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Abstract: There is a need for semi-autonomous systems capable of performing both automated tasks
and supervised maneuvers. When dealing with multiple robots or robots with high complexity
(such as humanoids), we face the issue of effectively coordinating operators across robots. We
build on our previous work to present a methodology for designing trajectories and policies for
robots such that a few operators can supervise multiple robots. Specifically, we: (1) Analyze the
complexity of the problem, (2) Design a procedure for generating policies allowing operators to
oversee many robots, (3) Present a method for designing policies and robot trajectories to allow
operators to oversee multiple robots, and (4) Include both simulation and hardware experiments
demonstrating our methodologies.

Keywords: human robot interaction; multi-robot coordination; humanoid robots; scheduling and
coordination; supervisory control

1. Introduction

Multi-robot systems are making a significant impact on fundamental societal areas.
From oceanic exploration to border surveillance, from robotic warehousing to precision
agriculture, and from automated construction to environmental monitoring, collaborating
groups of robots will play a central role in the coming years [1]. In some of these scenarios,
however, due to technical, ethical, regulatory or safety issues [2], one or more humans
should monitor or help the robot during the execution of its tasks in certain critical parts .
These critical segments of the robot trajectory can be kinematically or dynamically complex
maneuvers, locations near obstacles, or regions where sensing is poor.

Most teleoperated systems assume more than one human operator per robot. More
than one human may be required for each subsystem in more complex scenarios, such
as humanoids or mobile manipulator teleoperation (e.g., manipulation, locomotion, head
positioning). For instance, in control rooms in Unmanned Aerial Vehicles missions, several
operators are needed to operate a single drone. While it may remain infeasible to remove
altogether the portion of a task which cannot be automated, we can efficiently allocate
human attention in these portions. As an application of our ideas, we envision scenarios
where a single operator can coordinate a group of automated construction machinery, sev-
eral agricultural pieces of equipment or even a production line of industrial robots. Indeed,
the recent pandemic has demonstrated teleoperation control paradigms are favoured in
situations where remote presence is desirable and where complexity precludes the use
of fully autonomous systems [3]. Effectively combining the cognitive capabilities of a
human operator with robot physical capacities [4] has provided great benefits in industrial
applications [5,6] and more general methodologies are needed.
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Another motivation behind our ideas is robot-assisted search and rescue. In traditional
mobile robot search and rescue operations using unmanned vehicles, operators’ ratio to
robots is commonly 2 to 1 [7]. More recently, motivated by disasters such as the Fukushima
nuclear plant, there has been a need for robots with larger degrees of freedom that can op-
erate in environments designed for humans. Concretely, lessons learned analyzing human-
robot interfaces used by different teams in the DARPA Robotics Challenge (DRC) [8], gave
two important reasons motivating our ideas to reduce the number of operators: (1) fewer
operators reduces confusion and coordination overhead, and (2) the number of human
errors (one of the main sources of problems in the DRC [9]) is reduced.

This work addresses the question of operator attention at critical moments of a teleop-
eration task. In most situations, an operator is only required in specific parts of a robot’s
operation. Knowing this, we can schedule these operator interactions so that a single opera-
tor can perform multiple tasks. Thus, our objective is to develop a planning strategy for the
remote task involving multiple robots such that the operator can pay sufficient attention
to each robot during critical operations. This work’s contributions are: extending our
preliminary ideas from [10,11] in the following directions: First, we analyze the complexity
of this problem. Secondly, we present a sampling-based approach that allows us to design
policies for many teleoperators instead of a complete algorithm that only works for a small
set of operators. Thirdly, we allow re-planning of the robot’s task alongside the operator.
Finally, we present the results of both simulated and physical experiments using mobile
robots and a humanoid.

Our work deals with planning for robots using a small set of operators that can
help the robot when needed. As a convention, we will use the term “robot” throughout
this paper; however, the method is formulated within the robots’ configuration space
and is agnostic to the robot type. It can model multiple robots and a single robot with
multiple degrees of freedom such as a humanoid robot. To the best of our knowledge,
our contribution is one of the few that attempts to formalize operator scheduling problem
using a geometric approach.

The rest of the paper is organized as follows: Section 2 discusses relevant related
literature. Section 3 describes the preliminaries and formulates the problems of interest.
Section 4 describes algorithms to solve the formulated problems in the previous section.
In Section 5, we present an extension of the solution in Section 4 which can also re-plan
robot trajectories. Section 6 presents both software and hardware experimental results, and
a case study is provided in Section 7. Conclusions and future directions are presented in
Section 8.

