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Abstract: The transportation of large payloads can be made possible with Multi-Robot Systems
(MRS) implementing cooperative strategies. In this work, we focus on the coordinated MRS trajectory
planning task exploiting a Model Predictive Control (MPC) framework addressing both the acting
robots and the transported load. In this context, the main challenge is the possible occurrence of
a temporary mismatch among agents’ actions with consequent formation errors that can cause
severe damage to the carried load. To mitigate this risk, the coordination scheme may leverage
a leader–follower approach, in which a hierarchical strategy is in place to trade-off between the
task accomplishment and the dynamics and environment constraints. Nonetheless, particularly
in narrow spaces or cluttered environments, the leader’s optimal choice may lead to trajectories
that are infeasible for the follower and the load. To this aim, we propose a feasibility-aware leader–
follower strategy, where the leader computes a reference trajectory, and the follower accounts for
its own and the load constraints; moreover, the follower is able to communicate the trajectory
infeasibility to the leader, which reacts by temporarily switching to a conservative policy. The
consistent MRS co-design is allowed by the MPC formulation, for both the leader and the follower:
here, the prediction capability of MPC is key to guarantee a correct and efficient execution of the
leader–follower coordinated action. The approach is formally stated and discussed, and a numerical
campaign is conducted to validate and assess the proposed scheme, with respect to different scenarios
with growing complexity.

Keywords: multi-robot systems; cooperative transportation; model predictive control; leader–
follower architecture

1. Introduction

A multi-robot system (MRS) is a set of autonomous agents, able to sense the environ-
ment, take decisions, communicate information, and cooperate in order to perform goals
that are beyond the capabilities and the knowledge of each individual component [1]. The
strength of this architecture is indeed the possibility to accomplish complex global tasks
through the realization of simple local rules by the interacting robotic agents. An MRS
is thus mainly characterized by cooperative nature which is not altered by the addition
and/or removal of a subset of elements. In this sense, it is robust and scalable [2]: robust-
ness refers to the ability of a system to tolerate the failure of one or more agents, while
scalability originates from the system modularity.

Thanks to these features, in the last decade, the MRS architecture has emerged as an
effective technology in military, civil, and industrial contexts, where it is employed in a
wide range of application fields from the more traditional surveillance, monitoring, and
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tracking tasks with both fixed and mobile robotic agents [3–5], to the modern physical inter-
action tasks involving loads cooperative grasping, transportation, and manipulation [6,7].
Nonetheless, the MRS scenario yields also new methodological challenges that need to be
addressed and solved. Indeed, moving the focus from the single robotic agent to the robotic
system implies the redefinition of the operation and control space, which involves not
only the non-controllable surrounding environment but also the presence of neighboring
robotic agents that may be collaborative or not. In this sense, architectural issues related to
distributed or hierarchical strategies in controlling the MRS have to be considered [8–11],
with an impact on both the information sharing and the control interplay among robots,
in particular when the physical robot-to-robot interaction is required as in transporta-
tion/manipulation tasks. In this context, current MRS research effort is focused on the
development of learning and optimal decision making algorithms to guarantee general
improvements on efficiency, scalability, adaptivity, and robustness in presence of partial
information availability and dynamic environments [7,12,13].

Along this line, the attention in this work concerns a transportation task performed by
cooperative mobile robots constituted by autonomous ground vehicles (AGVs) equipped
with a generic manipulator whose end-effector (EE) consists of a (soft) gripper that allows
to grasp the load of interest. Specifically, a model predictive control (MPC) architecture
is adopted in conjunction with a leader–follower strategy to solve the cooperative tasks,
namely trajectory planning towards the desired goal implementing obstacle avoidance for
the leader and maintenance of the transportation formation along a feasible collision-free
path for the follower [14,15].

1.1. Related Works

As explained in [6,16], when performing a cooperative transportation task, three
main approaches can be distinguished in terms of load holding realization: pushing-only ,
grasping and caging. According to pushing-only strategies, the transport is achieved by
pushing the load avoiding the physical attachment of the robots (see, e.g., [17–19] and the
references therein). Similarly, caging techniques envisage that robots arrange themselves
around the load embracing and holding it tightly during the motion [20]. On the other
hand, grasping strategies rest on the presence of EEs that allow the robots to be physically
(more or less elastically) attached to the load, and will represent the adopted solution for
this paper case study.

As a first note in this respect, it is important to highlight that a fully decentralized
approach may result difficult to realize in case of transported loads that cannot bear internal
stresses induced by formation mismatch at the EE level. For this reason, centralized control
schemes are typically proposed to face the problem of cooperative transportation. In [21],
for example, a centralized optimization approach is proposed, based on the calculation of a
convex hull in space-time were no collisions can arise and deadlocks are prevented thanks
to the global nature of the solution (differently from what can occur with a distributed
local approach [22]). Indeed this method allows for reconfiguration using the redundancy
available for mobile manipulators and is more focused on collision avoidance. Additionally
in [23] a centralized method is proposed for an AGV transportation system with a particular
attention on the force distribution and internal force analysis of the transported load, to
yield an effective design of the control algorithm.

Interestingly, to address this issue by design, most of the existing solutions exploiting
grasping strategies are based on a leader–follower paradigm wherein one robotic agent (the
leader) is in charge to guide the rest of the MRS (the followers). Within the leader–follower
framework the two approaches of centralized and decentralized can be found, where in
the former case the followers follow the information given by a static leader, while in
the latter the followers actively follow the leader motion. Several control techniques are
utilized by leader–follower formation to ensure that the followers accurately follow the
leader [24], from the more classical linear techniques (e.g., proportional integral derivative
(PID) control), to the non-linear based (e.g., sliding mode control), to name a few. With no
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aim of being exhaustive, some references exploring different control solution to address
the single load cooperative transportation problem are reported in the following. In [25]
simulations and experiments are performed with two robots transporting a large and
fragile load using a PID-based leader–follower control, proving the effectiveness of the
approach in satisfying the load handling requirements.

In [26] a dynamic control architecture of a team of two robots is presented where the
control is design using the attractor dynamics approach. Simulations and real experiments
in unknown and changing environments show stable behaviour of the two-robots system
in accomplishing the joint transportation task.

