, the equations that make up the TPBVP can be
derived from Euler-Lagrange or Pontryagin’s Maximum Principle necessary conditions
only for some specific objective functions and constraints. Real applications, foreseeing
the employment of industrial robots with state and actuation limits performing complex
tasks, usually require the definition of more complex objectives and constraints. Limiting
our analysis to geometric and kinematic considerations, typical real-world constraints
include joint mechanical limits, maximum/minimum velocities and accelerations, as well
as collisions and self-collisions. There exist both unilateral and bilateral constraints, which
are defined on the state variables and their derivatives (up to the second order). Fitting
such constraints in a mathematical formulation based on calculus of variations is not
straightforward [9]. For all these reasons, numerical approaches and, in particular, discrete
dynamic programming ones, proved to be much more promising in solving redundancy in
real scenarios, because of their flexibility [4,5,10–12].

Guigue et al. [4] first applied a dynamic programming algorithm to an industrial use
case, where a 7-DOF manipulator is inserted in a supersonic wind tunnel and a trajectory is
planned to Pareto-optimize the square norm of velocities and the aerodynamic interference.
In a later work [12], by using the same use case, they confirmed the superiority of the
dynamic programming method over calculus of variations in approximating the Pareto
optimal set. Other examples of similar DP-inspired redundancy resolution algorithms
concern applications of laser cutting and fiber placement [5,10,11]. They adopt a discrete
representation, which is used to demonstrate that a formulation of the problem in terms
of graph theory is possible, through which the search space can be modeled as an acyclic
directed graph and the so-called dynamic programming algorithm is, in truth, an optimal
path search algorithm [11]. Dynamic programming has been also successfully employed
for redundancy resolution of parallel kinematic machines (PKM) [13].

In a previous work [14], we demonstrated that the achievement of the globally optimal
solution is subject to building a complete representation of the state space and designing
an algorithm capable of transiting between posture sets, crossing singularities or semi-
singularities. Building upon a topological analysis of the inverse kinematics mapping, we
adopted a formulation of the problem based on multiple state space grids and developed a
procedure to perform a simultaneous optimal search on these grids. Although the presence
of multiple grids had already been discussed in previous works, no evidence was given on
the possibility of exploring them together, possibly compromising the global-optimality
of the solution. On the other hand, our algorithms [9,14], which boast the capability of
returning the globally optimal solution, have only been demonstrated on simple planar
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robots. We remark that, since they are based on a discretization of the state space, global
optimality should be intended here as resolution-optimality, i.e., the solution is globally
optimal, across all homotopy classes, within the finite set of feasible trajectories in the
discretized state space. For small discretization steps, the DP redundancy resolution
algorithm returns a solution that is homotopic to the real global optimum. As clarified next,
because of the characteristics of the problem, a resolution-optimal solution can be found
even though the local optimization problems are not convex.

The objective of this communication is to provide an implementation for complex
robotic structures, effectively turning in practice the outcomes of our topological anal-
ysis [14]. At the same time, a unified architecture, built upon the Robot Operating Sys-
tem (ROS) [15], is proposed so as to respect the usual requirements of maintainability,
re-usability, modularity and flexibility of a robotic software library. To the best of our
knowledge, ROS is not currently equipped with a globally optimal inverse kinematics
library for redundant manipulators: our aim is to fill this gap. Furthermore, since pre-
vious implementations were application-specific, thereby requiring specific coding for
accommodating generic constraints and objective functions, we aim at overcoming this
limit by the design of suitable interfaces allowing for an easy integration of custom re-
quirements. Being the underlying methodology introduced in previous works [9,14], the
main contribution of this paper is on the application. First, a topological analysis is car-
ried out of a realistic 7-degrees-of-freedom redundant industrial manipulator, then, we
design an efficient trajectory planner/inverse kinematics solver for spatial robots, based on
dynamic programming, considering actuation constraints. We show that the algorithm is
able to compute resolution-optimal solutions in a time frame that is compatible with the
considered off-line applications.

In Section 2 we recall the fundamental traits of the problem formulation based on
multiple state space grids and dynamic programming. Therein, we give some notions
of topology that are necessary to the comprehension of the problem. In Section 3, we
first describe how redundancy resolution is addressed in ROS and what the extension
points are for the design of our modules. Then, we present a modular architecture of
a resolution-optimal DP-inspired redundancy solver integrated in ROS, where the user
can plug custom objective functions and constraints. In Section 4, we demonstrate the
capabilities of the solver on a 7-DOF robot and give a topological interpretation of the
results. We discuss about the advantages of the proposed architecture in Section 5 and also
highlight its limitations. The conclusions of the work are drawn in Section 6, where we
also propose some lines of development for the future.

2. Materials and Methods
2.1. Discrete Dynamic Programming

Although a continuous time formulation of the dynamic programming problem is
possible, this communication is limited to the discrete time systems, as the objective here is
to propose a solution that can be directly implemented on digital hardware.

A trajectory x(t) ∈ Rm, with t ∈ [0, T], is given in the task space. Assume to discretize
[0, T] such that t = iτ, where τ is the sampling interval, i = 0, 1, 2..Ni and Ni =

T
τ . The

following discrete time system is given with its initial conditions:

q(i + 1) = f
(
q(i), u(i)

)
, q(0) = q0, (1)

where q ∈ Rn, i.e., the joint positions, represents the state vector of the system, u is the input
vector, and f is a generic discrete-time first-order inverse kinematics expression containing
the constants x(i). The dimension of u depends on the particular inverse kinematics model
and it is u ∈ Rn−m for minimal representations [16]. The objective is to find the optimal
sequence of inputs that minimizes or maximizes a given cost function defined, in general,
on both the state and input vectors and their derivatives.
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Usually, u is not free, but constrained to belong to a certain time-variant domain Ai.
Its time derivative u̇ may also be limited to a given domain Bi(u(i)), which is, in principle,
time-variant as well as input-variant [4]:

u(i) ∈ Ai,

u̇(i) ∈ Bi(u(i)).
(2)

Thus, at each i, the set of admissible values of u(i), from which it is possible to reach
u(i + 1), is given by the intersection between Ai and the set of u-values respecting the
constraint on the derivative, i.e.,

Ci = Ai ∩
{

u(i) :
u(i + 1)− u(i)

τ
∈ Bi(u(i)), with u(i + 1) ∈ Ai+1

}
, (3)

where the Euler approximation has been used in place of u̇. More in general, the definition
above could be extended to represent the intersection of all the constraints on u and its
higher-order derivatives.