2. Related Work

Teleoperation is an established robot control paradigm with particular widespread use
in surgical and medical operations [12]. While teleoperation is classically defined using 1:1
operator to robot ratio [13,14], there is a growing need for systems that facilitate operator
oversight of multiple robots [15]. This work focuses on reducing operator supervision
to only temporally critical passages. Previous work took a different approach, aiming to
reduce the cognitive burden on the operator by, for instance, using virtual fixtures [16,17].
Virtual fixtures create zones where the robot can operate and thus reduce the operators’
supervision load. These zones can be obtained using point cloud data [18], shape prim-
itives, [19], manually created [20], selected interactively [21] or generated on-line based
on obstacle proximity and manipulator capabilities [22]. For the teleoperation of multiple
agents, Farkhatdinov et al. [23] proposed a discrete switching control algorithm where an
operator can trigger a switch to control different robots or different inputs, i.e., position,
velocity of the same agent. In [24], the authors propose modeling operator behavior in a
multi-robot control task and hypothesize that these models can be used to improve the
teleoperation control strategies. Alternatively, for more complex systems, the introduction
of a degree of autonomy in the robots’ behavior, often denoted as shared control, can
enable operators to control multi-agent or complex systems [25]. Using operators alongside
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partially autonomous robots yields systems that are less brittle and more effective than
either one working alone [26]. A study case of a foraging task is presented in [27] where
queuing techniques were used to schedule the operator’s attention. In [28], Dardona et al.
have shown that the output side sensor configuration of a teleoperated system is altered to
reduce the workload of a remote surgeon.

While the above techniques enhance the operators’ control of a robot system, we focus
on complex autonomous systems that require supervision and analyse how this supervising
burden may be reduced. Using one operator to control multiple robots has benefits in terms
of cost and control coherency but leads to a higher workload and decrease in situation
awareness [29]. The human operator is often overlooked when supervising robots [30],
despite their workload influencing task performance [31] and in fact having long-term
negative effects on well-being [32]. Indeed, J. M. Riley et al. [33] have demonstrated
that an increase in the number of robots per human significantly degrades performance
and situation awareness. An increase in supervision burden has been shown to increase
accidents during multi-robot control trials [34]. While this may be mitigated by smart alert
systems [35,36], it has been shown in [37] that too many robot systems will eventually
saturate operator capabilities and, in turn, lead the operators to neglect some robots.
Neglect is mainly due to the robots competing for operator attention [38]. In [39], the
authors propose real-time measurements of neurophysiological parameters to estimate
workload as a potential input to new forms of adaptive automation.

Our work focuses on eliminating this failure mode by judicious scheduling events
that are likely to require concentrated operator attention.

We build upon our recent work [10,11], to perform multi-robot planning [40,41]. We
also find complementary goals in [42] where a robot attempts to move from one location
in its environment to another by calculating which obstacles can be minimally displaced
to generate a feasible trajectory. In our work, we will similarly generate a coordination
space, where operator “collision obstacles” must be avoided, and seek to find the minimal
displacement needed to avoid them. In work by LaValle and Hutchinson [43,44], as well
as by Wang et al. [45], the complexity of coordinating both many robots and operators is
handled by separating the planning and scheduling aspects into two separate steps. This
division greatly assists in devising a feasible solution and is echoed here as well. Our work
develops techniques for planning multi-robot missions that can assist in outlining mission
requirements and robot policies. There are relevant approaches such as Crandall et al. [46]
which investigates the effects of allocating operator attention to robots, and [47–49] which
investigate additional methods of distributing operators across robots and the effects this
has. Particularly relevant to our research ideas are [50,51] where the expected behaviors of
humans in an environment are incorporated into the planning phase of robots, allowing
them to perform more elaborate plans than without this prediction. This argument also
extends into more industrial settings, where it is often repeated, scheduled interaction
between robots and operators [5]. Our work also relates to motion planning approaches
that generate joint plans for humans and robots [52–54].

3. Preliminaries

We start with a set of m of bodies, which can be kinematic chains or mobile robots,
A = {A1, · · · ,Am}. Each robot Ai ∈ A has a configuration space C i representing the set
of all possible transformations, where the set of valid configurations is called the free space
C i

f ree. Robots also have initial qi
I ∈ C i

f ree and goal qi
G ∈ C i

f ree configurations, where the

trajectory λi : [0, ti
f ]→ C

i
f ree takes the robot from λi(0)-corresponding to qi

I-through C i
f ree

to the final configuration λi(ti
f )-corresponding to qi

G, where ti
f is the total runtime for Ai to

execute λi given a dedicated operator.
When executing λi, Ai may enter critical configurations C i

att ⊂ C i
f ree during which it

will require one of the p operator’s supervision. A conflict occurs when more than p robots
require supervision at the same time. Given a range of time T = [0, t f ] where the mission is
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executing, we will attempt to minimize t f = max(t1
f , . . . , tm

f ) when all robots have finished,
while also providing operator attention when required.

Problem 1. Scheduling for Multiple Operators: Given p the number of operators, a set of
robots A—each with their trajectories λi, and a set of critical configurations C i

att—determine a
policy πi : T → C i

f ree for each robot such that (1) all robots are only in critical configurations when
an operator can supervise them, (2) the number of operators requested at any time does not exceed p,
and (3) attempt to reduce the total runtime of the mission t f .

