
robotics

Article

Nonlinear Model Predictive Horizon for Optimal
Trajectory Generation

Younes Al Younes and Martin Barczyk *

����������
�������

Citation: Al Younes, Y.; Barczyk, M.

Nonlinear Model Predictive Horizon

for Optimal Trajectory Generation.

Robotics 2021, 10, 90. https://

doi.org/10.3390/robotics10030090

Academic Editors: Houria

Siguerdidjane and David Hyunchul

Shim

Received: 15 June 2021

Accepted: 13 July 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
alyounes@ualberta.ca
* Correspondence: mbarczyk@ualberta.ca

Abstract: This paper presents a trajectory generation method for a nonlinear system under closed-
loop control (here a quadrotor drone) motivated by the Nonlinear Model Predictive Control (NMPC)
method. Unlike NMPC, the proposed method employs a closed-loop system dynamics model within
the optimization problem to efficiently generate reference trajectories in real time. We call this
approach the Nonlinear Model Predictive Horizon (NMPH). The closed-loop model used within
NMPH employs a feedback linearization control law design to decrease the nonconvexity of the
optimization problem and thus achieve faster convergence. For robust trajectory planning in a
dynamically changing environment, static and dynamic obstacle constraints are supported within
the NMPH algorithm. Our algorithm is applied to a quadrotor system to generate optimal reference
trajectories in 3D, and several simulation scenarios are provided to validate the features and evaluate
the performance of the proposed methodology.

Keywords: trajectory generation; nonlinear model predictive approach; feedback linearization;
dynamic obstacle avoidance; quadrotor vehicle

1. Introduction

For autonomous vehicle systems, the ability to generate and track collision-free trajec-
tories in unknown environments is a crucial task that is attracting both researchers’ and
companies’ attention in a world witnessing steep advancements in this area. The need to
generate real-time trajectories for highly nonlinear systems puts an emphasis on finding
ways to efficiently predict trajectories which respect the system dynamics as well as internal
and external constraints. One methodology which meets these requirements is nonlinear
model predictive control.

Nonlinear Model Predictive Control (NMPC) is the nonlinear variant of Model Pre-
dictive Control (MPC), which was originally developed for process control applications
and can be traced back to the late 1970s [1,2]. MPC, sometimes called moving horizon or
receding horizon optimal control, involves using a system dynamics model to predict a
sequence of control inputs over a time interval known as the prediction horizon. For non-
linear systems, NMPC can be used as an optimization-based feedback control technique [3],
and it has been viewed as one of the few control strategies which can account for state and
input constraints and respect the nonlinearities and coupling of the system dynamics.

NMPC is employed in applications including setpoint stabilization, trajectory tracking,
and path following. In setpoint stabilization, the system is controlled to converge to a
specified setpoint within a terminal region. NMPC for setpoint stabilization has been
used in many applications, such as fluid level and temperature control [4,5]. In trajectory
tracking, the system must track a time-varying reference, which is a more challenging
problem. Some examples of this taken from the fields of aerial vehicles and medicine
are presented in [6,7]. Meanwhile, the path following problem considers time-invariant
reference trajectories, where the goal is to achieve the best possible tracking of the geometric
path regardless of the time taken. A common example of a path following problem is

Robotics 2021, 10, 90. https://doi.org/10.3390/robotics10030090 https://www.mdpi.com/journal/robotics

https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-8295-8356
https://doi.org/10.3390/robotics10030090
https://doi.org/10.3390/robotics10030090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/robotics10030090
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics10030090?type=check_update&version=1

Robotics 2021, 10, 90 2 of 23

controlling the end-effector of a robot manipulator to follow a prescribed path within
its workspace, which is treated using MPC in [8,9]. Ref. [10] provides a comprehensive
overview of the setpoint stabilization, trajectory tracking, and path following problems
and their relevant features and challenges.

Within the model predictive control approach, the optimization problem solves for
both the input and the state of the system over a finite time horizon. These local plans can
then be combined online to generate a prediction of the state trajectory, which is used for
motion planning [11]. The work in [12] considers the problem of point-to-point trajectory
generation using linear MPC, while NMPC is used for trajectory optimization and tracking
control in [13], where it solves the nonlinear problem using an iterative sequential linear
quadratic algorithm to obtain the optimal feedforward and feedback control inputs to a
hexacopter vehicle.

In the present work, we focus on the reference trajectory generation problem for a
nonlinear system (in our case a drone) under closed-loop control by an existing control law
design, which may be linear (e.g., a PID-based design) or nonlinear (e.g., the geometric
tracking controller in [14]). Our paper presents the development of an algorithm which
allows the generation of optimal trajectories based on the NMPC approach, but using a
closed-loop system model consisting of the nonlinear plant connected to a state feedback
linearization (FBL) control law. This proposed formulation is called Nonlinear Model
Predictive Horizon (NMPH). The purpose of employing FBL within the NMPH is to reduce
or eliminate the nonconvexity of the optimization problem relative to working directly
with the nonlinear plant dynamics as in standard NMPC.

