
robotics

Article

On the Impact of Gravity Compensation on Reinforcement
Learning in Goal-Reaching Tasks for Robotic Manipulators

Jonathan Fugal 1, Jihye Bae 1,* and Hasan A. Poonawala 2,*

����������
�������

Citation: Fugal, J.; Bae, J.;

Poonawala, H.A. On the Impact of

Gravity Compensation on

Reinforcement Learning in

Goal-Reaching Tasks for Robotic

Manipulators. Robotics 2021, 10, 46.

https://dx.doi.org/10.3390/

robotics10010046

Received: 24 December 2020

Accepted: 1 March 2021

Published: 9 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA;
jnephi12@gmail.com

2 Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA
* Correspondence: jihye.bae@uky.edu (J.B.); hasan.poonawala@uky.edu (H.A.P.);

Tel.: +1-859-257-8043 (J.B.); +1-859-323-7436 (H.A.P.)

Abstract: Advances in machine learning technologies in recent years have facilitated developments in
autonomous robotic systems. Designing these autonomous systems typically requires manually spec-
ified models of the robotic system and world when using classical control-based strategies, or time
consuming and computationally expensive data-driven training when using learning-based strate-
gies. Combination of classical control and learning-based strategies may mitigate both requirements.
However, the performance of the combined control system is not obvious given that there are two
separate controllers. This paper focuses on one such combination, which uses gravity-compensation
together with reinforcement learning (RL). We present a study of the effects of gravity compensation
on the performance of two reinforcement learning algorithms when solving reaching tasks using a
simulated seven-degree-of-freedom robotic arm. The results of our study demonstrate that gravity
compensation coupled with RL can reduce the training required in reaching tasks involving elevated
target locations, but not all target locations.

Keywords: robotics; control; reinforcement learning; physics-based machine learning

1. Introduction

Autonomous robotic systems are widely recognized as a worthwhile technological
goal for humanity to achieve. Autonomy requires solving a multitude of decision problems,
from high level semantic reasoning [1] to low level continuous control input selection [2].
In this paper, we focus on continuous controller design for autonomous robot motion
control. A typical controller takes in a feedback signal, containing state information,
as well as a reference point and computes an actuation command. There are various
ways to develop autonomous robotic control systems such as fuzzy logic [3,4], adaptive
control [5,6], behavioral control theory [7,8], traditional robot control theory [2], inverse
reinforcement learning [9,10], and reinforcement learning [11–13].

Control theory provides a methodology for creating controllers for dynamical systems
in order to accomplish a specified task [14]. These methods are model-based, with the
advantage that the performance of such controllers maybe characterized and even guaran-
teed before deployment. The use of models may be thought of as control based on indirect
experience or knowledge. The limitation of model-based control approaches in robotic
autonomy is the difficulty of obtaining accurate system models.

Reinforcement Learning (RL), in contrast to traditional robot control, aims to learn
controllers from direct experience, and any knowledge gained thereof. Therefore, with
RL, robots can learn novel behaviors even under changing environment. This is of great
benefit for real world implementations. One example we can consider is brain machine
interfaces (BMIs), which require real time adaptation of robot behaviors based on the
user’s intention and changing environment [15,16]. However, approaches that use RL
are, often intentionally, ignorant of the system dynamics and task. They learn controllers

Robotics 2021, 10, 46. https://doi.org/10.3390/robotics10010046 https://www.mdpi.com/journal/robotics

https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://doi.org/10.3390/robotics10010046
https://doi.org/10.3390/robotics10010046
https://doi.org/10.3390/robotics10010046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/robotics10010046
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics10010046?type=check_update&version=4

Robotics 2021, 10, 46 2 of 17

that complete a task through training and interacting with the task environment. One
limitation of RL solutions to robotic autonomy is the large amount of interaction and
training necessary to learn tasks. A limitation of model-based control approaches in robotic
autonomy is the difficulty of obtaining accurate system models.

Due to the relative strengths and weaknesses of traditional robot control and reinforce-
ment learning, researchers have worked on combining them to produce a controller design
approach that overcomes their individual weaknesses. This combination broadly occurs in
two forms, which may be thought of as series and parallel combination.

In a series combination, the reinforcement learning agent provide inputs to a low-level
controller that is designed using traditional model-based approaches. The RL agent is in
effect learning to tune gains or set-points, for example in [17]. The authors in [18] evaluate
the impact of choosing various well-known traditional controllers. For tasks with kinematic
constraints and contact rich environments, impedance controllers in end-effector space
allowed the agent to learn faster than impedance, position, velocity, and torque control in
joint space.

In a parallel combination, the output of the reinforcement learning agent will be added
to the command produced by a traditional model-based controller. The RL agent adds a
secondary control term that will account for modeling errors or unmodeled effects such as
environment disturbances. This approach is known as residual reinforcement learning [19].
The authors in [19] show that the additional residual signal learned by an RL agent adds
robustness to a traditional impedance controller in physical manipulation task. They also
showed that residual RL trained much faster than RL without the residual. The conclusions
drawn from the experiments in [18,19] suggest that the choice of action space significantly
impacts the training of the RL agent and that using classical methods to manually design
controls that augment the action space can improve training dramatically. We extend
this line of research, comparing and discussing the effects of gravity compensated torque
control to torque control without gravity compensation in a reaching task.

Gravity compensation is widely known and used in both traditional control and
reinforcement learning [20–23]. The main reason for its use is that a gravity-compensated
robotic arm will hold its position, perhaps with a low-gain proportional-derivative feedback
control to correct modeling errors. Given the ability to reach positions, many RL agents
learn to provide new commanded positions, or changes in current position. Note that
this framework is a series combination of gravity compensation with RL approaches.
This position-holding property of gravity-compensated control is critical to safe robotic
experimentation and deployment, and prevents collisions of the robot during early stages
of learning using RL. The safety benefits have made gravity compensation a default choice,
without much study into how this choice impacts the process of reinforcement learning.
In fact, even detailed studies like [18] do not consider the effect of including or excluding
gravity compensation. To the best of our knowledge, this distinction between series and
parallel combination has not been highlighted. The benefits of a parallel combination in
end-to-end reinforcement learning have not been systematically studied.

In this paper, we propose incorporating classical control concepts with RL to perform
reaching motions with a simulation of the Franka Emika Panda robotic arm. We examine
how traditional robot control theory is used to modify how the RL agent interacts with
the environment. Although controllers, designed using traditional robot control methods,
are often used in RL applications, there has been little research examining the effects of
these controllers on RL performance [18]. In addition, we offer our analysis of end-effector
position control using joint torque commands with and without gravity compensation
applied to task-space reaching with a simulated seven-degree-of-freedom robotic system.

2. Background

The next sections provides background on robot control and reinforcement learning,
and also serves to introduce notation used in later sections.

Robotics 2021, 10, 46 3 of 17

2.1. Model-Based Control Using Dynamical System Models

For behavior like walking or object manipulation, more complex control approaches
than Proportional-Derivative are necessary. Typical control design for these tasks require
system dynamical models. These models are given by the Euler–Lagrange Equations:

M(q)q̈ + C(q, q̇)q̇ + h(q, q̇) + G(q) = τ, (1)

where M(q) is the mass matrix, capturing the relation of the various masses, C(q, q̇) is the
Coriolis matrix, G(q) is the gravity vector, h(q, q̇) is the friction, and τ is the externally
applied torque.