Building on this problem, we can add the following condition: Is it possible to yield
a shorter mission runtime by generating alternative trajectories for bodies such that they
do not require supervision simultaneously as other robots in the first place, thus avoiding
operator attention “collisions” altogether? This question leads us to a concrete extension of
Problem 1.

Instead of a pre-determined trajectory, we use a sequence of waypoints τi = [τi
1, . . . , τi

o]—
where each waypoint is a specific configuration the robot must achieve, and the application-
specific function plan(Ai, τi, tden) yields a trajectory that visits τi while avoiding C i

att during
operator-denied times tden—an example of which can be found in Section 6.

Problem 2. Scheduling with Re-Planning: Given p operators, a set of robots A each with a
sequence of sub-goals τi, and a set of critical configurations C i

att. Determine a trajectory λi and
policy πi : T → C i

f ree for each robot satisfying the waypoints such that (1) robots are in critical
configurations only when an operator can supervise them, (2) the number of operators requested
at any time is less than or equal to p, and (3) an effort is made to minimize the ending time of the
mission t f .

4. Scheduling Operator Attention

This section will propose solutions to Problem 1 defined in Section 3. A schematic
representation of the steps of our approach is outlined in Figure 1. Details of the method
will be explained below.

Figure 1. Overall steps involved in the proposed scheduling approach.

4.1. Computational Complexity of Scheduling for Multiple Operators

In our previous work [11], we described the operator scheduling problem and pre-
sented a geometric approach for its solution. There were several issues with the proposed
methodology related to the computational complexity of creating the entire set of obstacles
with the coordination space. To solve this problem, we give a proof sketch proving the
complexity of this problem.

We prove that Problem 1 is NP-Hard by using the technique or restriction ([55], p. 63).
An NP-Hardness proof by restriction consists of showing that a problem Π (in our case,
Problem 1) contains a known NP-Hard Π′ as a special case.

In our proof, Pi′ is the Multiprocessor Scheduling problem ([55], p. 238), which consists
of a set of J jobs, each job ji has a corresponding length li. Given p processors, we must
schedule this set of jobs so that they (1) do not overlap and (2) execute in the minimum
amount of time.

Starting from problem 1 (our operator scheduling problem), assume that all possible
configurations for the robot will require operator attention, meaning that the entire execu-
tion of λi will need an operator. This plan’s runtime is ti

f , and is analogous to the length
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of a job in the original Multiprocessor Scheduling problem. These jobs are scheduled and
allocated to p operators, which would be the processors in the original formulation. This
problem then reduces to the Multiprocessor Scheduling problem where we schedule j jobs
across p processors and indicates that the problem we are trying to solve is NP-hard.

4.2. A Sampling-Based Solution

Knowing that the problem is NP-hard we ask, we will propose heuristics to find
feasible solutions.

We start by by creating a Coordination Space X = [0, t̃1
f ] × · · · × [0, ˜tm

f ] (following a
procedure similar to [56]) representing all possible configurations of the robots along their
trajectories. Each of the m axes corresponds to the normalized execution time t̃i

f of robotAi,

given by t̃i
f =

ti
f

max(t1
f , . . . , tm

f )
, with the position along the axis corresponding to progress

along the trajectory. Let Xobs be the set of invalid configurations where the number of robots
requesting supervision exceeds p, and X f ree = X\Xobs be the set of all valid configurations
where the number of requests does not exceed p. At xinit = (0, ..., 0) ∈ X f ree all robots

are in their initial configurations, and at xgoal = (t̃1
f , ..., ˜tm

f ) ∈ X f ree all robots are in their
final configuration.

We define auxiliary functions, borrowing the notation from [57]: d(x1, x2) is the
Euclidean distance between two points, and c(·) is the cost of a path corresponding to the
sum of the pairwise Euclidean lengths of the pairwise linear points within it.

The above formulation serves to create a coordination space where the position along
axes represents robot configurations and invalid configurations where multiple robots
request obstacles represent an operator. This process allows us to convert the coordination
problem into a path-planning problem. We must find a path h : [0, 1] → X f ree from
h(0) = xinit to h(1) = xgoal . Following h will give us an implicit representation of time
with each robot’s positions along their trajectory, such that each robot will move from
its initial state to its goal state, with at most p robots requiring operator attention. We
performed this calculation by mapping h to the trajectory λi corresponding to a particular
robot. Define σ : h→ [0, ti

f ], which indicates the position of the robot along its trajectory

λi at the corresponding point of path h through X f ree. We then perform the composition
φ : λ ◦ σ, which yields φ : h → C f ree, mapping from the path h to C f ree. This allows us to
determine the configuration of a robot at any point q in h via φ(q) = λ(σ(q)). We can now
obtain the series of configurations x̃ for each robot that will guarantee that at most p robots
require operator attention at any given time and reduces the total run-time of the mission.