The leader–follower control paradigm is adopted also in [14,27,28] to design model
predictive control (MPC) based distributed solutions for the cooperative transportation task.
MPC schemes predict the future state of the plant over a finite horizon using a mathematical
model and solve an optimal control problem to compute the control action by handling
environment and plant constraints in the problem formulation (for a general overview
on MPC we refer to [29]). This last feature motivates the current extensive use of such a
technique in solving path planning task, especially in the case of cluttered environments.
Trajectory generation problem ensuring collision avoidance is, for instance, addressed
in [30–32] accounting for intelligent vehicles and also in [33–35] for aerial platforms. In
general, the use of MPC has become very popular due to the intrinsic flexibility in the
formulation and possibility of easy adaptation to different objectives. The employment of
the MPC approach for mobile manipulators can be found in [36], where a decentralized
nonlinear MPC (NMPC) is proposed with proofs of feasibility and convergence, and
physical experiments are presented. A similar NMPC application is studied and simulated
in [37], which includes avoidance of collisions and of singular configurations for the
manipulators. More recent studies like [38] propose data-driven MPC solutions, where each
robot employs sensor data to predict the future behavior of the others, instead of relying
on mutual communication. Two observations are now in order. First, it is worthwhile to
notice that it is also possible to generate trajectories for the single agent (e.g., the leader) in
a much cheaper way than using the above MPC scheme, by exploiting popular algorithms
as A-star or Rapidly-exploring Random Tree (RRT) [39], followed by a trajectory smoothing
procedure. It is nonetheless clear that these approaches only provide the geometric path,
without consider constraints about the travel time or energy spent to move the robot
from the initial point to the goal. Because of these requirements, MPC approaches remain
preferable [40]. Moreover, while in most of the MPC literature, collision avoidance is
included in the problem formulation as hard constraints, some authors adopt the Potential
Field Method [41] for trajectory generation, which can be easily adapted for both the leader
and the follower and can deal also with additional communication constraints [42]. Local
minima may appear with this latter approach, where the robots get stuck easily in presence
of many obstacles, but recent advances propose ways to overcome this drawback [43].

1.2. Contribution

Given these premises, the main contribution of this paper is the design and the
implementation of an MPC-based leader–follower scheme that performs local trajectory
planning for each robotic agent while also performing obstacle avoidance and maintaining
grasping of the transported load. In particular, the proposed method improves the standard
leader–follower approach, as in [5], by accounting for the feasibility of the trajectory
imposed by the leader to the follower. Specifically, the approach relies on a direct MPC
formulation based on the convexification of the optimization space with linear constraints
that are easily customizable depending on loads shapes. Formation errors and infeasibility
in the trajectory calculation, caused by combination of the highly-reduced optimization
space and leader–follower approaches, are mitigated via a novel recovery policy.
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1.3. Paper Structure

The paper is organized as follows. After the formal statement of the problem in Section 2,
the main technical Sections 3–5 discuss in detail the MPC approach for the leader–follower
MRS, how obstacles are accounted for in the multi-robot optimization framework, and the
feasibility-aware policy that is put in place to accommodate all constraints and requirements
while ensuring the task accomplishment. Then, in Section 6, a numerical validation is
proposed to highlight the main features of the approach and assess its efficacy in performing
the cooperative task in different complex scenarios. Finally, Section 7 provides a summary
of the study, together with some conclusive remarks.

1.4. Notation

In this work, vectors in Rm and matrices in Rm×n are indicated respectively with bold
lowercase and bold uppercase letters. Calligraphic letters are reserved for sets. 1m ∈ Rm

denotes the m-dimensional (column) vector having respectively all one entries, while
0m×m ∈ Rm×m and Im ∈ Rm×m identify the null and the identity square matrices of
dimension m. Finally, ⊗ indicates the standard Kronecker product.

2. Problem Formulation

Hereafter, we consider two autonomous ground robots made of a mobile base and
a manipulator. These are required to transport a load in an environment populated by
static and/or dynamic obstacles. The robots are supposed to grasp the load realizing
a compliant contact. Within this context, the attention is focused on the development
of a cooperative trajectory planning solution based on a leader–follower scheme for the
two autonomous robots, which ensures the fulfillment of the transportation task in a
decentralized way. According to [15], since the grasping between the EE and the load is
assumed to be compliant, the interaction wrench results to be proportional to the formation
error. Hence, without loss of generality, the following assumptions are made for both the
robotic agents (leader and follower):

1. all measurements, state and input quantities, as well as the environment obstacles,
are referred to the position of the EE grasping the transported load; to allow control
feasibility, the obstacle constraints on the EEs are compatible with those on the
mobile base;

2. once a reference trajectory for the EE has been computed, a low-level controller is
tasked to manage the position of the mobile base and the joints configuration of
the manipulator such that the position of the EE is able to track the trajectory; such
controller is assumed to have has full authority on the EE degrees of freedom, such
that this latter can be modeled as a double integrator [44] and the load is maintained
at a constant height: the transportation problem can be therefore formulated in the
two-dimensional plane;

3. the robot is equipped with sensing capabilities, so that it is aware of the environment
and able to self-localize with respect to a common inertial frame; it is also able to
communicate and exchange data with its transportation companion, through an
ideal channel.

Given these assumptions, the combination of mobile base and manipulator is generic,
and hereafter all quantities will be referred to the EE of the leader/follower. In the consid-
ered scenario we denote with xL(t) ∈ R2 and xF(t) ∈ R2 the position of the leader and the
follower EE, respectively.

When accounting for the leader–follower paradigm, the cooperative trajectory plan-
ning problem consists in the definition of a desired trajectory xL,d(t) ∈ R2 that drives the
leader toward a final target position x∗L,d ∈ R2, while the follower is required to maintain a
certain distance dL,F ∈ R+ from the leader, so that the load is not stretched or the grasp is
detached, i.e., its desired follower trajectory xF,d(t) ∈ R2 is such that

‖xF,d(t)− xL(t)‖ = dL,F. (1)
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An interesting remark is now in order. During the transportation phase that we
consider, the design of safe trajectories (from initial to target position) for leader and
follower, connected through the load grasping, implicitly regulates the load orientation.
Indeed, this is motivated by the fact that the obstacle avoidance task for the two robots and
the load is of primary importance with respect to the load orientation. Conversely, once
the transportation phase is completed (and the target position is reached) there may be
the additional need to re-orient the load for placing it at rest: this can be done through an
explicit control action not induced by the obstacles and in any case referred to the grasping
robots. This latter design is out of the scope of this study.

In the definition of the trajectories, it is also necessary to take into account the obstacles
presence. We assume that the environment is populated by a set of M static and/or dynamic
obstacles, e.g., fixed structures and/or humans/other mobile robots whose dynamics is
comparable with that of the transporting robots. For each j-th obstacle, j = 1 . . . M, whose
position is denoted by oj(t) ∈ R2, a radius rj ∈ R+ is defined as the minimum distance
preventing a collision. In order to realistically face the obstacle avoidance task, we model
both the leader and the follower as extended rigid bodies and we identify a set of Nv
vertices accounting for the physical structure of the robots: these vertices denote points of
interest of the robots we want to avoid the collision with to allow for its controlled motion.
As a consequence, the obstacle avoidance is guaranteed when

‖v•,i(t)− oj(t)‖ > rj, • = L, F, i = 1 . . . Nv, j = 1 . . . M, (2)

where v•,i(t) = x•(t) + s•,i ∈ R2 denotes the absolute position of i-th vertex (in the
common inertial frame) being s•,i ∈ R2 the relative position of the i-th vertex with respect
to the leader/follower position. These vertices can be also defined on the load and, since
the follower needs to keep a desired distance with the leader with no constraints on the
mutual orientation, as in (1), the relative position of the vertices on the load must be defined
as a function h`(·) of the leader and follower position as

v`,i(t) := h`(xL(t), xF(t)) ∈ R2, i = 1 . . . Nv. (3)

An example of such configuration and the vertices definition is graphically provided
later on, in Figure 1.