Let the objective function to optimize be

I(0) = ψ
(
q(Ni)

)
+

Ni−1

∑
j=0

l
(
q(j), q̇(j), u(j), u̇(j)

)
, (4)

where ψ is the cost of the final configuration. The assumption is made that the cost function
computed locally l only depends on the states, on the inputs and on their first-order
derivatives, but in general, more complex functions could be defined.

Rewrite the cost function in a recursive form and use the Euler approximation for q̇
and u̇:

I(Ni) = ψ
(
q(Ni)

)
I(i) = I(i + 1) + l

(
q(i), q(i + 1), u(i), u(i + 1)

)
.

(5)

Assume that the optimization criterion is to minimize I(0). By using the Bellman
principle, we could then write:

I(Ni) = ψ
(
q(Ni)

)
Iopt(i) = min

u∈Ci

[
l
(
q(i), q(i + 1), u(i), u(i + 1)

)
+ I(i + 1)

]
,

(6)

where Iopt(i) is the optimal return function and Iopt(0) the optimal cost.

2.2. State Space Grids

In the majority of the works mentioned in Section 1, the input vector u is defined
using the joint selection method (or joint space decomposition), which foresees the selection
of r = n−m variables from the joint position vector. Alternatively, the joint combination
method requires the definition of r functions of the joint positions, which is a more generic
setup that also includes joint selection [16]. For instance, for Guigue et al. [12], u is of
dimension one and corresponds to the sum of two joint variables. If k : Rn → Rm is
the direct kinematics function, the inclusion of r additional functions ku(q) yields the
augmented kinematics ka : Rn → Rn, i.e.,[

x
u

]
= ka(q) =

[
k(q)
ku(q)

]
. (7)

In this case, when the redundancy parameter u is given, the remaining joint positions
can be computed as
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q(i) = k−1
a
(
x(i), u(i)

)
. (8)

To deal with a problem that is computationally feasible, it is convenient to discretize
the state space, instead of the input space, so that the admissible inputs are only those that,
once plugged into the dynamic system (1), yield states in the discrete domain. However,
if (8) is considered, the discretization of the state space can be obtained through the
discretization of the input space. Furthermore, let us assume to adopt a joint selection
parametrization, whose practical advantages will be clarified in Section 3. The selected joint
domains are thus discretized according to u = j ◦ ∆qu, where ‘◦’ represents the Hadamard
product and ∆qu = [∆qu,1, ..., ∆qu,r]T is the vector of the sampling intervals, defined on
each axis of the domain and j ∈ Nr. Because of (8), the state space is also discretized. This
allows building a grid of r + 1 dimensions in ti and uj, where i is the stage index, or waypoint
index, and j is the vector of the redundancy parameters indices. Each node (i, j1, j2, ..., jr) in the
grid contains a configuration computed as

qj(i) = k−1
a
(
x(i), uj

)
, (9)

with i ∈ [0, Ni] ⊂ N and j ∈ {[1, Nu,1]× ...× [1, Nu,r]} ⊂ Nr. A pictorial view of this process
is given in Figure 1 for the case j = j ⊂ N (one degree of redundancy, i.e., r = 1): each
column in the grid corresponds to a waypoint on the path and the nodes in a column span
the self-motion manifold(s) lying in the null-space. Grids combine self-motions with path
tracking and are, therefore, the pre-image of the workspace path in the configuration space.
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Figure 1. Mapping of the workspace path in the joint space yielding the state space grids.

The “augmented” kinematic function k−1
a in (9), also termed node function, is equiva-

lent to a standard inverse kinematic function of a non-redundant manipulator, meaning
that qj(i) is not unique, but a finite set of solutions exists. The number of such solutions Ng
only depends on the mechanical characteristics of the manipulator and is equal to 2, 2, 4
and 16 for planar, spherical, regional and spatial manipulators respectively [17,18]. How-
ever, for some specific kinematic structures, as well as for some specific trajectories [19],
the actual number of solutions could be less than the maximum theoretical value. For
instance, for most six-axis industrial manipulators, the number of distinct configurations is
equal to 8 [11]. Multiple inverse kinematic solutions imply the existence of multiple grids.
Therefore, let us rewrite Equation (9) to make the grid index g explicit:

q(g)
j (i) = k−1

a
(
x(i), uj

)
, with g = 1..Ng. (10)
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All the inverse kinematic solutions along the assigned path can be classified so as
to ensure continuity for each single grid, determining a continuous posture set. For a
redundant planar manipulator with Denavit-Hartenberg reference frames, such a classi-
fication reduces to testing the sign of the “elbow” joint, so that one grid represents the
elbow-down configurations and the other the elbow-up ones. If the kinematic chain is made
of many joints, identifying the elbow could be not immediate. Indeed, the elbow itself
depends on the chosen redundancy parameter: it will be the joint variable nullifying the
extended (or augmented) Jacobian’s determinant; its sign will mark the separation between
elbow-down and elbow-up inverse kinematic solutions [14]. In general, if the redundancy
parameter changes, the extended Jacobian changes too, and the joint variable nullifying its
determinant could be different, as well as the criterion to distinguish between continuous
posture sets. For a generic redundant manipulator, the extended Jacobian determinant
could be made of several factors. From the topological point of view, all the solutions deter-
mining the same signs for such factors are said to belong to the same extended aspect [20]
and constitute a continuous posture set. If a grid contains solutions from one and only
one extended aspect, it is said to be homogeneous [14]. This concept will be useful in the
discussion that follows in Section 2.3.