One way to use the dynamics model in (1) is to use estimates for M, C, h, and G
(denoted M̂, Ĉ, ĥ, and Ĝ, respectively) to compensate for the system dynamics and create
an auxillary control law for the system. The form of this control is shown in (2), where τcont
is the auxillary torque. The choice of τcont is arbitrary and may be selected using a feedback
control to stabilize the system or to drive the states to a desired value.

τ = M̂(q)q̈ + Ĉ(q, q̇)q̇ + ĥ(q, q̇) + Ĝ(q) + τcont (2)

With this dynamics model (2), it is also possible to use more intelligent algorithms to
control the system behavior. These algorithms may predict the system response due to a
sequence of inputs; and using this ability, plan and execute trajectories to accomplish a
desired task. An example of this type of algorithm is the iterative linear quadratic regulator
(iLQR) [24].

2.2. Reinforcement Learning

Markov Decision Processes are characterized by the tuple

(S ,A, P(st+1|st, at), R(st, at)),

where S is the set of all possible states, A is the set of all possible actions, P(st+1|st, at)
is the probability of transitioning to state st+t given the current state st and action at,
and R(st, at) is the reward for being in state st and taking action at. A Markov decision
process is Markovian because it assumes the probability of transitioning to the state st+1
is independent of all previous states and actions given the current state st and action at.
Thus, given a sequence of actions, the resulting sequence of states is a Markov Chain.

Reinforcement Learning is a branch of machine learning that is centered around
solving Markov Decision Processes. In the context of RL, the Markov decision process
describes the interaction between the RL agent and the environment. The RL agent in state
st takes an action at = π(st), where π : S → A is a state-dependent function called the
policy of the agent; thereafter, the environment returns the next state st+1 and reward rt.
This process repeats until a terminal state or a maximum number of steps is reached. The
sequence of interactions between the agent and the environment from the start state to
the terminal state is called an episode. The RL agent’s goal is to maximize the cumulative
reward over the entire episode.

Note that in RL, the trainable control logic is referred to as the agent. The agent takes
as input the state information contained in the observation and outputs an action. Thus,
the action is a function of the current state as computed by the agent. The agent consists
of a policy and some method of optimizing that policy. This policy is the function of the
current state that the agent uses to select actions, π(st) = at.

2.3. Deep Reinforcement Learning

In finite-state reinforcement learning, formulating the policy π as a function that
maps from states to actions makes sense because the optimal policies are known to be
deterministic policies in many cases [25]. Indeed, much of early work in reinforcement

Robotics 2021, 10, 46 4 of 17

learning is inspired by the finite-state Markov decision process work where the reward and
transition models are unknown [26].

Most extensions of reinforcement learning to continuous-state systems involve the use
of function approximation to represent value functions and policies. Furthermore, without
the same theoretical guarantees as the finite-state case, the stochastic transitions lead to
the use of stochastic policies, instead of policies that map to a unique action. A stochastic
policy is a map from states to a distribution over actions. We denote such a policy as the
conditional distribution function π(at|st). When this conditional distribution function is
parametrized by a neural network with parameters θ, we denote the policy as πθ(at|st).
In practice, such a stochastic policy is often viewed as a deterministic policy corrupted by
noise. Typically, the policy in a state is a Gaussian distribution where the mean is given by
a deterministic policy πθ(st), and the variance is a fixed parameter. In this case, we may
obtain a deterministic policy from the stochastic policy through expectation E[·]:

πθ(st) = E[πθ(at|st)] (3)

3. Methods

Our proposed method follows the residual reinforcement learning approach, which
combines RL with a classical controller through addition of their respective commanded
motor torques. By extending conventional residual reinforcement learning, we introduce
how the gravity compensated and uncompensated system could be integrated in RL.

3.1. Residual Reinforcement Learning

A popular way to couple RL with a classical controller is to add the output of the
classical controller to the output of an RL agent to produce a torque command τ for the
robots, given by

τ = K(q, q̇) + πθ(st) (4)

where K(q, q̇) is the feedback control contributed by the classical controller and πθ(st) is the
control effort contributed from the RL agent. The vector q is the joint configuration of the
robot, q̇ is the velocity of the robot joints. The term πθ(st) represents the RL agent’s policy
at current state st and parameterized by θ, and τ is the robot system input. This approach
is referred to as residual RL [19] and is depicted in Figure 1. Typically, st = (q(t), q̇(t)),
however some approaches may use other state-dependent sensor information [13] as st.

RL Agent Controller

+

Robot

State, Reward
State

Action Torques τcont

Net Torques τ

Figure 1. Framework for Residual Reinforcment Learning. A controller’s output is combined with
a policy learned by a reinforcement learning agent to control a robot. The environment for the RL
agent is the closed-loop robot control system.

The result of residual RL is that the main trajectory followed by the robotic system is
primarily determined by the controller. With foreknowledge of the task, the designers of the
controller can guess what the overall trajectory that should be while the contact interactions
not considered in the controller design can be compensated for by the RL agent.

Robotics 2021, 10, 46 5 of 17

3.2. Torque Control with and without Gravity Compensation

We propose incorporating classical control concepts with RL to perform reaching
motions with a robotic arm. Like Residual RL, introduced in the previous section, we will
sum the output of the RL agent at with the output of a controller. However, unlike residual
RL, we make no assumptions about the trajectory taken to complete a task; that is, the
controller we use will not generate any robot motion on its own. In addition, we do not use
controllers such as the one in (2) which requires a full dynamics model of the form in (1).
In using gravity compensated torque control, we use only one of the terms from the system
dynamics equation which eases the burden of modeling.

We introduce systems with (1) gravity compensated torque control and (2) torque
control without gravity compensation. We derive the mathematical formulation of the first
control as

τg = Ĝ(q) + πθ(st), (5)

where τg is the robot system input, Ĝ(q) is the gravity vector term from (2), and πθ(st) is
RL agent’s policy at current state st. In our experiment, the RL agent’s action (the joint
torque), π(st) ∈ R7 is computed by the RL agent as a function of the system state, which is
a 14 dimensional vector composed of the robot arm joint angles and joint angular velocities.

The intuition in selecting the gravity compensated control in (5) as an alternative is
that with gravity acting on the system, much of the initial motion and learning is done
with the robot arm in a downward position and colliding with its mounting fixture. As
these motions have little to do with the final optimal policy, we compensate gravity with
the expectation that initially the robot motions are not biased towards any particular part
of the 3D space.

The second torque control is shown in mathematical form as follows:

τn = πθ(st), (6)

where τn is the robot system input. We use this torque control as a baseline since it
represents end-to-end RL control of the robotic system, where the system’s raw sensory
data is fed into the RL agent which then generates a low-level control signal that is sent to
the system [13]. In robotics, examples of raw sensory data include robot state measurements
including joint positions and velocities, and an example of a transformation on the RL
output is a manually designed controller where the RL output (inputted to the controller)
is a position or velocity which the controller transforms into a torque or force. Thus, our
analysis compares gravity compensated torque control (a transformation on the RL output)
to end-to-end RL.

