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Abstract: Robots that incorporate social norms in their behaviors are seen as more supportive, friendly,
and understanding. Since it is impossible to manually specify the most appropriate behavior for all
possible situations, robots need to be able to learn it through trial and error, by observing interactions
between humans, or by utilizing theoretical knowledge available in natural language. In contrast to
the former two approaches, the latter has not received much attention because understanding natural
language is non-trivial and requires proper grounding mechanisms to link words to corresponding
perceptual information. Previous grounding studies have mostly focused on grounding of concepts
relevant to object manipulation, while grounding of more abstract concepts relevant to the learning
of social norms has so far not been investigated. Therefore, this paper presents an unsupervised
cross-situational learning based online grounding framework to ground emotion types, emotion
intensities and genders. The proposed framework is evaluated through a simulated human–agent
interaction scenario and compared to an existing unsupervised Bayesian grounding framework. The
obtained results show that the proposed framework is able to ground words, including synonyms,
through their corresponding perceptual features in an unsupervised and open-ended manner, while
outperfoming the baseline in terms of grounding accuracy, transparency, and deployability.

Keywords: language grounding; cross-situational learning; online learning

1. Introduction

The number of humans who interact with robots in a social context is increasing. In
contrast to industrial robots, the purpose of social robots is not the accurate performance
of a specific task in a highly constrained environment, but to assist in therapy, education
or social services [1]. Nowadays, social robots are already employed in many different
areas to help elderly people [2,3], people with dementia [4], autistic children [5] as well as
people with disabilities [6]. Previous research showed that social robots that follow human
social norms, like empathy, are seen as more supportive [7] and friendly [8]. A social norm
defines how people should behave, thereby defining specific expectations, which, when
violated, lead to specific reactions, including sanctions or punishment [9,10]. Thus, enabling
robots to follow social norms has the potential to make human–robot interactions more
enjoyful, predictable, natural, and, in general, more similar to interactions between humans.
However, due to the large number of social norms, their dynamic nature, i.e., they can
change over time, and their strong variation based on the environment of the interaction as
well as the personality of the human the robot is interacting with, they cannot be hard-coded
into the robot but must instead be learned. Learning can either occur through trial-and-error,
i.e., reinforcement learning [11], by observing how humans interact with each other, i.e.,
learning from demonstration [12], or by utilizing abstract knowledge available in written
form, e.g., on the web or in books. While there have been several studies that investigated
learning from demonstration and reinforcement learning to learn social norms [13–16],
there have not been any studies that investigated learning of social norms from abstract
knowledge provided in natural language. Understanding natural language is non-trivial
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and requires sophisticated language grounding mechanisms that provide meaning to
language by linking words and phrases to corresponding concrete representations, which
represent sets of invariant perceptual features obtained through an agent’s sensors that
are sufficient to distinguish percepts belonging to different concepts [17]. Most grounding
research has focused on understanding natural language instructions so that robots can
identify and manipulate the correct object [18,19] or navigate to the correct destination [20],
while, to the best of our knowledge, no attempts have been made to ground more abstract
concepts, such as emotion types, emotion intensities and genders, which are essential to
understand natural language texts describing social norms, such as empathy.

In this study, we try to fill this gap by proposing an unsupervised online grounding
framework, which uses cross-situational learning to ground words describing emotion
types, emotion intensities and genders through their corresponding concrete representa-
tions extracted from audio with the help of deep learning. The proposed framework is
evaluated through a simulated human–agent interaction experiment in which the agent
listens to the speech of different people and receives at the same time a natural language de-
scription, describing the gender of the observed person as well as the experienced emotion.
Furthermore, the proposed framework is compared to a Bayesian grounding framework
that has been employed in several previous studies to ground words through a variety of
different percepts [18–21].

The remainder of this paper is structured as follows: the next section provides some
background regarding cross-situational learning. Afterwards, Section 3 discusses related
work in the area of language grounding. The proposed framework, the baseline and
the employed experimental setup are explained in Sections 4–6. Section 7 describes the
obtained results. Finally, Section 8 concludes the paper.