Our preliminary solution [11] required generating the entire set of obstacles within
the coordination space. Here, we instead use a lazy approach which only checks sampled
locations. This is combined with a modified version of the Bidirectional RRT∗ originally
described in [57–59], and shown in Algorithm 1 for reference. Define graphs Ga = (Va =
{xa

init}, E = ∅) ∈ X f ree, Gb = (Vb = {xb
init}, E = ∅) ∈ X f ree, where xa

init = xinit and
xb

init = xgoal . The objective will be to derive an obstacle-free path h : [0, 1] → X f ree such
that h(0) = xinit, h(1) = xgoal . Given a user-defined function that can estimate when robots
will enter a critical section S ← CriticalSegments(A) we can check if a point x ∈ X is
obstacle-free as in Algorithm 2, where for the point being evaluated, we iterate over each
robot’s critical segments (lines 3, 4) and check if the corresponding axis of x lies within
the segment (line 5). If the number of collisions is greater than the number of operators
(line 7), then the location is not obstacle-free. With some abuse of notation, we also use this
to refer to checking if an edge is obstacle-free by sampling along the edge and checking if
the samples are all within X f ree.

The modified BidirectionalRRT∗ is presented in Algorithm 1. In lines 1, 2, we initialize
the final path as currently being none, and the corresponding cost to be infinite. Subse-
quently, we perform the following procedure over N samples: Beginning with Ga—the
graph starting at the origin—in lines 4, 5 we draw a randomly selected point from X f ree.
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Checking if the point lies within X f ree is done using Algorithm 2, and select the nearest
point in the graph (we use an r-tree to accomplish this efficiently). In line 6, create a point
xnew that is closer to xrand than xnearest. Then in lines 7–9, select the r points in Ga that are
nearest to xnew and sort them in order of increasing distance from xnew, where the sorted
list Ls consists of tuples of the form (x′, c′, σ′), where x′ ∈ Xnear, σ′ is an edge from x′ to
xnew, and c′ is the cost of that path, and select the closest one with an obstacle-free path
to xnew as in [60]. If there is a valid “best parent” —defined as the vertex with the lowest
combined cost-to-come and cost-to-go—we insert it into the graph and rewire as in [60]
(lines 10–13). We then attempt to connect both trees. In lines 14–17, we select the nearest
vertex in the opposite graph Gb and attempt to draw a straight path from the newly added
vertex xnew ∈ Ga to Gb, if possible. We then check if the resulting path is better than our
current best-path σbest and update σbest if necessary.

Algorithm 1: B-RRT∗

Input : Coordination Space X, Operators p; Critical Segments S ; Samples N,
Probability of early exit pearly ∈ [0, 1]

Output : Obstacle-free path σbest through X
σbest ← ∅;
cbest ← ∞;
for i ∈ [0, N] do

xrand ← SampleFree;
xnearest ← Nearest(xrand,Ga);
xnew ← Extend(xnearest, xrand);
Xnear ← Near(xnew,Ga, r);
Ls ← Sort(xnew, Xnear);
xmin ← BestParent(Ls);
if xmin 6= ∅ then
Ga ← Insert(xnew, xmin,Ga);
Ga ← Rewire(xnew, Ls, E);

end
xconn ← Nearest(xnew,Gb);
σnew ← Connect(xnew, xconn,Gb);
if σnew 6= ∅ and c(σnew) < c(σbest) then

σbest ← σnew;
end
RandomContraction(σbest);
u ∼ U([0, 1]);
if σbest 6= ∅ and u ≤ pearly then

return σbest;
end
SwapTrees(Ga,Gb);

end
return σbest;

At this point in the algorithm, we may have a valid path σbest through X f ree. We then
perform RandomContraction as in [60] to attempt reducing the length of σbest. The user
may assign a probability pearly, corresponding to the likelihood of checking for an early-exit
solution; this is to balance between the run-time of B-RRT∗ and yielding a better path. We
evaluate this in lines 20–23, returning a valid solution if one exists. Otherwise, we swap Ga
and Gb and continue until all N samples have been drawn and return σbest.

We then proceed, in Algorithm 3, by mapping h to the sequence of configurations
x̃i that correspond to robot Ai. Movement parallel to an axis corresponds to that robot
moving at full speed, perpendicular segments indicate the robot is paused, and diagonal
segments to velocity-tuning depending on the slope.
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To the best of our knowledge, our approach is one of the first to use geometric
and motion planning techniques to schedule operators’ attention. Since most previous
methods are based on human factor techniques or combinatorial scheduling algorithms,
head-to-head comparison is difficult. Furthermore, our study cases (multi-robot control
and humanoid manipulation) are different from the ones presented in related work (e.g.,
foraging [27]). In the near term, one direction for comparison would be applying our
techniques to previously used study cases and benchmark the approach.

We believe that our proposed method has a good scaling behavior. An additional robot
and its constraints represent an additional variable in our coordination space. Since we are
using sampling-based methods for finding a feasible solution (which have been used in
large dimensions [61]), we believe that our method can scale to larger groups. Furthermore,
in sampling-based motion planning, a significant part of the computational cost is collision
checking, and since this is simple in our formulation (obstacles are hypercubes), there is
good potential for scaling.