3.3. RL Agents: ACKTR and PPO2

Applying RL in robotics often requires learning in continuous state and action spaces.
Two algorithms that have been shown to work well in robotic environments are ACKTR [27]
and PPO2 [28] which we will use in our experiments. That is, to estimate the RL agent’s
policy, πθ(st) for both gravity compensated and uncompensated systems in (5) and (6), we use
ACKTR and PPO2. They are popularly considered RL algorithms in robotics [29,30], and they
were selected considering their updating rules (natural gradient method for ACKTR and trust
region method for PPO2) and reasonable computation time for the required hyperparameter
optimizations. ACKTR is a natural gradient method [31,32], which helps stabilize and acceler-
ate learning. It is also a trust region method [33], which further helps stabilize training. PPO2
is a trust region method, but uses the regular policy gradient, which makes it significantly
different from ACKTR in the way the policy updates are computed. It has been shown to solve
complex and high dimensional robotics tasks [28]. We used a python code package, provided
from OpenAI’s Stable Baselines [34], for RL algorithm implementations. We want to emphasize
that our proposed method can be also applied to other RL algorithms, including ones provided
by Stable Baselines such as Sample Efficient Actor-Critic with Experience Replay (ACER),

Robotics 2021, 10, 46 6 of 17

Deep Deterministic Policy Gradient (DDPG), Deep Q Network (DQN), and Twin Delayed
DDPG (TD3).

3.3.1. Actor Critic Using Kronecker-Factored Trust Region (ACKTR)

Policy gradient methods can have difficulty training since the gradient updates are not
always in the direction of the optimal policy. This is because the gradients are dependent
on the policy parameterization. An alternative method to a policy gradient is to use a
natural gradient [31,32]. This type of gradient is exactly in the direction of steepest ascent
(or descent) in parameter space which makes policy updates similar across multiple policy
parameterizations. This makes it ideal for finding the optimal policy in reinforcement
learning applications.

Natural policy gradients are used in Trust Region Policy Optimization (TRPO) [33].
This method uses a minorize-maximization algorithm which sets a lower bound on the
optimal reward distribution and maximizes this lower bound. In this case, the lower bound
is the reward distribution under the current policy parameterized by θt. Let the lower
bound Lπ(θ) be defined as

Lπ(θ) = E
[

πθ(at|st)

πθt−1(at|st)
Aπθ (st, at)

]
. (7)

where Aπθ (st, at) is known as the advantage function. The objective is then to maximize
the lower bound Lπ(θ) subject to the constraint

DKL(Pπ(at|st, θt−1)||Pπ(at|st, θ)) < δ, (8)

where the Kullback–Leibler (KL) divergence is defined as DKL(P||Q) = ∑x P(x) log P(x)
Q(x)

and δ specifies a small enough step such that the gradient is within a region closely
approximated by the current parameterization or the trust region. The optimization
problem with objective function (7) and constraint (8) can be approximated by

θt+1 = arg max
θ

g>t (θ − θt)

s.t.
1
2
(θ − θt)

>F(θ − θt) ≤ δ,
(9)

where F is the Fisher information matrix and gt is the policy gradient. The constraint
in (9) uses a second order approximation of the KL divergence about θt [31]. Solving the
approximate optimization problem analytically we get

θt+1 = θt +

√
2δ

g>t F−1
t gt

F−1
t gt. (10)

This approximation leads to the TRPO algorithm [33]. It has better sample complexity
than regular policy gradient methods. However, it suffers from high computational com-
plexity since F is the Hessian of the KL divergence and is a second order approximation
which does not scale well with the number of parameters in the policy for ACKTR. Work
done in [27] uses a Kronecker-Factored Approximate Curvature (K-FAC) [35] to estimate F.
This reduces the time complexity of the natural gradient approximation compared with
TRPO. It also uses an actor critic architecture like A2C and is thus called Actor Critic using
Kronecker-Factored Trust Region (ACKTR) [27].

3.3.2. Proximal Policy Optimization (PPO2)

Proximal Policy Optimization (PPO2) [28] is similar to a trust region method like
ACKTR and TRPO, but rather than clipping the gradient updates, it clips the objective
function. It is called proximal policy because it restricts policy updates to prevent the new

Robotics 2021, 10, 46 7 of 17

policy from diverging too far from the current one. This adds a degree of stability to
training. This clipped objective function is

Lclip(θ) = E
[

min(dt(θ)Aπθ (st, at), clip(dt(θ), 1− ε, 1 + ε)Aπθ (st, at)
]
, (11)

where dt(θ) is the probability ratio defined as dt(θ) =
πθ(at |st)

πθt−1
(at |st)

and ε is a hyperparameter,

usually 0.2 or smaller. The function clip(x, a, b) projects x ∈ R back to the compact interval
[a, b]. Using this clipped objective function, PPO2 can restrict policy updates to a safe region
without approximating the KL divergence. These features make the algorithm simpler to
implement and computationally less expensive.

4. Experiments

We perform our experiments on three reaching tasks with different initial robot
poses and goal locations, using a simulated seven-degree-of-freedom robotic arm. We
aim to investigate the effects of gravity compensation to see how the performance of
each RL agent with each controller changes its behavior with different initial robot poses
and goal configurations. In our experiments, we train RL agents using the ACKTR and
PPO2 algorithms with both the gravity compensated torque controller and the controller
without any gravity compensation. We compare how quickly each RL agent is able to
learn the optimal policy, which ultimately provides an optimal trajectory for reaching the
goal location from the initial robot pose. The final policies are analyzed, after training is
complete, by observing the system’s behavior while acting under these policies.

4.1. Seven-Degree-of-Freedom Robotic Arm

Our work is demonstrated on a simulated seven-degree-of-freedom Panda robotic arm
from Franka Emika, and its technical specifications can be found at https://www.franka.de
(accessed on 11 April 2019). The Panda robot system is adaptable to many tasks, including
daily activities such as surface wiping and door opening [18]. It can reach many points
in 3D space with a continuous range of joint configurations. The Panda robotic arm also
allows for torque commands to be sent to its controller. The robot simulation parameters
were taken from Stanford’s Surreal Robotics Suite [36], which also generates the system
dynamics using the MuJoCo [37] physics engine.

4.2. Reaching Tasks

Reaching is a common behavior in day-to-day manipulation tasks, and robotic manip-
ulators are therefore required to be able to accomplish this task. When the only requirement
on reaching behavior is that the end-effector position be at the desired location, there are
several motion control algorithms that achieve this behavior. Note that we distinguish
between reaching and reaching for grasping, where the orientation of the end-effector is
important for the latter. The Reinforcement Learning paradigm potentially allows learning
of controllers that satisfy a larger set of requirements encoded through the reward function.