2. Background

Cross-situational learning (CSL) has been proposed by, among others, Pinker [22]
and Fisher et al. [23] as a mechanism to learn the meaning of words by tracking their
co-occurrences with concrete representations of percepts across multiple situations, which
enables it to handle referential uncertainty. The basic idea is that the context a word
is used in leads to a set of candidate meanings, i.e., mappings from words to concrete
representations, and that the correct meaning lies where the sets of candidate meanings
intersect. Thus, the correct mapping between words and their corresponding concrete
representations can be identified through repeated co-occurrences so that the learner is
able to select the meaning which reliably reoccurs across situations [24,25]. The original
idea of CSL was developed to explain the remarkable ability of human children to learn the
meaning of words without any prior knowledge of natural language. Afterwards, a number
of experimental studies [26–28] have confirmed that CSL is, in fact, used by humans to
learn the meaning of words. Since CSL requires the learner to be exposed more than one
time to a word to learn its meaning, it belongs to the group of slow-mapping mechanisms
through which most words are acquired [29]. In contrast, fast-mapping mechanisms that
enable the acquisition of word meanings through a single exposure are only used for a
limited number of words [30,31]. The successful use of CSL by humans has inspired the
development of many different CSL-based grounding algorithms (Section 3) to enable
artificial agents to learn the meaning of words by grounding them through corresponding
concrete representations obtained with their sensors.

3. Related Work

Since Harnad [17] proposed the “Symbol Grounding Problem”, a variety of models
which either utilize unsupervised or interactive learning mechanisms have been proposed
to create connections between words and corresponding concrete representations. Inter-
active learning approaches are based on the assumption that another agent is available
that already knows the correct connections between words and concrete representations
so that it can support the learning agent by providing feedback and guidance. Due to
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this support, interactive learning models are usually faster, and often also more accurate
than unsupervised learning models; however, they do not work in the absence of a tutor
who provides the required support. Furthermore, in most studies, e.g., [32,33], the tutor-
ing agent did not provide real natural language sentences but only single words, which
significantly simplifies the grounding problem and raises the question of whether these
models would work outside the laboratory. Since, in real environments, the tutor would be
a regular user and might not be aware of the limitations of the learning agent or unwilling
to adjust the interaction accordingly. Examples of interactive grounding approaches in-
clude the “Naming Game” [34], which has been used in many studies to ground a variety
of percepts, such as colors or prepositions [32,33], and the work by She et al. [35]. The
latter used a dialog system to ground higher level symbols through already grounded
lower level symbols, thereby introducing another constraint that a sufficiently large set of
already grounded lower level symbols is available. It is important to note that most, if not
all, existing interactive learning approaches assume that the provided support is always
correct, although it might be wrong due to noise or malicious intent of the tutoring agent.
In contrast to interactive-learning-based approaches, unsupervised grounding approaches
do not require any form of supervision and learn the meaning of words across multiple
exposures through cross-situational learning [36,37]. The main advantage is that no tutor
is needed, which makes them more easy to deploy and also removes a potential source of
noise because it cannot be guaranteed that another agent that is able and willing to act as a
tutor is present, nor can it be assumed that the received support is always correct. Both
points are important when deploying an agent in a dynamic uncontrolled environment
that does not allow any control over the people who interact with the agent. In previous
studies, cross-situational learning has been used for grounding of shapes, colors, actions,
and spatial concepts [18,20,21]. However, most proposed models only work offline, i.e.,
perceptual data and words need to be collected in advance, and the employed scenarios
only contained unambiguous words, i.e., no two words were grounded through the same
percept. In contrast, the grounding framework used in this study, which is based on the
framework proposed in [38], is able to learn online and in an open-ended manner, i.e., no
separate training phase is required, and it is also able to ground synonyms, i.e., words that
refer to the same concrete representations in specific context, e.g., “happy” and “cheerful”.

4. Proposed Framework

The proposed framework consists of three parts: (1) Perceptual feature extraction
component, which extracts audio features from video using openEAR [39], (2) Perceptual
feature classification component, which uses deep neural networks to obtain concrete
representations of perceptual features, (3) Language grounding component, which creates
mappings from words to corresponding concrete representations using cross-situational
learning. The individual parts of the employed framework are illustrated below and
described in detail in the following subsections.

1. Perceptual feature extraction

• Input: Video stream.
• Output: 156 audio features.

2. Perceptual feature classification

• Input: 156 audio features.
• Output: Concrete representations of percepts.

3. Language grounding

• Input: Natural language descriptions, concrete representations of percepts, pre-
viously detected auxiliary words, and word and percept occurrence information.