5. Scheduling with Re-Planning

The previous solution provides us with a coordination space and corresponding path
that yields a velocity-tuning approach preventing operator collisions. We now look for a
solution that yields a shorter mission runtime by also altering the robot trajectories. This
solution is found by comparing the current path through the coordination space h and
the desired shortest-path path hdes which would be a straight line. Given the example
in Figure 2a,b, where we see the robots and environment, and the resulting coordination
space, we indicate an “ideal” path as in Figure 2c. When searching for a path through the
coordination space, we may find a point x ∈ X such that hdes(x)

⋂
Xobs 6= ∅, representing

an obstacle. In the example shown in Figure 2c, this is indicated by the blue region,
meaning that the ideal path is not valid as it intersects the obstacle. In these situations, the
solution is to either plan around the obstacle, corresponding to tuning the velocity of the
robots involved—as in the solution for Problem 1—or creating alternative plans for the
robots. In the latter case, the number of operators requested during the original set of times
corresponding to the obstacle can now be fulfilled, potentially reducing the overall mission
runtime if the resulting plans are shorter than the wait times.

Algorithm 2: CollisionCheck
Input : Point x; Number of operators p; robots A
Output : True if obstacle-free, False otherwise
ncolls ← 0
for i ∈ [1, m] do

q← λi(xi) if q ∈ C i
att then

ncolls ← ncolls + 1
if ncolls ≥ p then

return False
end

end
end
return True
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(a) (b)

(c)

Figure 2. Example Environment and resulting Coordination Space (a) A planar environment with
dangerous regions requiring operator supervision to traverse shown in blue, and robot trajectories in
yellow. (b) The two-dimensional Coordination Space resulting from (a). Each axis corresponds to the
positions of robots along with their trajectories. The red line indicates an attention-conflict-free path
through the coordination space. (c) Coordination space from (b), with the desired (optimal) policy
shown as the red line.

A critical side-effect to keep in mind is that by modifying robots’ trajectories when
avoiding collisions caused by conflicting operator attention requests, we are also potentially
changing later parts of their trajectory. This change will lead to a different coordination
space and the possibility of shifting, creating, or removing subsequent obstacles. As an
illustrative example, Figure 3a shows two robots, which enter regions requiring supervision
at the same time and produce the coordination space in Figure 3b. The vertical segment
of the path h shown in red corresponds to the collision being resolved by pausing robot 1
until robot 2 has finished its operator request before continuing. This scenario could also
be solved by re-planning robot 2 so that it avoids operator requests during the original
times. However, robot 1 will then require more time to travel around the dangerous region,
causing it to encounter its second critical section at a later time—precisely when robot
1 is entering its second request as well (Figure 3c)—creating another conflict that must
be solved.

This setup yields our initial solution via velocity-tuning. Then create an ideal path
hopt, given by a straight line that assumes no robots require supervision (line 3). Next,
we verify if the optimal solution is valid by checking for collisions between hdes and
obstacles in the coordination space and return the first obstacle encountered—if any in
line 4. FirstObstacle returns the robots involved in the “collision” oAinv , along with the
corresponding configurations oCatt and times that each robot has in conflict otden . If the ideal
path is invalid (line 5), we can resolve this in two ways:

1. Alter the involved robots policies (as in the previous solution).
2. Re-plan the involved robots trajectories to eliminate the obstacle.
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(a) (b)

(c)

Figure 3. Example Environment, resulting Coordination Space, and Shifting Conflict Regions (a)
Robots in their environment, and their expected trajectories; (b) Original Coordination Space resulting
from (a); (c) Final Coordination Space after re-planning around the first attention obstacle.

We now describe how to re-plan the robot’s trajectories. Given the robots involved in
the collision, oAinv , we sort them in order of ascending length of execution time and select
the shortest |oAinv | − p—the minimum number of robots to re-plan to remove the attention
collision (lines 6, 7). This procedure is performed on the robots with the shortest current
plans so that extensions to their plans due to re-planning should have a minimal effect on
the mission’s overall length. Then generate alternative trajectories for the robots, provided
operator-denied times otden , and create an alternative goal location xaltgoal to account for
any shifts in the ending times of the robot plans (lines 8–11).

Suppose the distance between xinit and the alternative xaltgoal is longer than the current
solution. In that case, velocity-tuning will yield a better solution, and we incorporate the
obstacle into the “desired” set of obstacles (lines 12, 22). Otherwise, we test if the alternative,
a re-planned solution is better (lines 13, 14). If it is, then update the robots with their re-
planned trajectories, and replace the current coordination space and goal to account for any
changes in execution times (lines 15–17); else we incorporate the obstacle into the “desired”
set of obstacles as before (line 19).