As a concluding remark on state space grids, it is important to highlight that, although
an extended Jacobian is virtually defined once the redundancy parameter is selected, it is
never used for kinematic inversion. In agreement with (10), inverse kinematics is always
positional, so that the optimization is immune to singularities and algorithmic singularities.
As will be clarified next, transitions through singularities are nominal in a discrete dynamic
programming approach and, indeed, this is a relevant advantage of this technique over
others, including calculus of variations.

2.3. DP-Inspired Search Algorithm

If all the states by which the manipulator can transit are available in the grids, the
optimization problem reduces to the selection of the nodes that provide the minimum cost.
In this case, the problem is equivalent to that of finding the optimal path on an acyclic
directed graph [11], which means that an optimal solution can be found regardless of
the Bellman optimality principle, which would rather be necessary if the state set was
continuous. Thus, we keep the problem decomposition typical of dynamic programming,
where the local optimization problem is simply a node selection problem, which is typical of
search algorithms on trees and graphs [21]. With this formulation, several implementations
are possible. For instance, we proposed a forward (i.e., from the first waypoint to the last)
iterative implementation [14], but alternatives exist to proceed backward (i.e., from the last
waypoint to the first) and/or using recursive approaches. It has to be noted that if a forward
implementation was chosen, Equation (6) should be rewritten as

I(0) = ψ
(
q(0)

)
Iopt(i) = min

ui−1∈Ci−1

[
I(i− 1) + l

(
q(i), q(i− 1), u(i), u(i− 1)

)]
.

(11)

In this case it is convenient to redefine u̇(i) as:

u̇(i) =
u(i)− u(i− 1)

τ
(12)

and Ci−1 as:

Ci−1 = Ai−1 ∩
{

u(i− 1) :
u(i)− u(i− 1)

τ
∈ Bi(u(i)), with u(i) ∈ Ai

}
. (13)
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The choice between forward and backward implementation is not, in general, arbitrary,
as it often depends on considerations about performance and on the hardware architecture
used, as well as on the boundary conditions of the problem.

To better understand how boundary conditions affect the choice, we could highlight
that the optimal cost function Iopt(0) (backward) or Iopt(Ni) (forward) are conditioned by the
sequence of inputs enabled Ai at each i. In many practical cases, unless the environment
in which the robot moves is particularly constrained, applications require that either the
initial joint positions or the final ones or both are assigned or otherwise constrained (e.g.,
cyclic joint trajectories). The optimal solution and the value of the cost function will then
vary together with the initial or final set of inputs. So we may write Iopt as a function of
such sets [4], having Iopt(0,ANi ) or Iopt(Ni,A0).

Assume to run our forward dynamic programming algorithm once, starting with
inputs in A0 and ending with inputs in ANi . One execution of the algorithm is sufficient to
provide the solution together with its cost for the optimal joint-space paths ending in each
single element of ANi . From the practical standpoint, the upside is that one may decide to
select a sub-optimal solution if its cost does not vary too much from the optimal cost, while
the final joint positions are much more favorable for the particular task the robot has to
execute.

On the other hand, if one asked for a solution starting from a specific u(0), this may
require an additional execution of the algorithm, either proceeding backward or by explicitly
forcing the initial condition at the moment A0 is defined. In other words, one execution of
the forward algorithm with free initial conditions does not guarantee the computation of a
solution for each input in A0, as well as one execution of the backward algorithm with free
final conditions does not guarantee the computation of a solution for each input in ANi .

Considering the grid representation of Section 2.2, and assuming a forward implemen-
tation, we may rewrite Equation (11) as

I(g)
j (0) = ψ

(
q(g)

j (0)
)

I(g)
j (i) = min

k,h

[
I(h)k (i− 1) + l(h→g)

k→j
(
q(i), q(i− 1), ..., q(i− d)

)]
, for i > 0

Iopt(Ni) = min
j,g

[
I(g)
j (Ni)

]
,

(14)

where l(h→g)
k→j is the local cost to move from node (i− 1, k) on grid h to the node (i, j) on

grid g, while d ∈ N is the maximum order derivative for which a constraint is defined; for
instance, if acceleration constraints are imposed, d = 2. A pictorial view is given in Figure 2
for r = 1. For each enabled node at i + 1 (in blue), an optimal predecessor is selected among
those that belong to Ci (in green) by solving the local optimization problem in (14). Higher-
order constraints yielding Ci are checked by using the chain of d predecessors represented
by the red arrows, which allows computing the discrete approximations of derivatives.

In case Pareto-optimal solutions have to be found, the cost comparison cannot be
performed, for each pair of nodes at subsequent stages, on the basis of a scalar cost function.
The minimization in (14) is replaced by the dominance rule [4]. Said z the number of
performance indices in the Pareto-optimal setup, an objective vector I∗ is Pareto-optimal if
there does not exist another objective vector I such that Ii ≤ I∗i ∀i = 1, . . . , z and Ij < I∗j for
at least one index j. This definition allows defining the dominance rule: given two nodes
(i− 1, k1) and (i− 1, k2), for which the cumulative cost is computed in transiting towards
the same node (i, j), (i − 1, k1) is said to dominate (i − 1, k2) if (i − 1, k1) improves the
vectorial cost function of (i− 1, k2) for at least one performance index, without worsening
the others. As a consequence, the optimal predecessor of a given node at i is not a single
node at i− 1 (the predecessor is not unique), as each node might improve the objective
vector in a different direction. Every time a dominating node is identified, it enters the list
of the optimal predecessors of (i, j) and the dominated nodes are removed from the same
list. As for the scalar objective case, the process is repeated for each i and j.
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Figure 2. Pictorial representation of the local optimization problem.