ℓ

ℓ

ℓ

ℓ

(a)

ℓ

ℓ

ℓ

ℓ

(b)
Figure 1. Two different configurations of the MRS. Leader, follower and load are indicated with
the polygonal colored area, while the avoidance circle due to the obstacle presence corresponds to
the dashed line. (a) Initial position of MRS elements: definition of vertices and safe area (shaded in
green). (b) The rotation of the load causes the MRS to move and the safe area changes accordingly.

Given these premises, the final goal of the leader–follower approach is that the two
agents will travel along trajectories x•(t) that are close to the desired reference x•,d(t).
Moreover, the goal of this work consists in the design of a trajectory generation method for
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the MRS composed of leader and follower, guaranteeing both the load grasping (i.e., the
fulfillment of (1)) and the obstacle avoidance (i.e., the fulfillment of (2)). Formally, we aim
to determine the desired trajectories xL,d(t) and xF,d(t) so that

lim
t→∞

xL,d(t) = x∗L,d, (4)

‖xF,d(t)− xL(t)‖ = dL,F, (5)

‖v•,i(t)− oj(t)‖ > rj • = L, F, `, i = 1 . . . Nv, j = 1 . . . M. (6)

In the remainder of the paper, the subscripts L and F are omitted for any quantity
when the given observations are valid for both EEs. Moreover, without loss of generality,
we assume x∗L,d = 02 ∈ R2 in the rest of the work.

3. MPC-Based Strategy

To compute collision-free trajectories for leader and follower, namely xL,d(t) and
xF,d(t) satisfying (4)–(6), we adopt an MPC-based formulation. Inspired also by the leader–
follower framework proposed in [45], the EE positions are assumed to be described by a
double integrator model; hence, denoting with uL(t) ∈ R2 and uF(t) ∈ R2 the leader and
the follower acceleration inputs, it holds that

ẍL(t) = uL(t) and ẍF(t) = uF(t). (7)

Introducing also vL(t) = ẋL(t) and vF(t) = ẋF(t) as the leader and follower velocities,
the full state of the EEs can be described by

qL(t) :=
[

xL(t)
vL(t)

]
∈ R4 and qF(t) :=

[
xF(t)
vF(t)

]
∈ R4 (8)

which allows to write the dynamics of both the agents as the linear system

q̇(t) = Acq(t) + Bcu(t), with Ac =
[

02×2 I2
02×2 02×2

]
∈ R4×4, Bc =

[
02×2

I2

]
∈ R4×2. (9)

The system model (9) can be discretized with sampling time Ts ∈ R+, thus obtaining

q(t + 1) = Aq(t) + Bu(t), with A = eAcTs ∈ R4×4, B =
∫ Ts

0
eAcτBc ∈ R4×2, (10)

where, with a slight abuse of notation, it holds that t = hTs, h ∈ N.
Given these premises, the cooperative trajectory planning problem is addressed by

considering an MPC approach based on the iterative solution of the following optimization
problem at each time instant t

û∗(·) = argmin
û(·)

J(q̂(·), û(·)) (11)

subject to q̂(k + 1) = Aq̂(k) + Bû(k) (model dynamics) (12)

q̂(0) = q(t) (initial condition) (13)

q̂(k) ∈ X (t) (state constraint) (14)

û(k) ∈ U (input constraint) (15)

where k = 0 . . . N with N being the total prediction horizon samples. In (11)–(15), the vec-
tors q̂(k) :=

[
x̂>(k) v̂>(k)

]> ∈ R4 and û(k) ∈ R2 represent the state and input prediction
respectively, while X (t) and U denote the constraints sets. Given the predicted trajectory
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x̂(·), we generate online at time t the desired trajectory for both leader and follower by
considering the first sample of the MPC prediction, namely we have that

xd(t) = x̂(0). (16)

Notice that two different MPC problems need to be considered for the leader and the
follower since both the objective and the constraints are different for the two EEs. Moreover,
while recalling that completely decentralized approaches are particularly challenging in
cooperative transportation tasks based on grasping [6], the strategy outlined here rests on
the following points and results in a decentralized scheme.

1. Exploiting the described MPC approach, the leader aims at iteratively solving the
problem of reaching the target position x∗L,d, while performing obstacle avoidance
(according to (6) given • = L) without accounting for the follower. The MPC scheme
provides a prediction of the leader trajectory to communicate to the follower.

2. After this data exchange, the follower adopts the MPC strategy to compute its tra-
jectory aiming at maintaining the distance dL,F with respect to the leader predicted
trajectory and at performing obstacle avoidance for itself and the transported load.

Note that obstacle avoidance for the follower and the load are not considered by the
leader to avoid a centralized procedure, which may lead the leader to compute a trajectory
that results to be unfeasible from the follower side. However, such case can be detected
and handled via the introduction of a proper recovery policy, as explained in Section 5.

Hereafter, taking into account on the optimization problem (11)–(15), we provide a
definition for the cost functions JL(·), JF(·) and constraints set XL(t), XF(t), UL, UF for the
leader–follower MPC problem. In particular, the state constraint are time-varying and
such that

X•(t) := Xv ∩ X•,o(t) • = L, F (17)

where Xv is the (same) constraint set on both leader and follower velocity and X•,o(t) is
imposed by the collision avoidance requirement clarified in Section 4.

3.1. Leader Objective Function

The principal goal of the leader is to determine a suitable trajectory such that the error
with respect to the final target position x∗L,d is minimized. For this reason, accounting for
the MPC framework (11)–(15), we consider the quadratic cost function:

JL(q̂L(·), ûL(·)) :=
N−1

∑
k=0

(
q̂>L (k)Wq̂L(k) + û>L (k)RûL(k)

)
+ q̂>L (N)Zq̂L(N), (18)

where the gain matrices W ∈ R4×4, Z ∈ R4×4, and R ∈ R2×2 allow to regulate the behavior
of the leader in terms of convergence speed towards the target position and control effort.

The function (18) can be rewritten in compact form as

JL( ˆ̄qL, ˆ̄uL) = q̂>L (0)Wq̂L(0) + ˆ̄q>L W̄ ˆ̄qL + ˆ̄u>L R̄ ˆ̄uL, (19)

by introducing the stacked versions of states, inputs, and corresponding weight matrices,
namely

ˆ̄qL :=
[
q̂>L (1) q̂>L (N)

]> ∈ R4N , ˆ̄uL :=
[
û>L (0) û>L (N − 1)

]> ∈ R2N , (20)

W̄ =
[

IN−1 ⊗W 04(N−1)×4
04×4(N−1) Z

]
∈ R4N×4N , R̄ = IN ⊗ R ∈ R2N×2N . (21)

On the other hand, from the system dynamics (10), for both the leader and the follower,
it follows that

ˆ̄q = T̄q̂(0) + S̄ ˆ̄u, (22)
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where

T̄ =

 T̄1
...

T̄N

 =


A
A2

...
AN

 ∈ R4N×4, S̄ =

 S̄1
...