We repeat this process of generating desired solutions (line 24) and testing them until
the desired path hdes no longer intersects any obstacles. At this point, we return the final
hdes that will have no operator conflicts.

6. Experimental Results

In this section, we cover the design and of both simulated and physical experiments,
and the results obtained.

6.1. Software Simulation for Scheduling with Re-Planning

Here we describe our simulation and provide an example plan algorithm that re-plans
a robot’s trajectory around unsafe areas in the environment—which would require operator
supervision—given operator-denied times.

The simulated environment consisted of a discretized 2-dimensional grid-world where
robots can only move either horizontally or vertically. The environment also contains
hazardous regions (shown in blue) which require operator supervision to traverse, corre-
sponding to configurations in Catt.
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Example Re-plan Algorithm: The plan algorithm used in this example attempts to
find the shortest path between xi

init and xi
f inal within the robot’s environment, which can

be easily attained via the A∗ algorithm [62,63]. However, this path may intersect with
regions requiring supervision. First, denote the starting time of the mission as Ti = 0.
Given times when an operator will not be available for the robot, tden, we modify A∗ as
follows: Augment A∗’s nodes with an additional time parameter. When visiting a node,
update its neighbor’s time attributes to time + travel_time where time is the current time,
and travel_time is the time required to move from the current node to the neighbor. If the
neighbor physically resides within Catt and the neighbors time is inside ti

den, then we treat
it as an obstacle. This modification of A∗ provides paths that circumvent obstacles during
operator-denied times, with an example shown in Figure 4.

Algorithm 3: Scheduler
Input :A, robots to plan
Output : h, path through X used to derive policy
xinit ← (0, . . . , 0); xgoal ← (t̃1

f , ˜tm
f )

Xcurr ← [t̃1
f , . . . , ˜tm

f ]; hcurr ← B-RRT∗(Xcurr, xinit, xgoal , p, Catt)

Xdes ← [0, t̃1
f , . . . , ˜tm

f ]; hdes ← line(xinit, xgoal); Cdesatt ← ∅
o ← FirstObstacle(hdes, Catt)
while o 6= ∅ do
Ainv ← Sort(oAinv)
Amin ← Ainv[0 : |oAinv | − p]
Aalt ← (A\Amin)
plan(Ai, ti

den)∀A
i ∈ Amin

Aalt ← Aalt
⋃Amin

xaltgoal ← (t̃1
f , . . . , ˜tm

f )∀A
i ∈ Aalt

if d(xinit, xaltgoal) ≤ c(hcurr) then
Xalt ← [0, t̃1

f ]× · · · × [0, ˜tm
f ]; halt ← B-RRT∗(Xalt, xinit, xgoal , p, Catt)

if c(halt ≤ c(hcurr) then
xgoal ← xaltgoal ; hcurr ← halt
Xcurr ← Xalt; Xdes ← Xalt
A ← (A\Amin)

⋃Aat
else
Cdesatt ← Cdesatt

⋃
oCatt

end
else
Cdesatt ← Cdesatt

⋃
oCatt

end
hdes ← B-RRT∗(Xdes, xinit, xgoal , p, Catt)
o ← FirstObstacle(hdes, Catt)

end
return hdes
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(a) (b)

(c) (d)

Figure 4. Example Simulation Environment Example simulation. The robots are numbered 1, 2,
3 from top to bottom. (a) Robot 3 stops while Robot 2 passes through its dangerous region. (b)
Robot 3 has re-planned its trajectory and is going around the dangerous area, allowing Robot 2 to
be supervised. (c) Robot 1 stops to allow Robot 3 enter its dangerous area with supervision. (d) All
robots continue to their final goal locations.

In Figure 4, we show a simulated example given an environment with three robots. The
blue areas in the environment are dangerous, and require operator supervision to prevent
an accident. The example was designed to show several operator attention “collision”
scenarios. As the robots move from left to right, the following operator requests might arise:

• A1 requiring an operator
• A1 and A2 require an operator at the same time
• A1,A2,A3 require an operator at the same time
• A3 requiring an operator while A1 and A2 leave their critical regions
• A2 requiring an operator
• A1 and A2 require an operator at the same time

The resulting coordination space is shown in Figure 5, where (a, b) is only velocity-
tuning, and (c, d) is with re-planning the robot trajectories, which yields a slightly shorter
mission ending time than strictly velocity-tuning.

For further validation, simulations were run using a two-dimensional environment
populated with a set of randomly sized, randomly placed dangerous regions, and robots
placed in randomized obstacle-free starting and goal locations along with a corresponding
path between them as shown in Figure 6. Across each iteration of the simulations, environ-
ments and the starting and goal positions for the robots were randomly generated. In each
generated environment, trials were run using 2, 4, or 8 robots, moving at 1 cell/second.
These trials were then solved using the solutions for Problem 1 (Scheduling) and Problem
2 (Scheduling with Re-Planning), with 1, 2, 4, or 8 operators. The results can be found in
Table 1.
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(a) (b)

(c) (d)

Figure 5. Example Simulation Coordination Space resulting from the example shown in Figure 4. (a)
Original Coordination Space resulting from the environment and robots in Figure 4; (b) Side view of
(a); (c) Final Coordination Space after replanning; (d) Side view of (c).