With respect to previous implementations, our algorithms [9,14] provide the evidence
that the resolution-optimal solution can be achieved by applying (14) onto all the Ng grids
at the same time, i.e., exploring the whole configuration space, and transiting between
such grids when necessary, through singularities or semi-singularities of the kinematic
chain, using configurations from different extended aspects. They differ in that the former
does not make any specific assumption on the homogeneity of the grids, while the latter
assumes to work with homogeneous grids to reduce the computational complexity. Both
algorithms adopt a forward iterative implementation since, in practical situations, it is more
convenient to compute an optimal solution for each single final configuration, starting
from one initial configuration, corresponding to the current state of the system. In this
communication, we do not make any prior assumption on the grids [9]. However, if we
can ensure or detect that grids are homogeneous, we can exploit this information to speed
up the search [14].

The computational complexity of the algorithm [9], assuming that the same number
of samples Nu is chosen for all the redundancy parameters, is O(Ni N2r

u N2
g). This is due to

the fact that for each waypoint (Ni waypoints overall) and for each node in the grids (Nr
uNg

nodes for each waypoint), a comparison shall be made with each node at the next waypoint
(Nr

uNg overall). If the grids are homogeneous, transition points (i.e., nodes corresponding
to singularities or semi-singularities where the transition between grids/extended aspects
is possible) are clearly identified and the comparisons with the nodes at the next waypoint
are only performed within the same grid, lowering the computational complexity to
O(Ni N2r

u Ng). For a given manipulator, Ng is constant, regardless of the trajectory and, in
general, Ng << Nu. Thus, the computational complexity can be approximated, in most
of the cases, to O(Ni N2r

u ). Also, homogeneous grids are characterized by continuity of
solutions, meaning that, if a certain node does not satisfy the velocity constraints, a farther
node will not satisfy them either: this is the assumption at the basis of our optimization [14].
In other words, the velocity constraints allow reducing the number of comparisons for
each couple of waypoints to a limited window of nodes, whose cardinality is Nr

w, with
Nw << Nu. Therefore, the computational complexity reduces to O(Ni Nr

uNr
w).
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Since all the nodes satisfying the constraints are tested to find the optimum at each
stage, resolution-optimality is guaranteed even though the problem in (14) is not convex.
Indeed, our method is based on the Bellman optimality principle, ensuring that the solution
of the lowest cost is returned for a given discretization of the state space. The compliance
of our method to the necessary conditions of calculus of variations has been verified in [9],
for a much simpler use case (a planar robot), for which a formulation based on calculus of
variations can be obtained straightforwardly.

While this approach might sound demanding in terms of CPU time and memory
occupancy, the results of the computational complexity analysis, as well as the specific
topological features of spatial robots subject to real-world constraints suggest that solving
problem (14) is doable within a time horizon that is compatible with the off-line planning
applications mentioned in Section 1. This is shown in Section 4 with an example.

3. ROS Implementation
3.1. Designing an Extension for MoveIt!

MoveIt! [22] is the planning framework of ROS, including several libraries for motion
planning, manipulation, 3D perception, kinematics, control and navigation. To the pur-
pose of extending it to perform resolution-optimal inverse kinematics along a specified
workspace trajectory, we focus on the analysis of three concepts of interest, which are
capabilities, planners and inverse kinematics.

For a robotic manipulator, the MoveIt! user can plan joint-space trajectories and
perform several other actions through capabilities, exposed by the move_group node. For
instance, the MoveGroupCartesianPathService is used to plan Cartesian paths (straight lines)
passing by pre-defined waypoints, the MoveGroupPlanService performs the point-to-point
trajectory planning in the joint space, the MoveGroupKinematicsService computes direct and
inverse kinematics, and so on.

Except for the MoveGroupCartesianPathService, the move_group node does not allow for
any other form of planning in the joint space along a constrained end-effector trajectory.
MoveIt! provides several planners, such as OMPL and STOMP [23], just to mention some,
which are typically employed in a point-to-point planning scenario, i.e., move the end-
effector to a new location along an arbitrary path. Additional constraints can be specified in
the Motion Plan Request [24] for any link in the kinematic chain, including the end-effector,
but planning for complex paths may not be straightforward and just a few possibilities
exist to tune the process to work with generic (possibly multiple) objective functions and
application-specific constraints. As far as the MoveGroupCartesianPathService is concerned,
the user defines the workspace waypoints, then the end-effector trajectory is simply cal-
culated by first order interpolation. The joint-space planning consists of computing the
inverse kinematics for each single waypoint in the interpolated set, but, for a redundant
manipulator, no mean exists to control the optimality of the solutions in the joint space
along the whole trajectory.

On the other hand, since the dynamic programming algorithm presented in Section 2
is no more than a resolution-optimal inverse kinematic procedure, we may think to extend
the inverse kinematics capabilities of MoveIt!. Nonetheless, the resolution-optimal planning
is defined on a pre-defined set of waypoints, so that the objective function and constraints
can regard the derivatives of the joint position variables, which will depend on the time
law defined at the end-effector.

The algorithm we aim to extend MoveIt! with is a planner in that it computes a joint-
space trajectory from infinite possible solutions, but, at the same time, it is an IK solver,
as it works with an assigned workspace trajectory. Because resolution-optimal inverse
kinematics is different from other capabilities of the framework, we believe that providing
the functionality as a new move_group capability is the most seamless solution.
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3.2. Requirements

On the basis of the considerations above, let us consider the following requirements
for our extensions:

Req. 1: to allow for a seamless integration with the ROS ecosystem, so as to reuse,
as much as possible, the available technologies (e.g., visualization and analy-
sis tools);

Req. 2: to support the generation of multiple homogeneous grids;
Req. 3: to perform a search on such grids to find the resolution-optimal joint-space

solution [9];
Req. 4: to support the optimization for homogeneous grids [14];
Req. 5: to allow for the addition of user-defined constraints and objective functions;
Req. 6: to allow for the topological analysis of the state space and the resolution-optimal

trajectory.