• Output: Set of auxiliary words and word to concrete representation mappings.
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4.1. Perceptual Featue Extraction

Perceptual features are extracted from the videos of The Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS) [40] since it is used in this study
to simulate human–robot interactions (Section 6). All videos are given directly, i.e., without
any preprocessing, as input to openEAR [39], which is a freely available open-source toolkit,
to extract 384 speech features including the minimum, maximum, and mean values for
each individual speech feature. Which features are extracted by openEAR depends on
the used configuration. Three different configurations, i.e., INTERSPEECH 2009, emobase
and INTERSPEECH 2013, were evaluated for this study but only the INTERSPEECH 2009
(emo-IS09) [41] configuration was used in the end because its features led to the best clas-
sification results. The available feature sets are pulse code modulation (PCM) root mean
square (RMS) frame energy, mel-frequency cepstral coefficients (MFCC), PCM zero-crossing
rate (ZCR), voice probability (voiceProb), and F0. Additionally, for each of the mentioned
feature sets, a corresponding set with the delta coefficients is provided [41]. However, only
the MFCC and PCM RMS features, i.e., 156 of the 384 obtained features, are provided to
the classification models (Section 4.2) because they produced the best classification results
based on an experimental evaluation of the available feature sets, i.e., each feature set and
different combinations of feature sets were provided to the employed models. For the
evaluation, the mean accuracies calculated across five runs for each feature set combination
were compared and the model of the best-performing run was used in this study to obtain
the concrete representations provided as input to the language grounding component.

4.2. Perceptual Feature Classification

For the classification task, the dataset is partitioned in a subject independent manner
into a train and test set, i.e., the videos of the first eighteen actors (nine female, nine male)
are used for training and the videos of the remaining six subjects (three female, three male)
are used for testing (Section 6). The 156 audio features extracted by openEAR (Section 4.1)
are used as input for three different deep learning models, i.e., one for each modality, after
being normalized betwen zero and one. For emotion type classification, the model consists
of four dense layers each followed by a dropout layer with a ratio of 0.1. The batch size and
epoch size are set to 160 and 250, respectively. ReLU is used as an activation function in the
first three dense layers, a Softmax function is used in the last layer, and Adam is used as
an optimizer [42]. The applied model obtained an accuracy of 59.6% when classifying six
basic emotions and neutral.

For emotion intensity recognition and gender recognition, the model proposed in [43]
is used (Figure 1) with the following parameter settings: the convolutional layers are all
1D, have a kernels of size 3 and use ReLU as activation functions to add non-linearity.
The dropout layers are used as regularizers with a ratio of 0.1. The 1D max-pooling layers
have a kernel size of four and are used to introduce sparsity in the network parameters
and to learn deep feature representations. Finally, the dense layers are used with sigmoid
activation functions to find the predicted binary distribution of the target class. The number
of epochs is 250 and the batch size is set to 128. The number of units in applied LSTM and
BiLSTM networks is five. The applied model obtained an accuracy of 89.8% for gender
recognition and 73.5% for emotion intensity recognition. Table 1 provides an overview of
the classification accuracies for all individual classes.

Table 1. Classification accuracies for all individual classes, i.e., concrete representations.

Emotion Type Emotion Intensity Gender

Happiness Sadness Anger Neutral Surprise Fear Disgust Normal Strong Male Female

50% 77.08% 77.08% 37.5% 62.5% 52.08% 56.25% 41.66% 80.5% 99.35% 78.02%
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Figure 1. The architecture of the classification model used for emotion intensity and gender recognition.