We experiment with three different reaching tasks. The implementation for these
tasks is based on the free space trajectory environment from [36]. Our three tasks are
designed to test the effects of gravity compensation in reaching tasks with various initial
robot poses and goal locations. Each task begins with the robot arm in an initial pose,
specified by the robot’s seven joint angles, and has a unique goal location. Since we do
not consider reaching specifically for grasping, we do not specify a goal orientation for
the end-effector. Moreover, the reward function we define later is independent of the
end-effector orientation.

The workspace of the simulated Franka robot approximately contains a hemisphere in
the positive x halfspace of radius 80 cm with center at (0, 0, 33.5 cm). Therefore, the initial
and goal locations described below are not close to workspace boundaries.

https://www.franka.de

Robotics 2021, 10, 46 8 of 17

The initial location qinit is randomized from a Gaussian distribution :

qinit = N (qµinit , σ2). (12)

where qµinit is a specified initial pose and σ2 is the variance of this distribution. The assigned
values of qµinit and σ2 in each task are given in Table 1. Note that qµinit is a 7-dimensional
vector representing each joint, while σ2 is a scalar variance for all joint angles. The units of
σ2 are radians2. Note that the standard deviation is of the order of 0.01 radians, and this
error in joint angle creates appreciable error in the end-effector position. Therefore, the
uncertainty in initial position seems misleadingly small by itself.

The resulting initial end-effector position, xini, and determined goal locations, xgoal ,
for Task 1, 2, and 3 are listed in Table 2. The value of xgoal differs between all tasks, and
the values of qµinit and σ differ between Task 1 and Tasks 2–3, resulting different xini values
between Task 1 and Tasks 2–3. The locations are listed in 3 dimensional coordinates, and
the units for each location is in centimeters. The origin of the axis is placed at the center of
the base of the robot arm.

In addition, the corresponding illustration is shown in Figure 2. In the robot environ-
ment, we define left and right, as the observer’s left and right, respectively, when facing
the robot (see upper three images in Figure 2). We define front and back as the area in front
and behind the robot, respectively, from the observer’s perspective. High and low refer to
the upward and downward directions, respectively, from the observer’s perspective.

Table 1. Mean and variance of the initial joint configurations for Task 1–3.

qµ_init σ2

Task 1 (0, π
16 , 0, − 5π

6 , 0, π − 0.2, π
4) 0.0004

Task 2–3 (−π
4 , π

16 , 0, − 4π
6 , 0, π− 0.2, π

4) 0.0025

Table 2. The initial end-effector position and goal location for Task 1–3.

xini xgoal

Task 1 (44.48 ±
√

0.84, 0.0 ±
√

1.65, 10.81 ±
√

1.20) (60, −20, 40)

Task 2 (43.70 ±
√

9.86, −43.64 ±
√

9.87, 31.78 ±
√

15.75) (40, 40, 0)

Task 3 (43.70 ±
√

9.86, −43.64 ±
√

9.87, 31.78 ±
√

15.75) (30, 30, 50)

In Task 1, the initial end-effector position is low and directly in front of the robot, and
the goal location is at about mid-height of the crouched robot arm, where is elevated above
the robot base and the initial end-effector pose. We start with small variance for Task 1 to
ensure reliable training such that Task 1 may serve not only as one of our experiments, but
also as a baseline for comparison with Tasks 2–3. The robot links are connected end-to-end, so
the small variance in initial joint angles leads to variance in the end-effector position close to
1 cm2 as seen in Tables 1 and 2. In order to reach the goal location, ideally, x1

t sweeps from
back to front of the robot, x2

t sweeps from right to left, and x3
t sweeps from low to high as

shown in Figure 2, where xi
t represents ith dimension of the current coordinates, xt.

In Task 2, we lower the goal location and move it further away from the initial end-
effector position. We change the initial angle of joints 1 and 4 to elevate the end-effector
about 20 cm above the Task 1’s posture and rotated 45 degrees to the left as seen in Task
2 of Figure 2. We also increase the variance of each initial joint angle to σ2 = 0.0025 rad2.
As the effect cascades through each of the joints, the variance of the end-effector became
significant to the point that the variance for each dimension gets closer to 10 cm2 seen in
Table 2. The increased variance of the initial position makes the task harder to solve, but it
also makes the solution generalize to more initial joint configurations. The change in the
elevation of the end-effector is significant since in Task 1 the end-effector was below the
goal location, in Task 2 it is above the goal location.

Robotics 2021, 10, 46 9 of 17

In Task 3, we leave the initial pose the same as in Task 2, but we raise the goal location
and move it slightly towards the robot as seen in Table 2 and Figure 2. This will serve to
decorrelate the effects of the differences in the initial pose from the goal location in Tasks 1
and 2.

Task 1 Task 2 Task 3
Front

Back

Low

HighRightLeft

Figure 2. Visualization of initial robot poses and goal locations for Tasks 1–3. In these images the
goal location is indicated by the red dot.

4.3. RL Agents: ACKTR and PPO2

We test our controllers with RL agents ACKTR and PPO2 from OpenAI’s Stable
Baselines [34]. We experiment with these two RL algorithms to validate if our results
are consistent with RL agents. These two algorithms are adequate in our experiments to
provide a good understanding of the effects of gravity compensation.

One way to reduce data correlation is to run multiple episodes simultaneously collect-
ing multiple unique trajectories at once. In essence, the RL agent maintains a single policy
that is shared by multiple RL workers which collect the trajectory data. Each RL worker
applies the policy in its own episode or copy of the environment. Each of these RL workers
accumulates trajectory data (st, at, rt, st+1) and after a set number of time steps the RL agent
performs a policy update using the gradients computed from the trajectory data from all
the RL workers. This method has not only been shown to reduce variance, but also has the
added advantage of being parallelizable [38]. In our experiments we use four RL workers.

The reward function R(st, at) in all tasks for both RL agents is given by

R(st, at) = 30
(

1− tanh
(

5||xt − xgoal ||
))

+ 100u
(

0.05− ||xt − xgoal ||
)

. (13)

In this reward function, xt and xgoal are the 3 dimensional coordinates of the current(xt)
and goal position (xgoal), respectively, and u(·) is the unit step function. This reward
monotonically deceases with the distance of the end-effector from the goal position. The
step function provides a linearly decreasing term that is zero for large distances. The
hyperbolic tangent signal provides a small non-zero reward at large distances. More
importantly, it provides a reward gradient that enables learning when the error is large.

The environment being solved is a task-space reaching task, where the agent must
command the robot to move the end-effector of the robot arm to single specified location in
3D space and hold it there for the remainder of the episode. The environment returns a
reward that increases as the agent moves the arm such that the end-effector approaches the
goal location defined in 3D space.

Robotics 2021, 10, 46 10 of 17

This reaching environment terminates after 500 time-steps, far more than necessary
to complete each task. We choose this high value to discover whether the RL algorithm
stabilizes the goal state, and not just reaches it. We expect stabilization since the longer
the arm stays at the goal state, the more rewards are earned. Controllers applied to this
environment operate at 10 Hz while the actual simulation operates at 500 Hz. Therefore,
each action is held constant for 50 time steps, which enables the state to change enough
between updates to facilitate learning.

It should also be noted that for the 3 tasks we defined, the observations for the agent
were scaled and shifted so that the values in each dimension were within the interval [0, 1].
The actions were also scaled and shifted so that the values for each dimension were within
the interval [−1, 1]. This type of normalization was done to conform to recommendations
made by the RL repository we used [34].