Please note that while NMPC provides an input to a nonlinear plant, our proposed
NMPH computes a reference trajectory to be tracked by a closed-loop system consisting of
a nonlinear plant connected to a feedback control law. This makes NMPH ideally suited for
drones, which run a closed-loop control law in their onboard firmware to obtain a stable
hover for the vehicle. Employing an NMPC design thus requires bypassing the onboard
control system, which can lead to a loss of the drone in scenarios where the computer
running the NMPC code has an operating system crash or timeout. An alternative is to
include a model of the onboard control law into the plant model used by the NMPC, but the
full details of this control law are often kept proprietary (as seen in [15], for instance),
which in turn requires employing system identification techniques and their resulting
uncertain models.

To understand the differences between the proposed method and approaches based on
model predictive control, Table 1 shows a comparison between NMPC, NMPH and NMHE
(Nonlinear Moving Horizon Estimation). NMHE is an optimization-based technique that
inputs measurements, which may contain noise and other uncertainties, and outputs
estimates of the nonlinear system state or parameters. Further information about NMHE is
given in [16].

The research contributions of this paper are:

• Formulating a novel motion planning approach (named NMPH), which employs a
model of a closed-loop system under feedback linearization to efficiently solve for the
optimal reference trajectory of the target closed-loop system;

• Designing a feedback linearization control law for a model augmented with integral
states to achieve a more robust performance in the presence of modeling uncertainties.

• Implementing support for static and dynamic obstacles within the NMPH, enabling
collision-free reference trajectory generation in unknown, dynamic environments;

• Validating the ability of the system to generate optimal trajectories for the quadrotor
vehicle in real time using realistic flight environment simulation scenarios.

The remainder of this paper is structured as follows. Section 2 presents the formulation
of NMPH and the design of its state feedback linearization control law. The application of
the algorithm to a quadrotor vehicle is presented in Section 3. Section 4 presents different
simulation scenarios to evaluate and validate the proposed approach. Concluding remarks
are given in Section 5.

Robotics 2021, 10, 90 3 of 23

Table 1. Comparison between nonlinear model predictive control-based approaches.

NMPC NMHE NMPH (Ours)

Objective
Predicts future control
inputs and states of
the system

Estimates the system
states from previous
measurements over the
estimation horizon

Plans an optimal
reference trajectory for
the system under an
existing feedback
control design

Optimization
Problem (OP)

Dynamic OP is solved
iteratively for the
optimal control
inputs over the
prediction horizon

OP is solved for state
estimates and
model parameters

Dynamic OP is solved
iteratively for the
optimal trajectory over
the given
prediction horizon

Cost/Objective
Function

In general, a quadratic
function which
penalizes deviations of
the predicted system
states and control
inputs. Composed of a
stage cost and a
terminal cost

In general, a quadratic
function which
penalizes deviations of
the estimated outputs
from the measured
outputs. Composed of
an arrival cost and a
stage cost

Quadratic function
which penalizes the
deviation of the
predicted system states
and reference trajectory.
Composed of a stage
cost and a terminal cost

Optimization
Variables

System inputs
(states might be
considered in some
implementations)

System states and
parameters

System states and
prediction of the
reference trajectory

Optimization
Problem

Convexity
Nonconvex Nonconvex Reduced nonconvexity

or convex

Optimization
Problem

Constraints

Initial state; Nonlinear
system model; Limits
on states and
control inputs

Nonlinear system
model; Limits on states
and parameter values

Initial state; Nonlinear
system model; Limits
on trajectories, states,
controls; Obstacles

Optimization
Performance

Depends on the
accuracy of the system
model and initial
state estimate

Sensitive to the
accuracy of the system
model. Process noise
may affect the solution,
leading to inaccurate
or unstable results

Relies on the accuracy
of the system model,
stability of closed-loop
system, and accuracy of
the initial state estimate

2. Nonlinear Model Predictive Horizon

Our proposed Nonlinear Model Predictive Horizon (NMPH) is an optimization-based
trajectory generation method based on Nonlinear Model Predictive Control (NMPC).
Unlike NMPC, which yields an optimal feedback control law for a nonlinear system,
the objective of NMPH is to generate optimal reference trajectories that a closed-loop
system can follow.

The goal of NMPH is to generate a smooth trajectory which is continuously updated
by solving an Optimal Control Problem (OCP) in real time while respecting the state and
input constraints of the closed-loop system. The resulting optimization problem will be
referred to as an Optimal Trajectory Problem (OTP).

An overview of the NMPH architecture is depicted in Figure 1. The Nonlinear System
Model and the Nonlinear Control Law, representing the model of the plant and the upcom-
ing feedback linearization control law design, are both involved in the solution of the
optimization problem. The NMPH inputs the current system state and a desired setpoint
stabilization and outputs an optimal reference trajectory by solving the OTP at each time
instant tn.