4.3. Language Grounding

The grounding algorithm described in this section requires percepts to be represented
through concrete representations. In previous work, concrete representations have been
obtained through clustering [38]; however, the clustering algorithms employed in previous
studies are not able to achieve accurate clusters for the extracted speech features. Thus, deep
neural networks are used instead to obtain the same label for all concrete representations
of the same emotion type, emotion intensity or gender (Section 4.2). For each situation,
the predicted class is then provided together with a sentence describing the emotion
type, emotion intensity and gender to the grounding algorithm (Algorithm 1). Before the
actual grounding procedure, auxiliary words, which are words that have no corresponding
concrete representations, are automatically detected and removed through Algorithm 2,
which is a slightly modified version of the algorithm proposed in [38] and marks words
that occur more than twice as often as the most often occurring concrete representation
as auxiliary words. Afterwards, the set of word–concrete-representation pairs (WCRPS)
and the set of concrete representation pairs (CRWPS) are updated based on the words and
concrete representations encountered in the current situation. The former contains, for all
previously encountered words, a set of concrete representations they co-occurred with as
well as the corresponding co-occurrence counts, while the latter contains, for all previously
encountered concrete representations, a set of words they co-occurred with as well as
the corresponding co-occurrence counts. The word–concrete-representation (WCRP) and
concrete-representation–word (CRWP) pairs that occurred the most based on the updated
WCRPS and CRWPS are then added to the set of grounded words (GW) and concrete
representations (GCR), respectively. To enable the algorithm to ground synonyms and
homonyms, the words and concrete representations that were part of the highest WCRP
and CRWP can be used again during future iterations, because these require that multiple
words are able to be mapped to the same concrete representation and vice versa. Finally,
the sets of grounded words and concrete representations are combined. The described
grounding procedure is illustrated by Algorithm 1.
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Algorithm 1 The grounding procedure takes as input all words (W) and concrete repre-
sentations (CR) of the current situation, the sets of all previously obtained word-concrete
representation (WCRPS) and concrete representation-word (CRWPS) pairs, and the set of
auxiliary words (AW) and returns the sets of grounded words (GW) and grounded concrete
representations (GCR).

1: procedure GROUNDING(W, CR, WCRPS, CRWPS, AW)

2: Update AW (Algorithm 2) and remove AW from W

3: Update WCRPS and CRWPS using W and CR

4: for j = 1 to word_number do

5: Save highest WCRP to GW

6: end for

7: for j = 1 to concrete_representation_number do

8: Save highest CRWP to GCR

9: end for

10: return GW ∪ GCR

11: end procedure

Algorithm 2 The auxiliary word detection procedure takes as input the sets of word and
concrete representation occurrences (WO and CRO), and the set of previously detected
auxiliary words (AW) and returns an updated AW.

1: procedure AUXILIARY WORD DETECTION(WO, CRO, AW)

2: for word, occurrence in WO do

3: if occurrence > max(CRO) ∗ 2 then

4: Add word to AW

5: end if

6: end for

7: return AW

8: end procedure

5. Baseline Framework

The baseline framework uses the same percept extraction and classification com-
ponents as the proposed framework (Sections 4.1 and 4.2), while it uses a probabilistic
model to ground words through their corresponding concrete representations. The latter is
described in detail in this section.

The probabilistic learning model is based on the model used in [19]. The model
has been chosen as a baseline because similar models have previously been employed
in many different grounding scenarios to ground a variety of percepts, such as shapes,
colors, actions, or spatial relations [18–21]. In the model (Figure 2), the observed state wi
represents word indices, i.e., each individual word is represented by a different integer.
The following two example sentences illustrate the representation of words through word
indices: (the, 1) (man, 2) (is, 3) (very, 4) (happy, 5) and (the, 1) (woman, 6) (is, 3) (really, 7)
(cheerful, 8), where the bold numbers indicate word indices. Although “very” and “really”
as well as “happy” and “cheerful” are synonyms in the context of this study (Table 2),
they are represented by different word indices. The observed state t represents the type of
emotion, s represents the strength or intensity of the emotions and g represents genders.
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Table 3 provides a summary of the definitions of the learning model parameters. The
corresponding probability distributions, i.e., wi, θm,ZL1

, φtK1
, φsK2

, φgK3
, πw, πt, πs, πg, mi,

Zt, Zs, Zg, t, s, and g, which characterize the different modalities in the graphical model,
are defined in Equation (1), where GIW denotes a Gaussian Inverse-Wishart distribution,
and N denotes a multivariate Gaussian distribution. Gaussian distributions are used for t,
s, and g because concrete representations are represented by one-hot encoded vectors.

Figure 2. Graphical representation of the probabilistic model. Indices i, t, s, and g denote the order of words, emotion types,
emotion strengths, and genders, respectively.

Table 2. Overview of all concepts with their corresponding synonyms and concrete representation
number (CR#) according to Figure 7.