5. Results

We evaluate the results of running each RL agent with gravity compensated and
uncompensated controller in each task described in Section 4. Our results show that gravity
compensation tends to lead to faster training, but this advantage depends on the goal
location and the initial pose of the robot. We discuss the behavior of the system when
operating with a trained agent.

5.1. Hyperparameter Selection in RL Agents

To obtain optimal controllers used by the RL agent, we used a grid search approach.
Grid search, Bayesian optimization [39], evolutionary optimization [40], and gradient
optimization [41] are popularly considered ways to tune hyperparameters. However,
gradient optimization is not readily extensible to the RL agents, and both Bayesian and
evolutionary optimization algorithms depend on randomization and therefore can have
varying performance over multiple runs. Our grid search over a discrete set of hyperpa-
rameter values included 192 permutations of unique hyperparameter selections for ACKTR
and 128 permutations for PPO2. Ten training sessions were run for each permutation of
hyperparameters. Each ACKTR training session was run for 2.5× 105 time steps while
PPO2 was run for 1× 105 time steps. The specific number of time steps chosen for each
run of ACKTR and PPO2 corresponded to the smallest number of time steps necessary to
accumulate near the maximum reward using the best hyperparameter selection found in
our initial experiments. One time step refers to one step taken in the environment.

We measured the effectiveness of each training session by computing the cumulative
regret over the entire training session. We compute regret by subtracting the episodic
reward from the optimal episodic reward. Using this definition of regret, it can be seen that
maximizing the cumulative reward is analogous to minimize the regret. We approximate
the optimal episodic reward by assuming it is possible to collect the maximum reward for
every time step of the episode. This is an upper bound since the inertia of the system does
not allow it to move to the goal position for the first several time steps.

The plotted mean and standard deviation of the cumulative regret for both RL agents
paired with both compensated and uncompensated systems with Task 1 are shown in
Figure 3.

The detailed results are included in Supplementary Tables S1–S4. It is seen that over
the hyperparameter selections compared, rank for rank, the gravity compensated system
experiences less cumulative regret than the uncompensated system. This suggests that
the region of explored hyperparameter space that results in fast training for both agents is
larger for the gravity compensated system than the uncompensated system.

Robotics 2021, 10, 46 11 of 17

0 25 50 75 100 125 150 175
Hyper Parameter Permutation Ranking

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Re
gr

et

1e4 ACKTR Grid Search Regret: Mean and Standard Deviation
No Comp.
Grav Comp.

(a)

0 20 40 60 80 100 120
Hyper Parameter Permutation Ranking

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Re
gr

et

1e4 PPO2 Grid Search Regret: Mean and Standard Deviation

No Comp.
Grav Comp.

(b)
Figure 3. Grid-search results for the ACKTR and PPO2 reinforcement learning agents. The mean and the standard deviation
of the cumulative regret in the 10 training sessions corresponding to each hyperparameter permutation are shown. The
center point of each bar being the mean cumulative regret while the total length of the bar indicates the standard deviation.
The system with gravity compensation is slightly shifted to the right to enhance visibility. The results for each system
are displayed in ascending order of the mean cumulative regret. (a) Gravity compensation leads to lower regret for all
hyperparameters permutations when training using the ACKTR algorithm. (b) Gravity compensation leads to lower regret
for all hyperparameters permutations when training using the PPO2 algorithm.

5.2. Performances on Task 1, 2, and 3

Once the hyperparameter set is selected for ACKTR and PPO2 agents with gravity
compensated and uncompensated systems, ACKTR and PPO2 agents were trained for
both gravity compensated and uncompensated systems in Task 1, 2, and 3 described in
Section 4. The RL agents were evaluated by plotting the learning curves during training.
The learning curves consist of the episodic reward received by a policy plotted against the
number of policy update steps used to train that policy. These learning curves indicate
how quickly the agent can learn a policy that achieves high episodic rewards.

Since each training session is stochastic, we evaluated the learning curves of each
algorithm from 100 training sessions. We also observed how well each algorithm performs
the task by observing both the actions taken and the states visited when the system is
operating under the control of a trained RL agent. We begin with presenting the results
of the 100 training sessions for each RL agent paired with each controller. Note that each
training session starts from a different random initialization.

Figure 4 shows our results. Plots in the left column show learning curves from ACKTR,
and plots in the right column are learning curves from PPO2. Plots in each row correspond
to different task type. Each plot shows the mean and standard deviation of the episodic
rewards as a function of the number of time steps with gravity compensated (orange lines)
and uncompensated systems (blue lines). ACKTR and PPO2 agent was trained for 5× 105

and 2× 105 time steps for Task 1 and 2 and 1× 106 and 4× 105 time steps for Task 3,

Robotics 2021, 10, 46 12 of 17

respectively. The number of time steps was chosen based on the time steps where learning
curves plateau.

We can see that with the ACKTR agent, the gravity compensated system (orange lines)
trains faster than the uncompensated system (blue lines) in all tasks (Figure 4a,c,e), and
the gravity compensated system has a lower variance in Task 1 and 2 (Figure 4a,c). These
conditions indicate reliable and productive training. In the case of PPO2 agent, the gravity
compensated system trains faster than the system without compensation in Task 1 and 3
(Figure 4b,d).

0 1 2 3 4 5
Number of Timesteps 1e5

0

1

2

3

4

5

6

Re
wa

rd
s

1e4 ACKTR Task 1 Mean and Standard Deviation
No Comp.
Grav. Comp.

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Timesteps 1e5

0

1

2

3

4

5

Re
wa

rd
s

1e4 PPO2 Task 1 Mean and Standard Deviation
No Comp.
Grav. Comp.

(b)

0 1 2 3 4 5
Number of Timesteps 1e5

0

1

2

3

4

5

6

Re
wa

rd
s

1e4 ACKTR Task 2 Mean and Standard Deviation
No Comp.
Grav. Comp.

(c)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Timesteps 1e5

0

1

2

3

4

5

Re
wa

rd
s

1e4 PPO2 Task 2 Mean and Standard Deviation
No Comp.
Grav. Comp.

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Number of Timesteps 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
wa

rd
s

1e4 ACKTR Task 3 Mean and Standard Deviation
No Comp.
Grav. Comp.

(e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Timesteps 1e5

0.0

0.5

1.0

1.5

2.0

2.5

Re
wa

rd
s

1e4 PPO2 Task 3 Mean and Standard Deviation
No Comp.
Grav. Comp.

(f)
Figure 4. Training session learning curves of ACKTR and PPO2 RL agents on Tasks 1–3. The solid curve is the mean episode
reward for the network during training, and the shaded region indicates the standard deviation. (a) In Task 1, ACKTR with
gravity compensation achieves higher rewards than ACKTR without gravity compensation, and learns faster. (b) In Task 1,
PPO2 with gravity compensation achieves similar rewards to PPO2 without gravity compensation. Gravity compensation
appears to enable faster learning. (c) In Task 2, ACKTR with gravity compensation achieves higher rewards than ACKTR
without gravity compensation, although the rewards are lower in the initial period of training. (d) In Task 2, PPO2 with
gravity compensation achieves lower rewards than PPO2 without gravity compensation, and also learns slower. (e) In Task
3, ACKTR with gravity compensation achieves significantly higher rewards than ACKTR without gravity compensation,
and also learns faster. (f) In Task 3, PPO2 with gravity compensation achieves higher rewards than PPO2 without gravity
compensation, and also learns faster.