S̄N

 =


B 04×2 . . . 04×2

AB B . . . 04×2
...

...
. . .

...
AN−1B AN−2B . . . B

 ∈ R4N×2N . (23)

As a consequence, we can rewrite (18) as

JL(q̂L(0), ˆ̄uL) =
1
2

ˆ̄u>L H ˆ̄uL + q̂>L (0)F ˆ̄uL +
1
2

q̂>L (0)Yq̂L(0), (24)

with

H = 2(R̄ + S̄>W̄S̄) ∈ R2N×2N , (25)

F = 2T̄>W̄S̄ ∈ R4×2N , (26)

Y = 2(W + T̄>W̄T̄) ∈ R4×4. (27)

3.2. Follower Objective Function

The objective of the follower consists in minimizing the distance error with respect
to the leader while tracking the shortest path. Since the problem is decentralized, the
requirement (5) has to be treated as a desired condition instead of an hard constraint, thus
implying the minimization of the squared formation error, defined as follows:

eL,F(t) := ‖xL(t)− xF(t)‖2 − d2
L,F = ‖Px(qL(t)− qF(t))‖2 − d2

L,F, (28)

given Px :=
[
I2 02×2

] ∈ R2×4 and dL,F has been introduced in (1). In detail, the follower
aims at solving an MPC optimization problem wherein the cost function is given by a
weighted sum of two terms:

1. a term accounting for the minimization of the error (28) computed in correspondence
to the predicted states q̂L(·) and q̂F(·), namely

JF,1(q̂L(·), q̂F(·)) :=
N

∑
k=1

βk
(
‖Px(q̂L(k)− q̂F(k))‖2 − d2

L,F

)2
=

N

∑
k=1

βk ê2
L,F(k), (29)

where β ∈ (0, 1] ⊂ R is a decaying weight factor;
2. a term accounting for the minimization of the travelled distance in the prediction

horizon, namely

JF,2(q̂L(·), q̂F(·)) :=
N−1

∑
k=0
‖Px(q̂F(k + 1)− q̂F(k))‖2. (30)

Therefore, the cost function associated to the follower results to be

JF(q̂L(·), q̂F(·)) = c JF,1(q̂L(·), q̂F(·)) + JF,2(q̂L(·), q̂F(·)), (31)

where the parameter c ∈ R+ allows to differently prioritize the two aforementioned
minimization goal.

Similarly to the leader case, it is possible to rewrite the function (31) as a function of the
follower initial state q̂F(0), of the follower predicted control input ûF and of the predicted
leader trajectory q̂L(k), k = 1 . . . N. In doing this, we introduce the vectors ˆ̄qF ∈ R4N and
ˆ̄uF ∈ R4N , whose definition is analogous to that of ˆ̄qL and ˆ̄uL in (20). Then, it holds:

JF,1(q̂F(0), ˆ̄uF, ˆ̄qL) =
N

∑
k=1

βk
(
‖Px(q̂L(k)− T̄kq̂F(0)− S̄k ˆ̄uF)‖2 − d2

L,F

)2
, (32)
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where S̄k ∈ R4×2N and T̄k ∈ R4×4 are introduced in (23). Moreover, we can further rewrite
JF,2(q̂L(·), q̂F(·)) as

JF,2(q̂F(0), ˆ̄uF) =
(
S̄′ ˆ̄uF + T̄′q̂F(0)

)>P̄>x P̄x
(
S̄′ ˆ̄uF + T̄′q̂F(0)

)
, (33)

where P̄x = IN ⊗ Px ∈ R2N×4N and

S̄′ =


B 04×2 . . . 04×2

(A− I4)B B . . . 04×2
...

...
. . .

...
AN−2(A− I4)B AN−3(A− I4)B . . . B

∈R4N×2N , T̄′ =


A− I4

A(A− I4)
...

AN−1(A− I4)

∈R4N×4. (34)

Note that, differently from the leader case, the objective function JF(·) is not quadratic.

3.3. Constraint Sets Definition

To conclude the section, we discuss the constraints that we want to consider regarding
the state and control input of both the leader and the follower. From a practical point
of view, these are imposed by the actuation limits that implies some bounds both on the
velocity and on the acceleration of the EEs.

Formally, within the framework (11)–(15), we can defined the input constraint set as

U := {û(k) ∈ R2 : umin ≤ û(k) ≤ umax}, (35)

where the inequality between vectors is considered component-wise. Equivalently, for each
k-th prediction sample, k = 1 . . . N, it holds that

Gaû(k) ≤ ulim with Ga =
[
−I2
I2

]
∈ R4×2, ulim =

[
−umin
umax

]
∈ R4, (36)

and, considering the whole prediction horizon, we have that

Ḡa ˆ̄u ≤ ūlim with Ḡa = IN ⊗Ga ∈ R4N×2N , ūlim = 1N ⊗ ulim ∈ R4N . (37)

A similar reasoning can be carried out for constraints affecting the velocity component
of the state. Indeed, we consider the velocity constraint set from (17) as:

Xv := {q̂(k) = [
x̂>(k) v̂>(k)

]> ∈ R4 : vmin ≤ v̂(k) ≤ vmax} (38)

that can be rewritten in terms of control input over the prediction horizon as follows

Xv = { ˆ̄u ∈ R2N : ḠvS̄ ˆ̄u ≤ v̄lim − ḠvT̄q(0)} (39)

with Ḡv = IN ⊗Gv ∈ R4N×4N and v̄lim = 1N ⊗ vlim ∈ R4N given

Gv =
[

02×2 −I2
02×2 I2

]
∈ R4×4, vlim =

[
−vmin
vmax

]
∈ R4. (40)

Both the input constraint set (35) and the state constraints set (38) are convex.

4. Obstacle Avoidance

In this work, we deal with an environment populated by static and/or dynamic
obstacles, thus the cooperative trajectory planning problem has to be faced ensuring also
the collision avoidance for the leader, the follower and the transported load. Specifically,
as introduced in Section 2, in this work we consider M obstacles. Each j-th obstacle,
j = 1 . . . M, whose position is identified by oj(t) ∈ R2, is associated to a certain radius
rj ∈ R+. It is reasonable to include in the definition of the obstacle radius rj also possible
position measurement errors: formally, by defining the robot position errors as εx,•(t) < ε̄x,
• = L, F, for each obstacle j = 1 . . . M characterized by virtual radius r̃j, we can consider the
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effective radius rj := r̃j + ε̄x. Moreover, we recall that collision is avoided with respect to a
set of Nv vertices v•,i(t) ∈ R2, i = 1 . . . Nv, • = L, F, `; with the aim to ease the discussion
and without losing in generality, we will assume hereafter that (i) the cardinality Nv of
the vertices set is the same for leader, follower, load, namely that they can be modeled
with an equal number of boundary points, although different in shape and dimensions;
(ii) this definition of vertices (and radius) is adequate to allow for obstacles detection in the
considered scenario.