Type Concept Synonyms CR#

Emotion Type

Happiness happy, cheerful 1

Sadness sad, sorrowful 2

Anger angry, furious 3

Neutral neutral, fine 4

Surprise surprised, startled 5

Fear afraid, scared 6

Disgust disgusted, appalled 7
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Table 2. Cont.

Type Concept Synonyms CR#

Emotion Intensity Normal 1 slightly, lightly 8

Strong very, really 9

Gender Female she, woman 10

Male he, man 11

Auxiliary word - the, is 0
1 Since emotion intensities are binary, i.e., strong or normal, normal was seen as synonymous to weak, which
made it easier to find appropriate words.

Table 3. Definitions of the learning parameters in the graphical model.

Parameter Definition

λ Hyperparameter of the distribution πw

αt, αs, αg Hyperparameters of the distributions πt, πs and πg

mi
Modality index of each word

(modality index ∈ {Type, Strength, Gender, AW})

Zt, Zs, Zg Indices of type, strength and gender distributions

wi Word indices

t, s, g Observed states representing types, strengths and genders

γ Hyperparameter of the distribution θm,Z

βt, βs, βg Hyperparameters of the distributions φt, φs and φg

θm,Z Word distribution over modalities



wi ∼ Cat(θmi ,Zmi
)

θm,ZL1
∼ Dir(γ) , L1 = (1, ..., L)

φtK1
∼ GIW(βt) , K1 = (1, ..., Kt)

φsK2
∼ GIW(βs) , K2 = (1, ..., Ks)

φgK3
∼ GIW(βg) , K3 = (1, ..., Kg)

πw ∼ Dir(λ)
πt ∼ Dir(αt)
πs ∼ Dir(αs)
πg ∼ Dir(αg)
mi ∼ Cat(πw)
Zt ∼ Cat(πt)
Zs ∼ Cat(πs)
Zg ∼ Cat(πg)
t ∼ N(φZt)
s ∼ N(φZs)
g ∼ N(φZg)

(1)

The latent variables of the Bayesian learning model are inferred using the Gibbs
sampling algorithm [44] (Algorithm 3), which repeatedly samples from and updates the
posterior distributions (Equation (2)). Distributions were sampled for 100 iterations, after
which convergence was achieved.
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φt ∼ P(φt|t, βt)
φs ∼ P(φs|s, βs)
φg ∼ P(φg|g, βg)
πw ∼ P(πw|λ, m)
πt ∼ P(πt|αt, Zt)
πs ∼ P(πs|αs, Zs)
πg ∼ P(πg|αg, Zg)
Zt ∼ P(Zt|t, πt, w)
Zs ∼ P(Zs|s, πs, w)
Zg ∼ P(Zg|g, πg, w)
θm,Z ∼ P(θm,Z|m, Zt, Zs, Zg, γ, w)
mi ∼ P(mi|θm,Z, Zt, Zs, Zg, πw, wi)

(2)

Algorithm 3 Inference of the model’s latent variables. iter_num was set to 100.

1: procedure GIBBS SAMPLING(W, P, WP, AW)

2: Initialization of θ, φt, φs, φg, πw, πt, πs, πg, Zt, Zs, Zg, mi

3: for i = 1 to iter_num do

4: Equation (2)

5: end for

6: return θ, φt, φs, φg, πw, πt, πs, πg, Zt, Zs, Zg, mi

7: end procedure

6. Experimental Setup

The proposed framework (Section 4) is evaluated through human–agent interactions
in simulated situations created using the RAVDESS dataset [40], which consists of frontal
face pose videos of twelve female and twelve male north American actors and actresses,
who speak and sing two lexically matched sentences while expressing six basic emotions,
i.e., happiness, surprise, fear, disgust, sadness, and anger [45], plus calmness and neutral,
through their voice and facial expressions. In this study, only the speaking records of the
six basic emotions and neutral are used. In addition to the expressed emotions, all videos
in which one of the six basic emotions is expressed also come with labels indicating the
intensities of the expressed emotions, i.e., normal or strong, which are used in this study to
train the emotion intensity recognition model (Section 4.2). Since the videos of eighteen
actors and actresses are used to train the percept classifiers (Section 4.2), only the videos
of six actors and actresses are used to create situations for the simulated human–agent
interactions, leading to a total of 312 situations, i.e., for each person, eight videos per basic
emotion (four for each intensity level) and four videos for neutral (only one intensity level).
Each situation is created according to the following procedure:

1. The video representing the current situation is given to OpenEAR, which extracts 384
features (Section 4.1);

2. 156 (MFCC and PCM RMS) of the 384 features are provided as input to the employed
deep neural networks to determine the concrete representations of the expressed
emotion, its intensity and the gender of the person expressing it (Section 4.2);

3. The concrete representations are provided to the agent together with a sentence
describing the emotion type, intensity and gender of the person in the video, e.g.,
“She is very angry.”;

4. The agent uses cross-situational learning to ground words through corresponding
concrete representations (Sections 4.3 and 5).