Robotics 2021, 10, 46 13 of 17

In Task 1, while the mean reward for both systems with PPO2 is near 3× 104 after
2× 105 time steps, the trend is not upward like the ACKTR agent, and the variance is much
greater. This may be because ACKTR employs a natural gradient method, which has better
assurance for policy improvement, whereas PPO2 is a trust region method, which does not
have a strong guarantee for policy improvement.

In Task 2, it is shown that for both systems, ACKTR does not learn Task 2 as quickly
as Task 1. As noted in Table 2, the goal used in Task 2 is in the plane of the robot base
whereas the goal in Task 1 is 0.4 meters above the plane of the robot base. We suspect that
the uncompensated system is able to learn quicker in Task 2 due to the goal location being
lower and more in the direction that gravity is pulling the system. In addition, we ascribe
the higher variance in Task 2 compared to Task 1 to the increased variance in the robot’s
initial position.

In Task 2, the learning curves from PPO2 are similar to the PPO2 results from Task
1 except that PPO2 with the uncompensated system trains faster that the compensated
system. From this result, in addition to the reduced advantage of the compensated system
with ACKTR agent in Task 2, we hypothesize that the elevation of the goal location affects
how quickly the agents with the compensated and uncompensated systems are able to
maximize the episodic rewards.

In Task 3, we explore this hypothesis further. We train the PPO2 agent with the
same initialization of the robot pose as in Task 2, but the goal location is raised 0.5 meters
(see Task 3 in Figure 2). Although both agents learn slower, the agents with the gravity
compensated system train faster than with the uncompensated system (see Figure 4e,f).
The training sessions that do not show improvement or very little improvement as the
number of time steps increases, could be due to an unfavorable initialization of the policy
or robot pose.

5.3. Agents’ Behavioral Evaluation

The agents’ behavior is captured by the states visited and the actions taken during
10 episodes. This type of analysis is critical in RL because it is possible that the RL agent
learns to maximize reward in a way that is unexpected or unfavorable to our purposes.
We selected agents by iterating over 100 training sessions and finding the first trained
agent that was able to obtain more than 5.5× 105 episodic reward. It is acknowledged
that different agents trained in the same experiment may exhibit different behavior, but
we found the general behavior of agents operating on the same task to be very similar.
Joint angle and agent action distributions in each case can be seen under supplementary
materials (Figure S1 through S20).

For Task 1, we found that the optimal policy tended to choose actions at or near the
upper or lower limits for five of the joint torques while the remaining two joint torques
would toggle between the extreme values or be distributed over some range of values. This
resulted in joint angles that were near their upper or lower limits. The goal location in Task
1 is such that it is possible to reach with most joints held at or near their limits.

For Task 2, the actions selected were similar to the ones in Task 1, but they resulted
in 1 or 2 joint angles that were not near either limit. It is likely that the location of the
goal for Task 2 requires at least 1 joint angle to be some value between the limits. This
requirement in addition to the high variance in the initial joint pose for this task may have
caused slower training for Task 2 relative to Task 1.

In Task 3, at the agent’s selected actions where at most 4 of the values were at their
limits and 3 or 4 of the other joint torques toggled between the extrema or were distributed
over some region between the limits. We expect that this is the leading factor in the
significantly slower training noted between Task 3 and Tasks 1 and 2. The distribution of
joint angles for Task 3 has 3 joint angles that are well between the joint angle limits. We
expect that the goal location for Task 3 required that more of the joints angles to be between
their upper and lower limits.

Robotics 2021, 10, 46 14 of 17

The policies found by the agents in Tasks 1–3 may not be considered optimal when
considering the ware on the system or the energy expended to accomplish the task; however,
none of these considerations were encoded in the reward function. The reward function we
use only incentivizes quickly reaching the goal location. Given the simplicity of the actions
taken (relative to 7 torques chosen well between the action limits), it seems reasonable for
the RL agents to converge to such a solution. If more of the seven action dimensions may
be held constant the agent has effectively reduced the dimension of the problem.

We attempted to penalize the reward when the agent caused the joint angles to reach
their limits and in a separate experiment we increased the reward when the system was
near the center of the joint angle ranges; however, we found that both of these approaches
lead to slower and less stable learning. We suspect that it is much more difficult for the RL
agent to determine the optimal action in a high dimensional action space with multiple
objectives encoded into a one dimensional reward function. There have been attempts
to optimize multiple objectives. The authors of [18] do this by training the agent with a
single objective encoded in the reward function (like minimizing the distance to the goal
position) and then training the same agent with an additional objective encoded in the
reward function (like minimizing expended energy). There are also other methods like
multi-objective RL [42]. We do not address either of these methods in our experiments.

6. Discussion

The learning curves (Figure 4) showed how fast the agents were able to learn in compari-
son to the integration of the two popularly used RL agents with gravity compensated and
uncompensated controller. The learning speed is especially critical in online implementations.
It is notable that brain machine interface (BMI) is one considerable online implementation
that can benefit from using our proposed method. A BMI architecture based on reinforcement
learning has been introduced, called RLBMI [15]. In RLBMI, there are two intelligent systems:
the BMI decoder in the agent to manipulate an external device, and the user in the environ-
ment. The two intelligent systems learn co-adaptively based on the closed-loop feedback. The
agent updates the state of the environment, namely, a robotic arm’s location, based on the
user’s neural activity and the received rewards. In this paradigm, the state representation is
considered as the user’s neural activity, which is different from conventional RL approaches;
that is, in a robotic arm control by using RL, the robotic arm’s kinematics are considered as
the states, as we implemented in this study. Through iterations, both the BMI user and the
neural decoder learn how to accomplish their mutual goal, by earning rewards based on their
joint behavior. The BMI decoder learns a control strategy based on the user’s neural state and
performs actions in goal directed tasks that update the state of the external device in the envi-
ronment. In addition, the user learns the task based on the state of the external device. Note
that both systems act symbiotically by sharing the external device to complete the task, and
this bidirectional interaction allows for continuous synergistic adaptation between the BMI
decoder and the user, even in a changing environment. In addition, successful applications of
RLBMI can be found in several studies [16,43–46], where new neural decoders are introduced
and validated in BMIs.

7. Conclusions

We introduced an approach to combine RL and control theory by adding terms used
in a classical controller to the RL output. We provided a comparison of two controllers,
learned using two different RL algorithms and showed that a good choice of controllers can
reduce the training required by the RL agents without the need of a complete system model.
Specifically, we trained ACKTR and PPO2 agents coupled with gravity compensated and
uncompensated torque controls to complete 3 different reaching tasks with a simulated
seven-degree-of-freedom robotic arm. We showed that the gravity compensated torque
control leads to faster training when the goal location is elevated. Our results suggested
that the uncompensated system performs worse with an elevated goal location since gravity
adds a downward bias. This could cause the system to explore in regions of the state space

Robotics 2021, 10, 46 15 of 17

that are not near the elevated goal while the compensated system has no bias and can
explore all regions of the state space more uniformly. It is also observed that the PPO2
agent trains faster with the uncompensated torque control when the goal location is low,
which may be due to the gravity bias pulling the system in the direction of the goal.