Inspired by the strategy proposed in [46], for both the leader and the follower, we aim
at figuring out the largest area that does not contain any obstacle and can be defined with
linear constraints. With reference to Figure 1a, in correspondence to any j-th obstacle, we
can first consider the point on the circle centered in oj(t) closest to the EE position x(t),
given by:

wj(t) = λj(t)x(t)− (1− λj(t))oj(t) ∈ R2 with λj(t) =
rj

‖x(t)− oj(t)‖
∈ R. (41)

Then, for the EE placed in x(t), it is possible to describe the largest half-plane that
does not contain the j-th obstacle: this is identified by the line orthogonal to the segment
x(t)−wj(t) and passing through wj(t) (green shaded areas in Figure 1). In the light of this
fact, j-th obstacle avoidance is guaranteed when the following inequality is satisfied for
each i-th vertex, i = 1 . . . Nv:

g>o,j(t)v•,i(t) ≤ bo,j(t), (42)

where • = L, F, ` and

go,j(t) = (wj(t)− x(t)) ∈ R2,

bo,j(t) = (wj(t)− x(t))>wj(t) ∈ R.
(43)

Given these premises, the collision free area for any robot corresponds to the poly-
hedron resulting from the intersection of the M half-planes defined as in (42) by taking
into account all the obstacles. In detail, we assume that collision avoidance is achieved if
each of the Nv vertices belongs to the resulting convex set. Formally, this is ensured by the
fulfillment of the following inequality for any i = 1 . . . Nv:

Go(t)v•,i(t) ≤ bo(t), (44)

where • = L, F, ` and

Go(t) =

 g>o,1(t)
...

g>o,M(t)

 ∈ RM×2 and bo(t) =

 bo,1(t)
...

bo,M(t)

 ∈ RM. (45)

In order to account for the collision avoidance while solving the cooperative trajectory
planning task, we include the constraint (44) in the computation of both q̂L(·) and q̂F(·).
Note that any obstacle position can vary over time but, for the MPC formulation, it is
assumed to be fixed during the prediction horizon.

4.1. On the Leader Side

Focusing on the leader, the obstacle avoidance requirement is guaranteed if the con-
straint (44) is satisfied in correspondence to any element of the set {vL,i(t), i = 1 . . . Nv}.
Considering the EE initial state and dynamics, it is possible to verify that, for any i = 1 . . . Nv,
the vector ˆ̄vL,i :=

[
vL,i(1)> . . . vL,i(N)>

]> ∈ R2N is such that

ˆ̄vL,i = P̄x(T̄Lq̂L(0) + S̄L ˆ̄uL) + s̄L,i, (46)
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where s̄L,i = 1N⊗ sL,i ∈ R2N . As a consequence, accounting for (45), the obstacle avoidance
from the leader side is ensured when the following condition is fulfilled for each i = 1 . . . Nv

XL,o,i(t) := { ˆ̄uL ∈ R2N : Ḡo(t)P̄xS̄ ˆ̄uL ≤ b̄o(t)− Ḡo(t)(P̄xT̄q̂L(0) + s̄L,i)}, (47)

where
Ḡo(t) = IN ⊗Go(t) ∈ RMN×2N and b̄o(t) = 1N ⊗ bo(t) ∈ RMN . (48)

It follows that the leader constraint for obstacle avoidance (17) at time t is given by

XL,o(t) :=
Nv⋂
i=1

XL,o,i(t), (49)

which results to be a convex set since it is the intersection of (convex) half-planes represent-
ing the collision free area.

4.2. On the Follower Side

The reasoning carried out for the leader is valid also for the follower. Specifically,
given i = 1 . . . Nv, the following obstacle avoidance condition can be derived

XF,o,i(t) := { ˆ̄uF ∈ R2N : Ḡo(t)P̄xS̄ ˆ̄uF ≤ b̄o(t)− Ḡo(t)(P̄xT̄q̂F(0) + s̄F,i)} (50)

where s̄F,i = 1N ⊗ sL,i ∈ R2N and Ḡo(t) and b̄o(t) are defined as in (48).
The follower is also charged to prevent the transported load from collisions. This

requirement, depending on both the leader and follower position, yields to the non linear
constraint derived in the following. Consider the unit vector

y(t) :=
xF(t)− xL(t)
‖xF(t)− xL(t)‖

∈ R2 (51)

and the set {s`,i ∈ R2, i = 1 . . . Nv} whose elements are the relative positions of the load
vertices with respect to the follower position given an arbitrary fixed configuration, e.g.,
corresponding to the case y(t) =

[
1 0

]>. Given the actual position of leader and follower,
to ensure the obstacle avoidance by the transported load, we have to consider the position
v`,i(t) of each i-th vertex of the load, i = 1 . . . Nv. In the light of the given premises, it
holds that

v`,i(t) = h`,i(xL(t), xF(t)) = xF(t) + RL,F(t)s`,i, (52)

where
RL,F(t) =

[
y(t) y⊥(t)

] ∈ SO(2), with y⊥(t) =
[

0 −1
1 0

]
y(t). (53)

According to (42), collision with the j-th obstacle is then avoided if, for any i = 1 . . . Nv,
we have that

g>o,j(t)v`,i(t) ≤ bo,j(t), (54)

and this constraint has to be included during the computation of x̂F(t). As a consequence,
observing that, for any k = 1 . . . N, it holds that

v̂`,i(k) = x̂F(k) + RL,F(t)s`,i = Px(T̄kq̂F(0) + S̄k ˆ̄uF(k)) + RL,F(t)s`,i, (55)

hence, the constraint set can be rewritten in a more compact fashion accounting for the
whole prediction horizon and the complete set of obstacles as:

X`,o,i(t) = { ˆ̄uF ∈ R2N : ḠoP̄xS̄ ˆ̄uF ≤ b̄o(t)− Ḡo(P̄xT̄q̂F(0)− s̄R
`,i)}. (56)
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where s̄R
`,i = 1N ⊗ (RL,F(t)s`,i) ∈ R2N . Finally, the (convex) obstacle avoidance constraint

set at the sample time t for the follower is given by the following intersection:

XF,o(t) :=
Nv⋂
i=1

XF,o,i(t) ∩ X`,o,i(t). (57)

5. Feasibility-Aware Recovery Policy

The decentralized strategy proposed in the previous sections entails that the tra-
jectories of the leader and follower are generated separately, accounting for the diverse
constraints characterizing the two robots, whose relative position with respect to the trans-
ported load is different. This approach may leads to undesired situations wherein the
trajectory computed from the leader yields an infeasible optimum problem for the fol-
lower or the outlined follower trajectory produces a formation error that overcomes the
inherent elasticity of the grasp structure, thus causing load stresses and eventually load
break or grasp detachment. Nonetheless, according to the decentralized approach, it is
possible to exploit the reciprocal communication between leader and follower to detect
follower-infeasibility conditions and carry out a recovery policy.