Each sentence has the following structure: “(the) gender is (emotion intensity) emotion
type”, where gender, emotion intensity and emotion type are replaced by one of their corre-
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sponding synonyms (Table 2). If the emotion type is “neutral”, the intensity is always
normal; thus, the sentence does not contain a word describing the intensity of the emotion
and no corresponding concrete representation is provided to the agent. Additionally, if
the gender is described by a noun, i.e., “woman” or “man”, it is preceded by the article
“the”. Since the words used to describe a situation are randomly chosen from the available
synonyms, how often each word occurs during training and testing varies, e.g., “cheerful”
appears nearly twice as many times during training and testing as its synonym “happy”
(Figure 3). Ten different interaction sequences, for which the order of the situations was
randomly changed, are used to evaluate the grounding frameworks to ensure that the
obtained results are independent of the specific order in which situations are encountered.
The proposed framework receives situations one after the other as if it is processing the data
in real-time during the interaction, while the baseline framework requires all sentences and
corresponding concrete representations of the training situations to be provided at the same
time. Therefore, two different cases are evaluated. First, the case in which all situations are
used for training and testing, because this allows the proposed framework to continuously
learn, while it is an unrealistic case for the baseline framework because it is very unlikely
that all situations have already been encountered during training. Second, only 60% of the
situations are used for training, which is more realistic for the baseline framework, while it
adds an unnecessary limitation to the proposed framework by deactivating its learning
mechanism for 40% of the situations, although it does not require an explicit training phase.

Figure 3. Word occurrences for all words except auxiliary words. The dark blue part of the bars shows the mean number of
occurrences during training and the bright blue part shows the mean number of occurrences during testing.

7. Results and Discussion

The proposed cross-situational learning based framework (Section 4) is evaluated
through a simulated human–agent interaction scenario (Section 6) and the obtained ground-
ing results are compared to the groundings achieved by an unsupervised Bayesian ground-
ing framework (Section 5). Since the same percept extraction and classification com-
ponents (Sections 4.1 and 4.2) are used for both frameworks, any difference in ground-
ing performance can only be due to the different grounding algorithms described in
Sections 4.3 and 5.

Figure 4 shows how the mean number of correct and false mappings obtained by the
proposed framework changes over all 312 situations. It shows two different cases, which
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differ regarding the concrete representations used for emotion types, i.e., for the first case
(TPRE), the predicted concrete representations are used, while for the second case (TPER),
perfect concrete representations are used to investigate the effect of the accuracy of the
concrete representations on the grounding performance. For TPRE, represented by contin-
uous lines, the number of correct mappings quickly increases from zero to about twelve
mappings for the first 20 situations, and continuous to increase more slowly afterwards
to 15 mappings, while the number of false mappings starts with about six mappings and
increases over the course of 45 situations to 15 mappings, after which it slowly decreases to
13 mappings. The main reason for the large number of false mappings is that the concrete
representations used for emotion types are highly inaccurate, with an accuracy of 59.6%,
while, at the same time, 60% of the employed words refer to them. This assumption is
confirmed when looking at TPER, represented by the dashed line, which shows the number
of correct and false mappings when perfect concrete representations are used for emotion
types, while the predicted ones are still used for the other two modalities, i.e., emotion
intensity and gender. For TPER, the proposed framework obtains 17 and 20 correct map-
pings within the first 20 and 45 situations, respectively. If the framework is only allowed
to learn during 60% of the situations, it obtains 21 correct mappings, while it obtains one
more mapping, i.e., 22, if it continues learning for the remaining situations. In contrast,
the number of false mappings increases slightly from five to seven from the first to the
second situation, stays stable for about eight situations and decreases then continuously
to two mappings after 60% of the situations have been encountered and one mapping
after all situations have been encountered. Both cases together illustrate that the proposed
grounding algorithm depends on the accuracy of the obtained concrete representations;
however, it does not require perfectly accurate representations because it is able to obtain
all correct mappings for the second case, although the concrete representations for emotion
intensities and genders only have accuracies of 73.5% and 89.8%, respectively.