3.3. Context

Our moveit_dp_redundancy_resolution package, publicly available on the Internet [25],
constitutes an additional move_group capability, which is offered to the MoveIt! users through
a ros::ServiceServer. Specific messages, called GetOptimizedJointsTrajectory, are exchanged through
the service interface. The user can be any ROS node that implements a ros::ServiceClient interface
and is able to assembly and send a GetOptimizedJointsTrajectoryRequest.

To exploit, as much as possible, the available visualization and analysis tools, i.e.,
Req. 1:, the results of the computation performed by the resolution-optimal planner are
published through ros::Publisher objects on specific pre-existing topics, so that other nodes
from the ROS ecosystem, such as RViz and rqt_multiplot, can be used to animate the
robot along the assigned trajectory and to plot the resulting joint position, velocity and
acceleration curves respectively.

Furthermore, in order to satisfy Req. 6:, several functions are provided to export the
data structures of interest to the filesystem, to be later imported by additional analysis
tools, such as MATLAB functions/scripts or replayed through ROS bagfiles.

The moveit_dp_redundancy_resolution context is reported in Figure 3, where the exten-
sions are drawn in red. Together with the main ROS developments, additional analysis
functions have been developed in MATLAB to perform the off-line topological analysis of
both the state space and the resulting resolution-optimal joint-space trajectory. State space
grids are exported to custom binary formats, while optimal trajectories are exported to
bagfiles and imported in MATLAB through the rosbag interface.

Figure 3. Context diagram.
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3.4. Architectural Design

Internally, the ros::ServiceServer is hosted in the MoveGroupDPRedundancyResolution-
Service class, which constitutes the capability plugin. It is in charge of receiving requests,
calling the lower level functions, building up responses and disseminating them through
publishers, as well as generating bagfiles. It is instantiated at run-time, depending on the
configured move_group capabilities and usually stands next to other default capabilities, as
mentioned in Section 3.1. Its client counterpart, the robot_controller node, can call its service
or other move_group capabilities, covering a broad range of planning scenarios. For example,
one may request a point-to-point planning to OMPL and then use the generated workspace
trajectory to issue a resolution-optimal redundancy resolution request. The same could
be done with a workspace trajectory generated with the MoveGroupCartesianPathService
capability, as will be shown in Section 4.

Behind the MoveGroupDPRedundancyResolutionService, several other objects interact
to satisfy the requirements of Section 3.2. In particular, the StateSpaceGrid is the class
implementing the data structure representing the joint space along the assigned trajectory.
It provides import/export functions for the grid’s custom binary file format as well as
the generation of colormaps in the form of raster images that can be directly interpreted
by the human user for quicklook purposes. To deal with homogeneous grids, state space
grids cannot be generated independently, as it is necessary that the multiple IK solutions
are classified per extended aspect, as observed in Section 2.2. For this reason, multiple
grids are created by a single execution of the IK solver, supervised by a StateSpaceMultiGrid
object. Its primary objective is to control the non-redundant IK solver implementing (10)
and to classify the solutions, so as to satisfy Req. 2:.

To speed up the calculation of the state space grids, it is convenient to adopt an analytic
inverse kinematic solver that is several orders of magnitude faster than numeric solvers. In
the ROS framework, a possibility is given by IKFast, which can find all the IK solutions on
the order of 6 microseconds, while most numeric solvers may require even 10 milliseconds
or longer, and convergence is not certain [26]. IKFast performs an off-line analytic kinematic
inversion and generates a C++ library containing the algebraic IK solver, able to return all
the solutions for given end-effector pose. The off-line process may require several minutes,
but is independent from the assigned trajectory and, thus, needs to be executed only once
for a given kinematic chain. Currently, IKFast is able to manage open kinematic chains with
one degree of redundancy. The value of the redundancy parameter has to be provided at
the time the algebraic solver is called, which is the case of the DP grids considered in this
communication. Nonetheless, it is worth observing that, in this context, it is not necessary
that the IK solver natively supports redundant inverse kinematics, as the redundancy
parameters are given for each single grid node and the inverse kinematics always involve a
non-redundant kinematic chain. This means that our solution is scalable with respect to an
arbitrary redundancy degree and IKFast can always be used, provided a suitable definition
of the redundant (i.e., including the redundant joints) and non-redundant (i.e., excluding
the redundant joints) planning groups.

The equations in (14) are implemented by the DynamicProgrammingSolver class, sup-
porting multi-grid search, thereby satisfying Req. 3:. Since state space grids are added to
the solver one by one, specific posture sets can be excluded by not passing them to the
solver. To satisfy Req. 4:, the optimization can be explicitly enabled/disabled, depending
on whether homogeneous grids can be obtained.

The moveit_dp_redundancy_resolution package provides two extension points, which
are the abstract classes PerformanceIndex and StateSpaceNode. The former allows for the
definition, through a specific XML-based language, of custom performance indices that can
be combined together in an ObjectiveFunction. This is done offline, through configuration
files. Optionally, performance indices can be characterized by a weight, used for weighted
optimization. Otherwise, they are inserted in a vector and the solution will be Pareto-
optimal (in a discrete sense, as discussed above). On the other hand, the StateSpaceNode
class allows for the definition of application-specific semantics (even beyond resolution-
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optimal inverse kinematics) and related constraints. For instance, one may think of using
the same classes for time-optimal planning along specified paths, provided that a specific
StateSpaceNode implementation is given. These two classes allow satisfying Req. 5:.

The structure of the described classes is reported in the hybrid decomposition/class
diagram of Figure 4, while its dynamic behavior, for the operations yielding the dynamic
programming redundancy resolution, is represented in the sequence diagram of Figure 5.

Figure 4. Hybrid decomposition/class diagram.

3.5. Use of Numeric Solvers

IKFast is characterized by the nice property of returning all the IK solutions in a
single call to the solver. Furthermore, under certain circumstances, such solutions could be
returned in the same order with respect to the extended aspects. When this happens, no
post-processing is required on the IK solutions to generate homogeneous grids. Otherwise,
either an explicit analytic factorization of the Jacobian is available, or numeric techniques
are employed in order to ensure continuity in the state space.