Follower-infeasibility conditions generally occur in case of sharp bends or particularly
cluttered environments. In the light of this fact, in this section, we propose a heuristic
according to which the follower is able to assess if its trajectory in the next krec ≤ N, krec ∈ N
samples would produce a formation error larger than a predefined threshold ε ∈ R+ and
to communicate such information to the leader. Then, the leader will correct its behavior
by generating a different (typically slower) trajectory compatible with the follower (and
load) dynamics, according to the following conservative optimization functional

JL,rec(q̂L(·)) :=
N−1

∑
k=0
‖Px(q̂L(k + 1)− q̂L(k))‖2 =

N−1

∑
k=0
‖x̂L(k + 1)− x̂L(k)‖2, (58)

which temporarily replaces (24) in the MPC computation. Algorithm 1, executed at each
time instant t, formalizes such introduced heuristic.

Algorithm 1 Recovery policy.

1: ˆ̄xL ←MPC leader prediction considering JL(·) in (18)
2: ˆ̄xF ←MPC follower prediction considering JF(·) in (31)
3: if ‖x̂L(k)− x̂F(k)‖2 − d2

L,F > ε2 for any k = 1 . . . krec then
4: ˆ̄xL,rec ←MPC leader prediction considering JL,rec(·) in (58)
5: ˆ̄xF,rec ←MPC follower prediction considering JF(·) in (31) computed for ˆ̄xL,rec
6: xL,d(t)← x̂L,rec(0)
7: xF,d(t)← x̂F,rec(0)
8: else
9: xL,d(t)← x̂L(0)

10: xF,d(t)← x̂F(0)
11: end if

6. Numerical Results

This section is devoted to the validation of the proposed MPC solution for the tra-
jectory planning problem within the context of cooperative transportation in a cluttered
environment, as described in Section 2. It has already been highlighted how such applica-
tion involves the accomplishment of three distinct and simultaneous goals, which need
to be consistently accommodated by the control action: the leader is required to reach the
target position x∗L,d, the follower is required to maintain the distance dL,F from the leader,
both the agents are required to avoid the obstacles and the follower also needs to prevent
the transported load from collisions.



Robotics 2021, 10, 84 13 of 20

In the light of this fact, to assess the performance of the proposed solution, we account
for the following three metrics:

1. the leader position xL(t) with respect to the target position x∗L,d, given the assumption
x∗L,d = 02;

2. the quadratic formation error eL,F(t) = ‖xL(t)− xF(t)‖2 − d2
L,F introduced in (28);

3. the index d•,min ∈ R defined as follows

d•,min = min
i=1...Nv
j=1...M

(
‖v•,i(t)− oj(t)‖ − rj

)
, • = L, F, `, (59)

and corresponding to the distance between the closest pair of i-th vertex and j-th
obstacle boundary. Note that this involves the obstacle radius so the collision is
avoided for positive values of d•,min.

Hereafter, we report the results for three different obstacles configurations:

(i) M = 2 large static identical obstacles, forming a narrow passage;
(ii) M = 3 static obstacles, of different size;
(iii) M = 24 obstacles, where one obstacle can move, while the other are fixed but character-

ized by different radii. Some of these obstacles, in particular, are placed contiguously
to each other so as to form a narrow corridor.

For all the configurations, the leader and follower parameters are reported in Table 1.

Table 1. Numerical scenario parameters.

Leader Follower

Scenario

umax [m/s2] 0.8 12 212

vmax [m/s] 0.212 112

dF,L [m] 1 1

Nv 20 20

{si}Nv
i=1[m]

{
0.32

[
cos(0.3i)
sin(0.3i)

]}Nv

i=1

{[
0
0

]}Nv

i=1

{
s`,i
}Nv

i=1 [m]

{[
−0.2− dF,L
−0.2− dF,L

]
,
[

0.2
−0.2

]
,
[

0.2
0.2

]
,
[
−0.2− dF,L

0.2

]}
∪{[

0
0

]}Nv

i=5

Leader objective function

W I4 –

R 0.9I2 –

Z I4 –

Follower objective function

c – 5000

β – 0.95

Leader recovery objective function

ε [m] 0.01 –

krec 3 –
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Configuration (i)

Figure 2 reports the outcome of one of the performed numerical simulation, providing
both an overview of the scenario and of the task evolution and the behavior of the per-
formance metrics. The two columns refer respectively to the case in which the recovery
policy of Section 5 is considered (right) or not (left). For both cases, we report the planar
trajectory of the leader and follower (first panel, at the top) as well as the trend of their
position components (second panel), the trend of the formation error eL,F(t) (third panel)
and the trend of the index d•,min for • = L, F, o (fourth panel).

The reported plots allow us to assess the performance of the proposed MPC-based
trajectory generation strategy and, in particular, to appreciate the benefit deriving from the
introduction of the feasibility-aware recovery policy. Indeed, it is possible to observe that,
both with and without implementing the recovery policy, the leader converges towards the
target position (second panel in Figure 2). However, the employment of the recovery policy
is motivated by the rapid increase of the leader–follower formation error at approximately
t = 6 s, in correspondence to the narrow passage by the two obstacles: the modification of
the MPC optimization function for the leader is effective in leading to a smaller formation
error (third panel) at the cost of a slightly slower convergence speed. Finally, the plots in the
bottom panel confirm that the agents and the load are able in both cases to keep the desired
distance from the obstacles. As a further remark, we notice that the challenging region to
overcome is the one closest to the obstacles, where the obstacle avoidance constraints are
modified more quickly.

Configuration (ii)

This configuration differs from the previous because of the presence of an additional
(static) obstacle, whose position is such to require an aggressive maneuver by the leader–
follower system.

This scenario behavior is highlighted by the results reported in Figure 3. As in the
previous case, from the first and second panels, we observe that the leader can reach its
target position, both implementing the recovery policy (Figure 3b) and not implementing
the recovery policy (Figure 3a). As pointed out in the previous case, nearby the obstacles
the linear constraints change very quickly and in this case it is more difficult for the follower
to keep the formation error low: again, the constraints imposed by the two large obstacles
with the additional presence of that along the predicted trajectory for the MRS, leads
to a peak in the eL,F metrics value, because the follower need to re-arrange its position
accounting for both its own occupancy and that of the load. In this case, the feasibility-
aware recovery policy turns out to be fundamental to limit the formation error: from the
third panel we notice that the eL,F is drastically reduced by slowing down the formation
speed when needed. Finally, obstacle avoidance is granted in this case as well. Note that at
around t = 8 s the load is very close to the constraint limit, which nonetheless does not
raise a risk for physical collision if the radius accounts also for a certain safety margin.