Figure 4. Mean number and standard deviation of correct and false mappings obtained by the proposed model over
all 312 situations. The continues line represents the results when the predicted concrete representations are used for all
modalities, while the dashed line represents the results when perfect concrete representations are used for emotion types to
investigate the influence of the concrete representation accuracy on the grounding performance of the proposed model. For
all lines, the dotted parts only occur when all situations are used for training.

The figure also illustrates the online grounding capability and transparency of the
proposed grounding algorithm because it updates its mappings for every new encountered
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situation and allows, at any time, to check through which concrete representation a word
is grounded. The latter becomes important when the model is used in real human–agent
interaction to understand and debug the agent’s actions, especially in cases where they
might have been inappropriate. Since the baseline model requires an explicit training
phase, no similar figure can be obtained. Thus, to compare the two models, the mappings
of the proposed model are extracted after 187 and 312 situations depending on the used
train/test split. In this study, two different train/test splits are used. For the first split
(TTS60), only 60% of the situations are used for training and the remaining 40% for testing
to investigate how well the models perform for unseen situations. Figure 3 provides an
overview about the average occurrence of each word in the train and test sets. Applying
the learning mechanisms of the proposed model only for the first 187 situations is both
unnecessary and unrealistic because it is able to learn in an online manner and does not
require an explicit training phase; however, it has been done out of fairness to the baseline
model because the latter sees also only 60% of the situations during training. In contrast,
for the second split (TTS100,) all situations are used for training and testing to ensure that
the proposed model can learn continuously, while providing an unrealistic benefit to the
baseline model because it is very unlikely that it would encounter all situations already
during the offline training phase.

Figure 5 shows the accuracies for each modality for both models and test splits, as well
as the percentage of sentences for which all words were correctly grounded. Additionally,
it also illustrates the influence of the accuracy of the employed concrete representations
by showing both the results for the predicted concrete representations of emotion types
(Figure 5a) and when using perfect concrete representations for emotion types (Figure 5b).
The proposed model achieves a higher accuracy than the baseline model in all cases, i.e., for
all modalities, train/test splits and both concrete representations of emotion types, except
for emotion types, when the predicted concrete representations are used and all situations
are encountered during training. In fact, for genders, the proposed model achieves perfect
grounding due to the high accuracy of the corresponding concrete representations, i.e.,
89.8%. The figure also confirms the results in Figure 4 that the grounding accuracy improves
with the number of encountered situations, which seems intuitive but is not necessarily
the case, as shown by the results obtained for the baseline model, i.e., the latter obtained
less accurate groundings for most modalities when using all situations for training and
testing due to the larger number of situations in the test set. For the baseline model,
using perfect concrete representations for emotion types increases the accuracy of the
groundings obtained for emotion types and genders as well as the accuracy of auxiliary
words, although the accuracy of the latter two only increases for TTS100, while the accuracy
of the emotion intensity groundings decreases independent of the number of situations
encountered during training.

Although the accuracies provide a good overview of how accurate the groundings
for each modality are, they do not provide any details about the wrong groundings or the
accuracy of the groundings obtained for individual words. Therefore, Figure 6 shows the
confusion matrices for all words and modalities, which illustrate how often each word
was grounded through the different modalities and highlight two interesting points. First,
both models show a high confusion for emotion types, i.e., all of them have non-zero
probabilities to be mapped to concrete representations representing emotion intensities
or genders, due to the low accuracy of the corresponding concrete representations for
TTS60. The confusion decreases for TSS100, in which case most words converge to one
modality for the proposed model, i.e., only “happy” and “sad” are still confused as a
gender or emotion intensity, respectively. However, this does not lead to a substantial
increase in grounding accuracy for emotion types because some words, e.g., “surprise”
and “afraid”, converge to the wrong modality so that the probability to be mapped to a
concrete representation of an emotion type decreases to zero. Figure 7 shows confusion
matrices of words and different concrete representations, thereby allowing to investigate
whether the concrete representation a word is grounded through is correct, which might
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not be the case if there is a high confusion between concrete representations of the same
modality. The fourth column, representing the emotion type neutral, is very noticeable
in Figure 7a,c,d because both models do not map any word to it, except for the proposed
model and TTS60 (Figure 7b); however, even in the latter case, the probability that the
word “fine” gets mapped to it is very low because most of the time it is mapped to the
concrete representation of the concept male (column 11). Otherwise, the results show that,
for the proposed model, the confusion is normally across modalities and not between
concrete representations of the same modality. In contrast, the baseline model shows
strong confusions between concrete representations of the same modality, e.g., for TTS60
“happy” and “disgusted” are more often grounded through anger than happiness and
disgust, respectively.