Although choice of RL algorithm is not the focus of our experiments, it should be
noted that this choice significantly impacts training. We have chosen two sophisticated
algorithms and have found that PPO2 can train five times faster than ACKTR, but that
PPO2 has significantly higher variance between training sessions. We chose to experiment
with ACKTR due to its stability, since it is a trust region method, and provides assurance
for policy improvement, by using natural gradient. We chose PPO2 due to its promising
performance in other robotics tasks [28] and because it does not use a natural gradient
which yields more diversity in the RL algorithms we used. To expand our understanding
of the effect of gravity compensated torque control, future research could include using
additional RL algorithms to see if our results with ACKTR and PPO2 can generalize to
more algorithms. It would also be instructive to add additional tasks such as reaching
with a randomized goal location or a uniformly randomized initial position. These tasks
could shed further light on how gravity compensation effects training with arbitrary goal
locations. Uniformly randomizing the initial position would assist in understanding any
effects gravity compensation has in training when the initial pose is arbitrary.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-658
1/10/1/46/s1, The supplementary materials present the grid search results over hyperparameter
permutations for the gravity compensated and uncompensated system with ACKTR (Tables S1 and
S2) and PPO2 (Tables S3 and S4). In addition, supporting to Section 5.3, figures to depict joint angle
and agent action distributions at each experimental case are presented (Figures S1–S20).

Author Contributions: Conceptualization, J.F., J.B. and H.A.P.; methodology, J.B. and H.A.P.; soft-
ware, J.F.; validation, J.F.; data creation, J.F.; writing—original draft preparation, J.F., J.B., and H.A.P.;
writing—review and editing, J.B., and H.A.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Department of Electrical and Computer Engineering at the
University of Kentucky.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data, codes, and their corresponding results for this research work
are available in the following GitHub link: https://github.com/jfugal3/ThesisPython.

Acknowledgments: Authors thank to anonymous reviewers who gave useful comments and to
Department of Electrical and Computer Engineering at the University of Kentucky that provided
financial support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Rottmann, A.; Mozos, O.M.; Stachniss, C.; Burgard, W. Semantic Place Classification of Indoor Environments with Mobile Robots

Using Boosting. In Proceedings of the 20th National Conference on Artificial Intelligence, AAAI’05, Pittsburgh, PA, USA, 9–13
July 2005; Volume 3, pp. 1306–1311.

2. Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; Wiley and Sons: New York, NY, USA, 2006.
3. Safiotti, A. Fuzzy logic in autonomous robotics: Behavior coordination. In Proceedings of the 6th International Fuzzy Systems

Conference, Barcelona, Spain, 5 July 1997; Volume 1, pp. 573–578. [CrossRef]
4. Chen, C.H.; Wang, C.C.; Wang, Y.T.; Wang, P.T. Fuzzy Logic Controller Design for Intelligent Robots. Math. Probl. Eng. 2017.

[CrossRef]

https://www.mdpi.com/2218-6581/10/1/46/s1
https://www.mdpi.com/2218-6581/10/1/46/s1
https://github.com/jfugal3/ThesisPython
http://dx.doi.org/10.1109/FUZZY.1997.616430
http://dx.doi.org/10.1155/2017/8984713

Robotics 2021, 10, 46 16 of 17

5. Antonelli, G.; Chiaverini, S.; Sarkar, N.; West, M. Adaptive control of an autonomous underwater vehicle: experimental results
on ODIN. In Proceedings of the 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation,
CIRA’99 (Cat. No.99EX375), Monterey, CA, USA, 8–9 November 1999; pp. 64–69. [CrossRef]

6. Wei, B. A Tutorial on Robust Control, Adaptive Control and Robust Adaptive Control—Application to Robotic Manipulators.
Inventions 2019, 4. [CrossRef]

7. Bicho, E.; Schöner, G. The dynamic approach to autonomous robotics demonstrated on a low-level vehicle platform. Robot. Auton.
Syst. 1997, 21, 23–35. [CrossRef]

8. Schöner, G.; Dose, M.; Engels, C. Dynamics of behavior: Theory and applications for autonomous robot architectures. Robot. Auton.
Syst. 1995, 16, 213–245. [CrossRef]

9. Fu, J.; Luo, K.; Levine, S. Learning Robust Rewards with Adversarial Inverse Reinforcement Learning. arXiv 2018,
arXiv:1710.11248.

10. Bogert, K.; Doshi, P. Multi-robot inverse reinforcement learning under occlusion with estimation of state transitions. Artif. Intell.
2018, 263, 46–73. doi:10.1016/j.artint.2018.07.002. [CrossRef]

11. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
12. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy

Updates. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 3389–3396.

13. Levine, S.; Finn, C.; Darrell, T.; Abbeel, P. End-to-End Training of Deep Visuomotor Policies. arXiv 2015, arXiv:1504.00702.
14. Li, W.; Todorov, E. Iterative Linear Quadratic Regulator Design For Nonlinear Biological Movement Systems. In Proceedings of

the First International Conference on Informatics in Control, Automation and Robotics, Setúbal, Portugal, 25–28 August 2004.
[CrossRef]

15. DiGiovanna, J.; Mahmoudi, B.; Fortes, J.; Principe, J.C.; Sanchez, J.C. Coadaptive Brain–Machine Interface via Reinforcement
Learning. IEEE Trans. Biomed. Eng. 2009, 56, 54–64. [CrossRef]

16. Bae, J.; Sanchez Giraldo, L.G.; Pohlmeyer, E.A.; Francis, J.T.; Sanchez, J.C.; Príncipe, J.C. Kernel Temporal Differences for Neural
Decoding. Intell. Neurosci. 2015, 2015. [CrossRef]

17. Abbeel, P.; Coates, A.; Quigley, M.; Ng, A.Y. An application of reinforcement learning to aerobatic helicopter flight. In Proceedings
of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2007; pp. 1–8.

18. Martín-Martín, R.; Lee, M.A.; Gardner, R.; Savarese, S.; Bohg, J.; Garg, A. Variable Impedance Control in End-Effector Space: An
Action Space for Reinforcement Learning in Contact-Rich Tasks. arXiv 2019, arXiv:1906.08880.