Configuration (iii)

The last configuration here presented includes 23 static obstacles (two bigger than the
others) and a dynamic obstacle (in total M = 24). In particular, the former are arranged
so as to form a corridor and two narrow passages, one of which in correspondence to the
target position; the moving obstacle, instead, travels along an unknown trajectory in the
area in front of the target, as shown in Figure 4.
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(a) without feasibility-aware recovery policy (b) with feasibility-aware recovery policy

Figure 2. Performance of the proposed MPC-based trajectory planning solution in correspondence of configuration (i)
involving M = 2 obstacles.
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(a) without feasibility-aware recovery policy (b) with feasibility-aware recovery policy

Figure 3. Performance of the proposed MPC-based trajectory planning solution in correspondence of configuration (ii)
involving M = 3 obstacles.
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In this case, only the control with the recovery policy is discussed: the plots in
Figure 4 show four snapshots of the MRS behavior, specifically at t = 8 s, t = 13.5 s,
t = 22.5 s, and t = 30 s, and the performance index results reported in Figure 5 confirm the
effectiveness of the proposed trajectory planning solution. As a general comment, in such
a complex scenario the implementation of the feasibility-aware recovery policy ensures
both the minimization of the formation error (note the different scale w.r.t. to the plots
in Figures 2 and 3) and the collision avoidance while fulfilling the velocity constraints. In
detail, we can well appreciate four dynamic phases on which to spend some comments:

• t = 0–12 s: the MRS is travelling the corridor abiding several constraints, with an
impact on the performance index (59), which is low; moreover, the effects of the control
of leader and follower on the load show in this phase a relatively higher formation
error.

• t = 12–20 s: the MRS is going through the narrow passage made of the two large
obstacles, being very close to the upper obstacle at t = 14.5 s and to the lower one at
t = 18 s.

• t = 20–25 s: the motion is now in the open area where the main issue is represented by
the presence of the mobile obstacle, which is intersecting the estimated MRS trajectory
at t = 21 s, thus causing the leader to react by planning a motion correction slightly
upwards.

• t = 25–30 s: the final phase is characterized by the maneuver of MRS and the action of
the follower on the load, rotating it in order to enter the goal area horizontally (hence
the noisy behavior of the formation error).

Figure 4. Leader and follower EE trajectory in correspondence of configuration (iii) involving multiple obstacles. Snapshots
are taken at t = 8 s, t = 13.5 s, t = 22.5 s, and t = 30 s.
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Figure 5. Trend of the performance metrics in correspondence of configuration (iii) involving multiple obstacles. The
control approach implements the feasibility-aware policy.

7. Conclusions

Motivated by the cutting-end research and application trends within MRS scenarios,
we present a decentralized strategy to perform cooperative transportation by two mobile
ground robots. The procedure is based on a leader–follower scheme and exploits an MPC
approach running in parallel on both agents: the leader, basing on its own state, has the
task of designing a potentially effective collision free trajectory for the whole MRS towards
the goal. The follower, instead, has to accommodate the leader command with its proper
and the load’s constraints to ensure the overall task transportation feasibility. In case the
trajectory computed by the leader is not feasible for the follower/load movement, the
leader is able to switch to a conservative recovery policy that ensures task completion. The
proposed approach is discussed formally and the overall control procedure is validated in
a simulation framework that includes different scenarios, highlighting the effectiveness of
the technique and the role of the proposed recovery policy.

Interestingly, many different aspects that are worth to be studied stem from the method-
ology presented in this work, which mainly regard the control of the interaction between the
transporting robots and the load, the regulation of the load orientation at the target position,
the management of non-convex obstacles and of very dynamic environments.
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12. Draganjac, I.; Miklić, D.; Kovačić, Z.; Vasiljević, G.; Bogdan, S. Decentralized control of multi-AGV systems in autonomous
warehousing applications. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1433–1447. [CrossRef]

13. Yan, L.; Stouraitis, T.; Vijayakumar, S. Decentralized Ability-Aware Adaptive Control for Multi-robot Collaborative Manipulation.
IEEE Robot. Autom. Lett. 2021, 6, 2311–2318. [CrossRef]

14. Verginis, C.K.; Nikou, A.; Dimarogonas, D.V. Communication-based decentralized cooperative object transportation using
nonlinear model predictive control. In Proceedings of the 2018 European Control Conference (ECC), Limassol, Cyprus,
12–15 June 2018; pp. 733–738.

15. Lissandrini, N.; Verginis, C.; Roque, P.; Cenedese, A.; Dimarogonas, D.V. Decentralized Nonlinear MPC for Robust Cooperative
Manipulation by Heterogeneous Aerial-Ground Robots. In Proceedings of the International Conference on Intelligent Robots and
Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020.

16. Inglett, J.E.; Rodríguez-Seda, E.J. Object transportation by cooperative robots. In Proceedings of the SoutheastCon 2017, Concord,
NC, USA, 30 March–2 April 2017; pp. 1–6.

17. Alkilabi, M.; Narayan, A.; Tuci, E. Cooperative object transport with a swarm of e-puck robots: Robustness and scalability of
evolved collective strategies. Swarm Intell. 2017, 11, 185–209. [CrossRef]

18. Chen, J.; Gauci, M.; Li, W.; Kolling, A.; Groß, R. Occlusion-based cooperative transport with a swarm of miniature mobile robots.
IEEE Trans. Robot. 2015, 31, 307–321. [CrossRef]

19. Neumann, M.A.; Chin, M.H.; Kitts, C.A. Object manipulation through explicit force control using cooperative mobile multi-robot
systems. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 22–24 October
2014; Volume 1.

20. Pereira, G.A.; Campos, M.F.; Kumar, V. Decentralized algorithms for multi-robot manipulation via caging. Int. J. Robot. Res. 2004,
23, 783–795. [CrossRef]

21. Alonso-Mora, J.; Baker, S.; Rus, D. Multi-robot formation control and object transport in dynamic environments via constrained
optimization. Int. J. Robot. Res. 2017, 36, 1000–1021. [CrossRef]

22. Alonso-Mora, J.; Montijano, E.; Nägeli, T.; Hilliges, O.; Schwager, M.; Rus, D. Distributed multi-robot formation control in
dynamic environments. Auton. Robot. 2019, 43, 1079–1100. [CrossRef]

23. Huzaefa, F.; Liu, Y.C. Centralized control architecture for cooperative object transportation using multiple omnidirectional
AGVs. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China,
4–8 November 2019; pp. 6526–6532.

http://doi.org/10.1145/3303848
http://dx.doi.org/10.3390/robotics10010019
http://dx.doi.org/10.1177/0278364912452675
http://dx.doi.org/10.1109/TCYB.2016.2628161
http://www.ncbi.nlm.nih.gov/pubmed/27925600
http://dx.doi.org/10.3390/robotics8030052
http://dx.doi.org/10.3389/frobt.2018.00059
http://www.ncbi.nlm.nih.gov/pubmed/33500940
http://dx.doi.org/10.1016/j.arcontrol.2020.02.002
http://dx.doi.org/10.1109/TRO.2015.2452774
http://dx.doi.org/10.1109/TCNS.2020.3029155
http://dx.doi.org/10.1109/TASE.2016.2603781
http://dx.doi.org/10.1109/LRA.2021.3060379
http://dx.doi.org/10.1007/s11721-017-0135-8
http://dx.doi.org/10.1109/TRO.2015.2400731
http://dx.doi.org/10.1177/0278364904045477
http://dx.doi.org/10.1177/0278364917719333
http://dx.doi.org/10.1007/s10514-018-9783-9


Robotics 2021, 10, 84 20 of 20

24. Rashid, M.; Yakub, F.; Zaki, S.; Ali, M.; Mamat, N.; Putra, S.; Roslan, S.; Shah, H.; Aras, M. Comprehensive review on controller
for leader-follower robotic system. Indian J. Geo-Mar. Sci. 2019, 48, 985–1007.