Figure 6. Example Random Environment Example of a randomly generated environment and
trajectories intersecting critical regions.
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Table 1. Average time savings via re-planning vs velocity-tuning.

Robots Operators Average Savings

2 1 1.126

2 2 0

2 4 0

2 8 0

4 1 1.937

4 2 3.402

4 4 0

4 8 0

8 1 NA

8 2 0.218

8 4 5.284

8 8 0

There is an increase in the average time saved when dealing with larger numbers of
robots, as re-scheduling can simultaneously resolve multiple robots at once. We purpose-
fully ran the simulations with equal numbers of robots and operators to ensure that there
would be no time saved—as there would be no obstacles generated in the first place—and
this performed as expected. All tests with two and four robots completed successfully.
In trials with eight robots and a single operator, a solution was not found with the RRT∗

parameters that were used. Given 2 operators, ∼30% completed, and ∼60% for four opera-
tors. This result was due to the low sample count used when running Attention RRT∗, and
the large steer length, which prevented it from exploring paths in narrow gaps between
obstacles. The tuning of the sample count, steer length and rewire count lie outside the
scope of this work, but is nonetheless an interesting problem we expect to incorporate in
future work.

6.2. Hardware Experiment for Scheduling with Re-Planning

Here, we further illustrate the problem and solution via a hardware example. This
example consisted of a single operator that had to be allocated across three line-following
robots in a discrete grid environment.

The robots use a deterministic finite state machine to keep track of the position and
orientation, and a transition function given by a second transition-state machine that
ensures the robots inter-state path does not deviate from a grid line.

The hardware experiment in Figure 7 has an equivalent simulated environment shown
in Figure 7a. The robots have initial trajectories shown in yellow, which pass through
dangerous areas of the environment (blue) requiring operator supervision. The physical
implementation represents the dangerous areas using red/yellow squares, in the same
locations as in the virtual simulation. The resulting coordination space in Figure 7b provides
a set of policies enabling the robots to execute their trajectories while ensuring that the
operator is not split among multiple robots at the same time. The robots then executed
their corresponding policies, moving and pausing when appropriate, with at most one
robot entering a dangerous region at a time. Additional experiments and videos can be
found at: http://users.cis.fiu.edu/~jabobadi/oa/ (accessed on 4 April 2021).

http://users.cis.fiu.edu/~jabobadi/oa/
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(a) (b)

(c) (d)

Figure 7. Hardware Experiment Example (a) Simulated Environment; (b) Coordination Space
resulting from (a); (c) Analogous hardware simulation at t = 1; (d) Hardware simulation at t = 5.

The hardware experiments that were run and shown in the above link show successful
runs using the above procedures to design trajectories and policies for three different robots
under the supervision of a single operator. The mission ended in the shortest time possible,
and the operator did not receive multiple concurrent requests.

7. Study Case: Humanoid Robots

In this section, an application of the proposed method to NASA’s humanoid robot
Valkyrie [64] as shown Figure 8, is presented. Humanoid robots are high degree of freedom
complex systems that have been proposed for diverse applications including nuclear-
decommissioning tasks [65,66], disaster response assistance [67], and vehicles of space
exploration [64]. For many of these tasks, it is desirable to have a human-in-the-loop con-
troller to ensure critical and hazardous sub-tasks are completed. The supervised autonomy
frameworks to make humanoid robots applicable in performing complex tasks require an
effective design for a shared operator control interface which remains an open question.
As seen during the DRC, completion of complex tasks in simulated environments with hu-
manoids requires large teams of operators and shared control is indispensable [67]. Indeed
even a simple manipulation task requires coherent operator collaboration or inter-operator
communication problems can have detrimental effects [9]. Thus, it is preferable to enforce
a 1:1 ratio between humanoids and operator [8].

7.1. Methodology

We propose partitioning the humanoid robot into two serial kinematic chains, the left
and right arm, which are denoted as Al and Ar respectively. The desired task is modeled
as a typical pick and place operation where the robots must visit designated picking and
placing zones defined by the bounding boxes Xi=1...n. For example, Ar picks an object
from X1 and places it in X2. Next, Al collects the object from X2 and places it in a final
location X3. The picking and placing actions are executed by the end effectors of the
right and left arms whose positions are respectively given by pr and pl . When an end
effector (robot’s hand) is within a bounding box Xi=1...n, it requires operator attention,
i.e., the action is considered sensitive and require operator supervision. Thus, Xi=1...n
constitute configuration space constraints that must be transformed into critical regions in
the coordination space. Thus, the constraints are represented in the configuration space
as follows:

λl(t)
⋂

λr(t) = ∅|∀t ∈ [0, t f ]; λl(t), λr(t) ∈ X
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Additionally, the re-planning algorithm is modified as follows: Given a set of waypoints τ
and operator-denied times tden, plan will re-plan sections of λ that reside within X during
times tden if possible. If re-planning is not possible, or if there are critical waypoints that
should not be altered (such as waypoints denoting pick and place actions) the waypoints
and relevant sections of λ will be untouched and returned to the scheduler as is.