If an analytic solution cannot be computed at all, or is hard to obtain, numeric solvers
can be used instead. They are characterized by the property of returning one or no solution
for each single call to the solver and their processing is notoriously time-consuming. To
still have some control on the execution time, it is extremely important that the conditions
characterizing the extended aspects are known beforehand, so that the search space of the
solver can be drastically reduced. If this is not the case, the employment of numeric solvers
practically rules out the usage of dynamic programming, as multiple IK searches do not
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guarantee the achievement of solutions in different extended aspects, but, worse, the same
solution may be returned multiple times, making inverse kinematics a time-consuming
try-and-error process.

Figure 5. Sequence diagram representing dynamic programming redundancy resolution.

In our implementation, we also provide the possibility of using the numeric solver
KDL [27], but with planar manipulators only, where we know the condition separating the
(two) extended aspects. This capability is transparently provided by the MoveGroupDPRe-
dundancyResolutionService class. In our experience, for more complex cases where the
Jacobian’s factorization is not available, the grids generation time becomes much greater
than the time needed for the DP search itself and, consequently, the algorithm becomes
unusable in any case of practical relevance.

We have been using the KDL-based implementation for planar robots to validate our
implementation against a known use case employed in previous works [2,14,28] and have
kept this capability for further similar cases involving planar manipulators.
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4. Results
4.1. Use Case Description

To demonstrate that the methodology developed in the previous sections can be
effectively applied to a real scenario, let us consider a real robotic arm with 7 degrees of
freedom, to which a task constrained in position and orientation is assigned, with a time
law. In a first trial, the objective is to reduce the energy consumption indirectly through
the minimization of the square norm of joint velocities. Sub-optimal solutions are not of
interest, hence the globally optimal one must be found. In a second trial, while minimizing
the energy consumption as before, in a Pareto-optimal setup, the distance between the
elbow (corresponding to the fourth joint) and an obstacle in the workspace is maximized so
as to find a collision-free joint-space trajectory. Since the Panda robot by Franka Emika [29]
has 7 degrees of freedom and is the flagship robot of MoveIt!, it is a convenient choice for
the experiment at hand.

The modified Denavit-Hartenberg parameters [30] of the Panda robot [31] are reported
in Table 1. Let us set the joint position, velocity and acceleration limits according to the
datasheet. Limits on the jerk are not considered, but, as noticed by Gao et al. [5], they
contribute to generating smoother solutions, which is necessary in all the cases where the
resulting trajectory has to be executed on real hardware.

Table 1. Panda modified Denavit-Hartenberg parameters.

di θi ai αi

J1 0.333 q1 0 0
J2 0 q2 0 −π/2
J3 0.316 q3 0 π/2
J4 0 q4 0.0825 π/2
J5 0.384 q5 −0.0825 −π/2
J6 0 q6 0 π/2
J7 0 q7 0.088 π/2
Flange 0.107 0 0 0

The workspace path is defined in terms of position and orientation and is depicted in
Figure 6, together with the base reference frame and the obstacle. The axes x, y and z are in
red, green and blue respectively. The planning is performed for the end-effector’s flange
that has to visit five waypoints, in the order xA, xB, xC, xD and xE, describing the corners of
a rectangle in the y-z plane, with variable orientation. Their values with respect to the base
reference frame, considering a roll-pitch-yaw representation for the orientation, are

xA =



0.3
−0.3
0.8
0

−π/2
0

 xB =



0.3
−0.3
0.4
0

−π/2
0

 xC =



0.3
0.3
0.4
0
−π

0

 xD =



0.3
0.3
0.8
0

π/2
0

 xE =



0.3
−0.3
0.8

π/2
π/2

0

. (15)
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Figure 6. Workspace path assigned to the Panda arm, together with the base reference frame
and obstacle.

All the points in between each pair of waypoints are obtained by linear interpolation,
with a linear resolution not exceeding 0.01 m. A time law is defined so as to complete the
whole trajectory in 60 s, with a constant time offset between consecutive points. The total
number of points is Ni = 203.

4.2. Grids Computation

As mentioned above in Section 3.4, grids are computed through the StateSpaceMulti-
Grid class, making use of the IKFast kinematic plugin. The plugin is based on a C++ solver
generated off-line, which requires to select a redundant joint with respect to which inverse
kinematics expressions are computed. In general, the choice of the redundancy parameter
is not arbitrary, for two reasons:

• inverse kinematics in (10) foresees the availability of an analytical IK solver: in order
for the solver to exactly implement (10), it must be parametrized with respect to the
same parameter u;

• when fixing the redundant joints to specific values, the manipulator must be no longer
redundant in order for (10) to return a finite number of solutions: at algorithmic
singularities, i.e., configurations nullifying the determinant of the extended Jacobian,
this is not the case.

Both issues are beyond the scope of this paper, but we note that solutions exist to
select redundant joints in view of performing inverse kinematics, as well as correctly repre-
senting internal motions [32]. In our case, we can obtain an IKFast solver by selecting the
redundancy parameter u = q4. In fact, since joint 4 is in the middle of the kinematic chain
and its axis does not intersect any other joint axis, we minimize the chances of encountering
degenerate cases and of handling more complicated expressions [26]. A posteriori, we
verify that the selected parameter is representative of the internal motion for the assigned
path, i.e., state space grids do not degenerate to lines.

The redundancy parameter can be discretized so that Nu = 2880, either between
−180 deg and 180 deg, which yields a resolution of 0.125 deg, or between its physical
limits, i.e., −176 deg and −4 deg, which yields a resolution of about 0.06 deg. The Panda
manipulator has 8 IK solutions, i.e., Ng = 8, for all the points on the trajectory, but in
practice, because of joint limits, some points have less. The “slices” corresponding to q1 of
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the grids computed with IKFast are reported in Figure 7, while those computed neglecting
joint limits, for comparison purposes, are reported in Figure 8.