25. Rizzo, C.; Lagraña, A.; Serrano, D. GEOMOVE: Detached AGVs for Cooperative Transportation of Large and Heavy Loads in the
Aeronautic Industry. In Proceedings of the 2020 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), Azores, Portugal, 15–17 April 2020; pp. 126–133.

26. Machado, T.; Malheiro, T.; Monteiro, S.; Erlhagen, W.; Bicho, E. Attractor dynamics approach to joint transportation by
autonomous robots: Theory, implementation and validation on the factory floor. Auton. Robot. 2019, 43, 589–610. [CrossRef]

27. Yang, X.; Watanabe, K.; Izumi, K.; Kiguchi, K. A decentralized control system for cooperative transportation by multiple
non-holonomic mobile robots. Int. J. Control 2004, 77, 949–963. [CrossRef]

28. Machado, T.; Malheiro, T.; Monteiro, S.; Erlhagen, W.; Bicho, E. Multi-constrained joint transportation tasks by teams of
autonomous mobile robots using a dynamical systems approach. In Proceedings of the 2016 IEEE International Conference on
Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3111–3117.

29. Bemporad, A. Model predictive control design: New trends and tools. In Proceedings of the 45th IEEE Conference on Decision
and Control, San Diego, CA, USA, 13–15 December 2006; pp. 6678–6683.

30. Yi, B.; Bender, P.; Bonarens, F.; Stiller, C. Model predictive trajectory planning for automated driving. IEEE Trans. Intell. Veh. 2018,
4, 24–38. [CrossRef]

31. Zuo, Z.; Yang, X.; Li, Z.; Wang, Y.; Han, Q.; Wang, L.; Luo, X. MPC-based Cooperative Control Strategy of Path Planning and
Trajectory Tracking for Intelligent Vehicles. IEEE Trans. Intell. Veh. 2020. [CrossRef]

32. Wu, H.; Si, Z.; Li, Z. Trajectory Tracking Control for Four-Wheel Independent Drive Intelligent Vehicle Based on Model Predictive
Control. IEEE Access 2020, 8, 73071–73081. [CrossRef]

33. Bemporad, A.; Rocchi, C. Decentralized linear time-varying model predictive control of a formation of unmanned aerial vehicles.
In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA,
12–15 December 2011; pp. 7488–7493.

34. Marzat, J.; Bertrand, S.; Eudes, A.; Sanfourche, M.; Moras, J. Reactive MPC for autonomous MAV navigation in indoor cluttered
environments: Flight experiments. IFAC-PapersOnLine 2017, 50, 15996–16002. [CrossRef]

35. Luis, Carlos E and Vukosavljev, Marijan and Schoellig, Angela P. Online trajectory generation with distributed model predictive
control for multi-robot motion planning. IEEE Robot. Autom. Lett. 2020, 5, 604–611. [CrossRef]

36. Wang, Y. Cooperative Transportation of Mobile Manipulators With Collision Avoidance. Dissertation. 2018. Available online:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231841 (accessed on 28 June 2021)

37. Nikou, A.; Verginis, C.; Heshmati-Alamdari, S.; Dimarogonas, D.V. A nonlinear model predictive control scheme for cooperative
manipulation with singularity and collision avoidance. In Proceedings of the 2017 25th Mediterranean Conference on Control
and Automation (MED), Valletta, Malta, 3–6 July 2017; pp. 707–712.

38. Zhu, H.; Claramunt, F.M.; Brito, B.; Alonso-Mora, J. Learning Interaction-Aware Trajectory Predictions for Decentralized
Multi-Robot Motion Planning in Dynamic Environments. IEEE Robot. Autom. Lett. 2021, 6, 2256–2263. [CrossRef]

39. Li, B.; Kong, Q.; Zhang, Y.; Shao, Z.; Wang, Y.; Peng, X.; Yan, D. On-road Trajectory Planning with Spatio-temporal RRT* and
Always-feasible Quadratic Program. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and
Engineering (CASE), Hong Kong, China, 20–21 August 2020; pp. 942–947.

40. Ramos, O.E. Optimal Control for Time and Energy Minimization in the Trajectory Generation of a Mobile Robot. In Proceedings
of the 2019 IEEE XXVI International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru,
12–14 August 2019; pp. 1–4.

41. Azzabi, A.; Nouri, K. Path planning for autonomous mobile robot using the Potential Field method. In Proceedings of the 2017
International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 4–17 January 2017;
pp. 389–394.

42. Coquet, Charles and Arnold, Andreas and Bouvet, Pierre-Jean. Control of a Robotic Swarm Formation to Track a Dynamic Target
with Communication Constraints: Analysis and Simulation. Appl. Sci. 2021, 11, 3179. [CrossRef]

43. Azzabi, A.; Nouri, K. An advanced potential field method proposed for mobile robot path planning. Trans. Inst. Meas. Control
2019, 41, 3132–3144. [CrossRef]

44. Tognon, Marco and Gabellieri, Chiara and Pallottino, Lucia and Franchi, Antonio. Aerial co-manipulation with cables: The role
of internal force for equilibria, stability, and passivity. IEEE Robot. Autom. Lett. 2018, 3, 2577–2583. [CrossRef]

45. Franchi, Antonio and Giordano, Paolo Robuffo and Michieletto, Giulia. Online Leader Selection for Collective Tracking and
Formation Control: The Second-Order Case. IEEE Trans. Control. Netw. Syst. 2019, 6, 1415–1425. [CrossRef]

46. Mousavi, M.A.; Heshmati, Z.; Moshiri, B. LTV-MPC based path planning of an autonomous vehicle via convex optimization. In
Proceedings of the 2013 21st Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 14–16 May 2013; pp. 1–7.

http://dx.doi.org/10.1007/s10514-018-9729-2
http://dx.doi.org/10.1080/00207170410001719765
http://dx.doi.org/10.1109/TIV.2018.2886683
http://dx.doi.org/10.1109/TIV.2020.3045837
http://dx.doi.org/10.1109/ACCESS.2020.2987812
http://dx.doi.org/10.1016/j.ifacol.2017.08.1910
http://dx.doi.org/10.1109/LRA.2020.2964159
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231841
http://dx.doi.org/10.1109/LRA.2021.3061073
http://dx.doi.org/10.3390/app11073179
http://dx.doi.org/10.1177/0142331218824393
http://dx.doi.org/10.1109/LRA.2018.2803811
http://dx.doi.org/10.1109/TCNS.2019.2891011

	Introduction
	Related Works
	Contribution
	Paper Structure
	Notation

	Problem Formulation
	MPC-Based Strategy
	Leader Objective Function
	Follower Objective Function 
	Constraint Sets Definition

	Obstacle Avoidance
	On the Leader Side
	On the Follower Side

	Feasibility-Aware Recovery Policy
	Numerical Results
	Conclusions
	References