Figure 8. (Left) NASA’s humanoid robot Valkyrie. (Middle, Right) Experimental setup showing
coordination space obstacles and kinematic chains that are treated as independent robots.

7.2. Results

The simulation experiments are executed using the dynamic simulator Gazebo. An
initial set of waypoints are defined for Al and Ar. These waypoints consist of a set of
Cartesian positions and velocities for the kinematic chains such that λr and λl satisfy
the pick and place task constraints. The initial waypoints are passed to the scheduling
algorithm which generates a new set of waypoints that—when separated by a monotonic
time step—satisfy both the configuration and coordination space constraints. A cubic
interpolation of the waypoints is used to generate a continuous trajectory for execution on
the robot. A comparison between the executions before and after the scheduling algorithm
is shown in Figures 9 and 10. The coordination space of these trajectories is shown in
Figure 11.

(a). Initial trajectory with three attention zones

(b). Rescheduled and re-planned trajectory with three attention zones
Figure 9. Pick and place task with three attention obstacles. The planning reference frame is located at the wrist of the
respective arms and is highlight by a red square. (Left): Both plans start in a valid position. Middle: Both plans approach
the bounding in the same manner, but in the rescheduled case, the right arm execution is slowed down to ensure that before
entering the bounding box the left hand has already left the attention zone (Right).
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(a). Initial trajectory with two attention zones

(b). Rescheduled and re-planned trajectory with two attention zones
Figure 10. Pick and place task with two attention obstacles. The planning reference frame is located at the wrist of the
respective arms and is highlight by a red square. (Left): Both plans start in a valid position. Middle: The initial trajectory
immediately violates attention constraints while the rescheduled trajectory slows the left arm to prevent entry into the area.
(Right): The right arm is slightly withdrawn (re-planning) to ensure target frame is outside the bounding box before the left
has to enter.

(a). Trajectory of Figure 9a (b). Trajectory of Figure 10a

(c). Trajectory of Figure 9b (d). Trajectory of Figure 10b
Figure 11. Purple areas represent times when both palms will be in a critical zone while the red line is the scheduled times
to reach a point for each palm.
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The two original trajectories shown in Figure 11a,b have conflicts in critical areas
as illustrated by the line passing through purple areas. The reduced purple areas in
Figure 11c,d demonstrate the re-planning of waypoints, and the altered slope of the line
through space indicates a change in time through the waypoints. Both trajectories use a
combination of re-planning and rescheduling to generate a collision-free path through the
coordination space.

8. Conclusions and Future Work

This work provides a geometric approach for converting robot trajectories and super-
vision requests into a set of policies for the robots that permit operators to oversee critical
sections of robot plans without being over-allocated. The provided solution is also capable
of determining when re-planning robots would yield a better solution than velocity-tuning.
There are exciting avenues for future work.

In the short term, we would like to look at the effects that robot movement has on
an operator’s effectiveness in overseeing them [68], and incorporate this effect into our
solution. As an example, operators require time to switch their attention from one robot to
another. This context switching time might be represented by extending obstacles in the
coordination space towards the origin. Similarly, a robot’s path may have some element of
uncertainty, especially when outside of a factory setting. In this case, we can “inflate” the
obstacles within the coordination space, which would provide a more cautious solution.

We are also interested in improving our modeling of context switching times by using
constructions from Human-Robot Interaction research. Potential sources of information
that can be incorporated are mental states (MS) modeling and physiological factors [30]. We
believe that the combination of realistic human cognition models and algorithmic, scalable
methodologies such as the one we proposed in this paper can lead to fundamental insights.

Searching through the coordination space might be modified to use a receding horizon
approach to allow for more rapidly changing robot plans if presented with a dynamic
environment. We would like to include the stability constraints and interdependence
between kinematic chains when working with robots with large degree of freedom.

We studied the complexity of problem 1 and argued that it is NP-Hard by using the
technique or restriction, and we proceeded to propose feasible heuristics to solve it. A
natural direction will be to carefully study approximation algorithms [69] for scheduling
problems [70] that can be translated into our framework. This can help us calculate
approximation ratios and performance guarantees for our approach.

In our paper, we presented two study cases to show our approach’s practical feasibility
and range of applications. The first scenario is on a set of mobile robots, and the second is
on a robot with several degrees of freedom. We want to continue exploring applications
and extend this work to human studies to investigate the framework’s effectiveness for
complex teleoperation tasks. A domain of interest where our ideas can apply are one-to-
many (OTM) scenarios where a human operator needs to monitor and coordinate multiple
multiple autonomous vehicles [39].
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