19. Johannink, T.; Bahl, S.; Nair, A.; Luo, J.; Kumar, A.; Loskyll, M.; Ojea, J.A.; Solowjow, E.; Levine, S. Residual Reinforcement
Learning for Robot Control. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal,
QC, Canada, 20–24 May 2019. [CrossRef]

20. Arakelian, V. Gravity compensation in robotics. Adv. Robot. 2015, 30, 1–18. [CrossRef]
21. Ernesto, H.; Pedro, J.O. Reinforcement learning in robotics: A survey. Math. Probl. Eng. 2015. [CrossRef]
22. Yu, C.; Li, Z.; Liu, H. Research on Gravity Compensation of Robot Arm Based on Model Learning. In Proceedings of the

2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019;
pp. 635–641. [CrossRef]

23. Montalvo, W.; Escobar-Naranjo, J.; Garcia, C.A.; Garcia, M.V. Low-Cost Automation for Gravity Compensation of Robotic Arm.
Appl. Sci. 2020, 10, 3823. [CrossRef]

24. Alothman, Y.; Gu, D. Quadrotor transporting cable-suspended load using iterative linear quadratic regulator (ilqr) optimal
control. In Proceedings of the 2016 8th Computer Science and Electronic Engineering (CEEC), Colchester, UK, 28–30 September
2016; pp. 168–173.

25. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ,
USA, 1994.

26. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; Adaptive Computation and Machine Learning Series;
The MIT Press: Cambridge, MA, USA, 2018.

27. Wu, Y.; Mansimov, E.; Liao, S.; Grosse, R.B.; Ba, J. Scalable trust-region method for deep reinforcement learning using Kronecker-
factored approximation. arXiv 2017, arXiv:1708.05144.

28. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

29. Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep Reinforcement Learning that Matters. arXiv 2017,
arXiv:1709.06560

30. Aumjaud, P.; McAuliffe, D.; Rodriguez Lera, F.J.; Cardiff, P. Reinforcement Learning Experiments and Benchmark for Solving
Robotic Reaching Tasks. In Proceedings of the 21st International Workshop of Physical Agents (WAF 2020), Madrid, Spain, 19–20
November 2020,

31. Amari, S.I. Natural Gradient Works Efficiently in Learning. Neural Comput. 1998, 10, 251–276. [CrossRef]
32. Kakade, S.M. A Natural Policy Gradient. In Proceedings of the 14th International Conference on Neural Information Processing Systems:

Natural and Synthetic; MIT Press: Cambridge, MA, USA, 2001; pp. 1531–1538.
33. Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.I.; Abbeel, P. Trust Region Policy Optimization. arXiv 2017, arXiv:1502.05477.

http://dx.doi.org/10.1109/CIRA.1999.809948
http://dx.doi.org/10.3390/inventions4030049
http://dx.doi.org/10.1016/S0921-8890(97)00004-3
http://dx.doi.org/10.1016/0921-8890(95)00049-6
http://dx.doi.org/10.1016/j.artint.2018.07.002
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.5220/0001143902220229
http://dx.doi.org/10.1109/TBME.2008.926699
http://dx.doi.org/10.1155/2015/481375
http://dx.doi.org/10.1109/icra.2019.8794127
http://dx.doi.org/10.1080/01691864.2015.1090334
http://dx.doi.org/10.1155/2015/187948
http://dx.doi.org/10.1109/AIM.2019.8868673
http://dx.doi.org/10.3390/app10113823
http://dx.doi.org/10.1162/089976698300017746

Robotics 2021, 10, 46 17 of 17

34. Hill, A.; Raffin, A.; Ernestus, M.; Gleave, A.; Kanervisto, A.; Traore, R.; Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; et al. Stable
Baselines. 2018. Available online: https://github.com/hill-a/stable-baselines (accessed on 1 June 2019).

35. Grosse, R.; Martens, J. A Kronecker-factored approximate Fisher matrix for convolution layers. arXiv 2016, arXiv:1602.01407.
36. Fan, L.; Zhu, Y.; Zhu, J.; Liu, Z.; Zeng, O.; Gupta, A.; Creus-Costa, J.; Savarese, S.; Fei-Fei, L. SURREAL: Open-Source

Reinforcement Learning Framework and Robot Manipulation Benchmark. In Proceedings of the Conference on Robot Learning,
Zürich, Switzerland, 29–31 Octorber 2018.

37. Todorov, E.; Erez, T.; Tassa, Y. MuJoCo: A physics engine for model-based control. In Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 5026–5033.
ISSN: 2153-0858. [CrossRef]

38. Babaeizadeh, M.; Frosio, I.; Tyree, S.; Clemons, J.; Kautz, J. GA3C: GPU-based A3C for Deep Reinforcement Learning. arXiv 2016,
arXiv:1611.06256.

39. Falkner, S.; Klein, A.; Hutter, F. BOHB: Robust and Efficient Hyperparameter Optimization at Scale. arXiv 2018, arXiv:1807.01774.
40. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A Novel Bandit-Based Approach to Hyperparame-

ter Optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.
41. Paul, S.; Kurin, V.; Whiteson, S. Fast Efficient Hyperparameter Tuning for Policy Gradients. arXiv 2019, arXiv:1902.06583.
42. Liu, C.; Xu, X.; Hu, D. Multiobjective Reinforcement Learning: A Comprehensive Overview. IEEE Trans. Syst. Man Cybern. Syst.

2015, 45, 385–398.
43. Pohlmeyer, E.A.; Mahmoudi, B.; Geng, S.; Prins, N.W.; Sanchez, J.C. Using Reinforcement Learning to Provide Stable Brain-

Machine Interface Control Despite Neural Input Reorganization. PLoS ONE 2014, 9, e87253. [CrossRef]
44. An, J.; Yadav, T.; Ahmadi, M.B.; Tarigoppula, V.S.A.; Francis, J.T. Near Perfect Neural Critic from Motor Cortical Activity Toward

an Autonomously Updating Brain Machine Interface. In Proceedings of the 2018 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 73–76. [CrossRef]

45. Shaikh, S.; So, R.; Sibindi, T.; Libedinsky, C.; Basu, A. Towards Autonomous Intra-Cortical Brain Machine Interfaces: Applying
Bandit Algorithms for Online Reinforcement Learning. In Proceedings of the 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), Seville, Spain, 10–21 October 2020; pp. 1–5. [CrossRef]

46. Shen, X.; Zhang, X.; Huang, Y.; Chen, S.; Wang, Y. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforce-
ment Learning Based Brain Machine Interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 3089–3099. [CrossRef]

https://github.com/hill-a/stable-baselines
http://dx.doi.org/10.1109/IROS.2012.6386109
http://dx.doi.org/10.1371/journal.pone.0087253
http://dx.doi.org/10.1109/EMBC.2018.8512274
http://dx.doi.org/10.1109/ISCAS45731.2020.9180906
http://dx.doi.org/10.1109/TNSRE.2020.3039970

	Introduction
	Background
	Model-Based Control Using Dynamical System Models
	Reinforcement Learning
	Deep Reinforcement Learning

	Methods
	Residual Reinforcement Learning
	Torque Control with and without Gravity Compensation
	RL Agents: ACKTR and PPO2
	Actor Critic Using Kronecker-Factored Trust Region (ACKTR)
	Proximal Policy Optimization (PPO2)

	Experiments
	Seven-Degree-of-Freedom Robotic Arm
	Reaching Tasks
	RL Agents: ACKTR and PPO2

	Results
	Hyperparameter Selection in RL Agents
	Performances on Task 1, 2, and 3
	Agents' Behavioral Evaluation

	Discussion
	Conclusions
	References