The first interesting thing to notice about these grids is that they are homogeneous,
as evident from those of Figure 8. The extended Jacobian Ja, obtained from the 6 × 7
rectangular Jacobian by adding the row [0 0 0 1 0 0 0], cannot be easily factorized, implying
that we are not provided with analytic conditions to classify the solutions of IKFast. For this
reason, the following three conditions are used, obtained from an a-posteriori numerical
analysis of the solution sets:

• |J(4)r | > 0;
• q2 > 0;
• q5 > 0.

Each of the grids in Figures 7 and 8 corresponds to a different combination of the
conditions above, providing an homogeneous classification of the solutions. It is possible to
demonstrate that both q2 and q5 are factors of |Ja| and, being the “augmented” Panda ma-
nipulator of type 1, according to Wenger [19], they are sufficient conditions for classifying
the solutions.

The second trait of interest is that there might exist redundancy parameters other than
q4 that are more representative of the internal motion, for the trajectory assigned. In fact,
by looking at the grids of Figure 8 (without joint limits), a large portion of the joint domain
does not contain any solution. This means that large variations of the other joints shall
be expected for little variations of the redundancy parameter: a fine discretization of the
redundancy parameter is needed for the dynamic programming algorithm to provide a
smooth solution. We recall that, in our case, the selection of q4 is unavoidable for IKFast to
produce an anlytical IK solver.

Lastly, it is worth noting that joint limits, in real scenarios, notably reduce the search
space, giving a chance to the dynamic programming algorithm to find the resolution-
optimal solution in a short time. Also, because of joint limits, the Panda is not able to
track the assigned trajectory remaining in the same extended aspect, as none of the grids
admits a feasible joint-space path from xA (corresponding to i = 0) to xE (corresponding
to i = 203). Hence, the robot will need to reconfigure its posture on the way by passing
through singularities of its kinematic subchains.

4.3. Globally Optimal and Pareto-Optimal Solution

Since grids are homogeneous, the search can be optimized. Thus, both our algo-
rithms [9,14] can be executed to find the resolution-optimal solution on the grids of Figure 7.
Table 2 reports the execution time of both algorithms and different discretization steps of
the redundancy parameter, together with the associated cost function, for the case where
only energy minimization is considered. Tests have been executed on a 64-bit Ubuntu
16.04 LTS OS running on an Intel® CoreTM i7-2600K CPU @ 3.40GHz × 8. No multi-core
execution model has been used in the tests.
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Figure 7. Panda grids (each corresponding to a different extended aspect) representing q1 for the trajectory described in
Section 4.1 considering joint limits.
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Figure 8. Panda grids (each corresponding to a different extended aspect) representing q1 for the trajectory described in
Section 4.1 neglecting joint limits.



Robotics 2021, 10, 42 19 of 23

Table 2. Cost function and performance of DP redundancy resolution algorithm for the Panda
example, minimizing the square norm of velocities.

Nu
Redundancy Parameter

Resolution
Non-Optimized

Algorithm [9]
Optimized

Algorithm [14] Cost

360 0.48 deg 11 s 11 s 4.27
720 0.24 deg 54 s 54 s 2.76
1440 0.12 deg 4 min 4 min 2.44
2880 0.06 deg 14 min 13 min 2.16
4000 0.04 deg 27 min 26 min 2.04

It is interesting to notice that there is not any considerable improvement in the per-
formance by using the optimized algorithm in place of the unoptimized algorithm. This
means that either position or acceleration limits are almost everywhere stricter than velocity
limits for the assigned trajectory. This is in contrast to the use cases where the existence of
much less unfeasible cells (i.e., white regions) allows velocity constraints activate first [14].

The convergence rate that we may estimate from the values of the cost function,
compared to our previous use case [14], is a confirmation that q4 is very sensitive for the
considered trajectory, meaning that small variations of q4 yield considerable changes in the
solution for the other joints and, as consequence, in the final value of the cost function.

The solution obtained for Nu = 4000 is reported in Figure 9 (left). It starts from grid 5
(i.e., |J(4)r | < 0, q2 < 0, q5 > 0), then, at t = 3.3 s (i = 12), it jumps to grid 6 (i.e., |J(4)r | > 0,
q2 < 0, q5 > 0) and, at t = 14.6 s (i = 50), to grid 1 (i.e., |J(4)r | < 0, q2 < 0, q5 < 0).
For the majority of the trajectory, up to t = 48.7 s (i = 165), the solution lies on grid 1.
Afterwards, it transits to grid 2 (i.e., |J(4)r | > 0, q2 < 0, q5 < 0) and terminates, achieving 3
posture reconfigurations in total and visiting 4 different extended aspects. As commented
in Section 2.3, posture reconfigurations always happen on the boundaries of the feasible
(non-white) regions, where two or more of the maps have the same color for all the joints
(only q1 is shown in Figure 7). It is easy to verify that this is the case for the sequence of
grids visited by the algorithm and transitions at the stages mentioned above.

In the Pareto-optimal setup, in order to provide the solver with a unique optimization
criterion (minimization or maximization), the distance from the obstacle is maximized by
minimizing the distance between joint 4 and the point p = [0,−2, 0.5], lying on the opposite
side with respect to the robot, with the effect of “pulling” it away from the obstacle. Among
the solutions in the Pareto set, we select the one that minimizes the norm of the objective
vector. For Nu = 4000, the cost is [3.20, 191.33], corresponding to square norm of velocities
and distance from p respectively, while the joint-space solution is shown in Figure 9 (right).
As shown in the video [33], the dynamic programming algorithm achieves the computation
of an obstacle-free trajectory, while the robot collides if only the square norm of velocities
is minimized.

As far as the solutions of Figure 9 are concerned, the reader may clearly notice the
discontinuities in the derivative of the joint positions at each of the three intermediate
corners of the trajectory. In between these points the curves are not everywhere smooth.
As commented by Gao et al. [5], either a post-processing step or the introduction of jerk
constraints would be desirable to allow for the execution on real hardware.
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Figure 9. Discrete globally optimal (left) and Pareto-optimal (right) solution for the Panda example.