(a) Results when the predicted concrete representations are used for all modalities.

(b) Results when perfect concrete representations are used for emotion types.

Figure 5. Mean grounding accuracy results and corresponding standard deviations for both grounding models, all modalities and
both training/test splits (TTS). Additionally, the percentage of sentences for which all words were correctly grounded is shown.
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When considering the deployability of the proposed and the baseline framework,
it is important to also analyse the required computational resources. The grounding
experiments have been conducted on a system with Ubuntu 16.04, i7-6920HQ CPU, octa
core with 2.90 GHz each, and 32 GB RAM. However, it is important to note that both
frameworks are only utilizing a single core; thus, the same processing times would be
achieved with a single core, if no other computationally expensive processes are running at
the same time. The average time it took the proposed framework to process a new situation
and update its mappings was 3 ms, while the inference time was only 56 µs. In contrast, one
Gibbs sampling iteration of the baseline model took 647 ms. Since 100 iterations were used,
the average training time (averaged across all 10 runs) for the baseline model was 65 s for
all 320 situations, while the inference time was on average 7.45 ms for each situation. These
results confirm that both framework can be used for real-time grounding applications,
while only the proposed framework can be used for dynamic environments that require
frequent updates of the models because the baseline framework requires already more
than one minute to train on a relatively small number of situations, which also needs to be
done in advance and is, therefore, not possible after deployment.

Overall, the evaluation shows that the proposed model outperforms the baseline in
terms of auxiliary word detection and grounding accuracy as well as its abilities to learn
continuously without requiring explicit training. The latter does not only make it more
applicable for real-world scenarios but also more transparent, because it is possible to
observe how a new situation influences the obtained groundings.

(a) Baseline model. (b) Proposed model.

(c) Baseline model. (d) Proposed model.
Figure 6. Confusion matrices showing how often each word was grounded on average, i.e., over ten runs, through which
modality when using predicted concrete representations for all modalities. (a,b) show the results when only 60% of the
situations are used for training, while (c,d) show the results when all situations are used for training and testing.
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(a) Baseline model. (b) Proposed model.

(c) Baseline model. (d) Proposed model.
Figure 7. Confusion matrices of words over different concrete representations for all ten situation sequences when using
predicted concrete representations for all modalities. (a,b) show the results when only 60% of the situations are used for
training, while (c,d) show the results when all situations are used for training and testing.

8. Conclusions and Future Work

This paper investigated whether the proposed unsupervised online grounding frame-
work is able to ground abstract concepts, like emotion types, emotion intensities and
genders, during simulated human–agent interactions. Percepts were converted to con-
crete representations through deep neural networks that received as input audio features
extracted via OpenEAR from videos.

The results showed that the framework is able to identify auxiliary words and ground
non-auxiliary words, including synonyms, through their corresponding emotion types,
emotion intensities and genders. Additionally, the proposed framework outperformed the
baseline model in terms of the accuracy of the obtained groundings, as well as its ability to
learn new groundings and continuously update existing groundings during interactions
with other agents and the environment, which is essential when considering real-world
deployment. Furthermore, the framework is also more transparent, due to the creation of
explicit mappings from words to concrete representations.

In future work, we will investigate whether the framework can be used to ground
homonyms, i.e., concrete representations that can be referred to by the same word. Further-
more, we will investigate whether the framework can ground emotion types, intensities
and genders, if multiple people are present in a video. Finally, we are planning to inte-
grate the framework with a knowledge representation to explore the utilization of abstract
knowledge to increase the sample-efficiency of the grounding mechanism as well as the
accuracy of the obtained groundings, and enable agents to reason about the world with the
help of an abstract but grounded world model.
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