5. Discussion

With respect to previous works using a similar DP-based problem formulation, we
focused on the design of a maintainable, re-usable, modular and flexible ROS extension
that can be generic enough to be employed in a broad range of applications. We provided
clear extension points to adapt the software to specific scenarios and introduce custom
requirements, such as specific constraints and objective functions. Our solution foresees
the development of a minimal amount of code to introduce such modifications, because,
when possible, they are enforced through configuration files.

The whole extension is provided in the form of a new move_group capability, meaning
that the already existing interfaces are reused as much as possible, so that the user can ben-
efit from already available analysis and visualization tools. Also, we implemented several
file export functions, relying as much as possible on existing formats, e.g., bagfiles, so that
further tools can be developed even in environments outside of ROS, such as MATLAB.

We emphasized the capability of our algorithm of exploring multiple grids at the
same time, which was not evident in previous works, thus ensuring the achievement of
the resolution-optimal solution. In our treatment, we did not renounce to the topologi-
cal analysis of both the manipulator’s null space along the trajectory and the resulting
reslution-optimal joint-space solution. Although this is more complicated for spatial ma-
nipulators than planar ones, some key features of the problem can be highlighted, as the
feasibility of the task and the necessity of traversing singularities or semi-singularities to
complete it. Attention was paid to the computational complexity and, in fact, we extended
previous algorithms [9,14] to be applied to real robots and demonstrated that, depending
on the chosen redundancy parameter and joint limits, not necessarily homogeneous grids
yield lower computation times. However, on the other hand, we showed that for real
manipulators, dynamic programming is perfectly suited for redundancy resolution as the
constraints characterizing real applications drastically reduce the search space and yield a
fast convergence.

In our implementation, inverse kinematics plays an important role. First of all, it
only concerns position kinematics, thus the robot is free to pass through its singularities
as no Jacobian inversion is performed. Second, if an analytic IK solver is available, state
space grids can be computed without any knowledge of the extended aspects, and their
homogeneity can be imposed numerically. On the contrary, if an analytic solver is not
available, and the extended Jacobian cannot be factorized, finding all the possible solutions
could be cumbersome, especially in the presence of joint limits. If there is not any certainty
that the state space is completely represented, the global optimality of the solution could
be affected as well.
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Beside possible application-specific extensions, several improvements are possible
for our ROS-based implementation. For instance, because the state space is discretized,
it might be possible that the solution resulting from the application of the algorithms
described in Section 2.3 is not feasible on real hardware. Rather, in other circumstances, it
might happen that the trajectory is feasible, but it is not smooth enough to be repeated over
and over again without damaging the mechanical parts on the long run. The proposed
formulation is straightforward, but, in practice, is not enough to ensure that the motion is
always feasible and smooth. In fact, on one hand, the output joint trajectory could exceed
joint torque capacities and, on the other, could result in oscillations of the joints because of
its non-smoothness. Indeed, while the usage of acceleration constraints allows for smooth
joint position functions, it might not be enough to guarantee smoothness at velocity level.
In such cases, it might be suitable considering additional constraints on the derivative of
the acceleration, which could also be provided in the robots datasheets [5].

Together with the imposed constraints, the discretization step of the redundancy pa-
rameter also plays an important role in the generation of smooth joint-space trajectories. It
is clear that the finer the discretization is, the smoother the trajectory can be, but this comes
to the detriment of time. Indeed, some redundancy parameters have a lower sensitivity
with respect to the motion to be performed, meaning that for large changes of their value,
all the other variables in play, such as the joint position variables, change less. If this is
the case, a coarser discretization can be used for the redundancy parameter, as it is very
representative of the motion, resulting in a smooth trajectory, still at a reasonable computa-
tion time. Alternatively, an iterative approach can be used, where a finer discretization is
performed in the neighborhood of a solution obtained with a coarser discretization at the
previous iteration [5]. This technique yields satisfactory results, but may compromise the
optimality of the solution if the first discretization is too coarse.

In some other works [10,11], the trajectory smoothness has also been explicitly in-
cluded in the performance index to optimize. Specific smoothness measures can be suitably
combined with other performance indices of interest for the specific application, but the
result will always be a sub-optimal solution with respect to each of the indices. Gao et al. [5]
consider a different approach, which is based on the post-processing of the solution. In
particular, the redundancy parameter curve is smoothened by applying a fifth-order poly-
nomial approximation. Then, in order to guarantee that the trajectory is exactly tracked,
inverse kinematics is solved again with the new values of the redundancy parameter.

6. Conclusions

In this paper we proposed a novel architecture to perform redundancy resolution
through the global optimization of performance indices, employing a dynamic program-
ming formalism. In particular, the problem formulation foresees the discretization of the
state space and its representation in the form of multiple grids. Then, a DP-inspired graph
search algorithm is used to ensure the achievement of the resolution-optimal solution.

The developed software components extend the open-source framework ROS, and
integrate seamlessly with the existing packages so as to promote the reuse of the available
visualization and analysis tools. On the other hand, they provide clear extension points
that can be used to introduce user-specific requirements, so that the new capability can be
easily adopted in a broad range of applications, with a minimum development effort, even
beyond redundancy resolution.

If the underlying state space grids are characterized by continuity, i.e., they are homo-
geneous, the developed algorithm can exploit this feature to optimize the multi-grid search.
This is particularly advantageous when the velocity limits are stricter than other constraints.
Moreover, the proposed architecture provides the means to analyze the intermediate and
final products of the computation from the topological point of view, and further analysis
tools can be developed in MATLAB or other languages.

Nonetheless, our architecture does not guarantee that the resolution-optimal joint-
space solution can be directly sent to a real robot controller, although additional con-
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straints and/or processing steps can be defined either through our extension points or the
ROS ecosystem.

Future work may concern the introduction of parallel computational models, which
would further improve the performance of the algorithm, as well as the extension toward
other problems/semantics, such as time-optimal planning along specified paths.
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