Robotics 2021, 10, 90 4 of 23

Closed-loop System

Controller
Nonlinear

System

Sensors /
Estimators

system state

optimized
reference
trajectory

+
−

Nonlinear Model Predictive Horizon

Nonlinear
Control Law

Nonlinear
System Model

Optimization
Problem

Solver

Constraints

Cost Function

stabilization
setpoint

Figure 1. Nonlinear model predictive horizon architecture.

Our proposed NMPH method:

• Predicts the trajectory of a nonlinear closed-loop system;
• Works in real-time using a specified time horizon;
• Uses a feedback linearization control law to reduce the nonconvexity of the optimiza-

tion problem;
• Supports state and input constraints of the closed-loop system, and is able to account

for environmental constraints such as dynamic obstacles;
• Assumes that a stable terminal point is specified, and the state vector of the closed-loop

system is available (measured or estimated), and
• provides a combination of stabilization and tracking functionality:

– Stabilization: provides a solution which guides the closed-loop system to a speci-
fied setpoint or terminal condition;

– Tracking: generates a smooth reference trajectory for the closed-loop system to
track or follow.

The NMPH provides a dynamic parameterization of the reference trajectory. This
provides a continually evolving optimal reference trajectory from the current state of the
closed-loop system to the terminal setpoint, which respects the system dynamics and
environmental constraints such as dynamic obstacles.

In the following subsections, a formulation of the NMPH using a state feedback
linearization control law is presented which produces optimal reference trajectories. First,
the proposed NMPH algorithm structure and its constraints are discussed, then the design
of the state feedback linearization control law is performed.

2.1. NMPH Algorithm

Consider a discrete-time model of the nonlinear closed-loop system at time instant tn,

x(n + 1) = f (x(n), u(n)) (1a)

z(n) = h(x(n)) (1b)

u(n) = g
(

x(n), zre f (n)
)

(1c)

where x(n) ∈ X ⊆ Rnx are the system states, z(n) ∈ Z ⊆ Rnz are the system outputs,
u(n) ∈ U ⊆ Rnu are the system inputs, and zre f (n) ∈ Z is the reference trajectory at time
instant tn. We assume that the system outputs are a subset of the system state vector,
Z ⊆ X, in our case the drone’s position and yaw angle. The map f : X×U → X represents
the discrete-time plant dynamics and x(n + 1) are the states at the next sampling instant.
g : X × Z → U is the control law that is used to steer the system output to follow the
reference trajectory.

A closer look at the NMPH structure is shown in Figure 2. The OTP solver uses
the plant dynamics (1a), output (1b) and control law (1c) plus any applicable constraints
(e.g., obstacles in the environment) to predict the sequence of future states and outputs of
the closed-loop system model over the finite time horizon. In order to differentiate between

Robotics 2021, 10, 90 5 of 23

the variables of the actual nonlinear system and its model within the NMPH, the latter
uses subscripts as seen in Figure 2 and discussed below in Algorithm 1.

current
system state

𝑥 𝑛

optimized
variables
𝑥𝑘 , Ƹ𝑧𝑘

Nonlinear Model Predictive Horizon

Nonlinear
Control Law

𝑢𝑘

Nonlinear
System Model

𝑥𝑘+1 Optimization
Problem

Solver

Constraints

Cost Function, 𝐽 𝑥𝑘 , Ƹ𝑧𝑘stabilization
setpoint

𝑥𝑠𝑠

Figure 2. NMPH structure.

As shown in Figure 2, the sequence xk provides a prediction of the trajectory of
the system (1) between its current state x(n) and the setpoint stabilization xss, which is
regenerated each time the OTP is solved. Meanwhile, the sequences zk and ẑk calculated
by the OTP are defined as follows:

• zk is the predicted output trajectory sequence which represents a subset of the vector
entries of the state sequence xk (in our case the quadrotor’s position and yaw angle). It
is important to distinguish between z(n), the current output of the actual closed-loop
system, and zk, the predicted output sequence produced by the OTP solution.

• ẑk is the estimated reference trajectory sequence which is calculated by solving an op-
timization problem inside the NMPH. Using ẑk as the reference trajectory for the
actual closed-loop system yields smoother flight paths plus the ability to deal with
constraints such as obstacles in the environment. In this way, zre f (n) in (1c) acquires
its value from the first predicted point of the ẑk sequence.

As illustrated in Figure 3, the trajectory sequences zk and ẑk will converge to each
other and towards the terminal point. Thus, either of them can be taken as the reference
trajectory for the actual closed-loop system.

The predicted future of the closed-loop system’s behaviour is optimized at each
sampling instant n and over a finite time horizon k = 0, 1, . . . , N − 1 of length N ≥ 2.
The system is assumed to follow the first j elements of the predicted optimal trajectory
sequence until the next sampling instant, at which time the trajectory is recalculated, and so
on. The predicted state xk and the control input uk sequences at each time instant n are
calculated as

xk(0) = x(n), xk+1 = f (xk, uk), uk = g(xk, ẑk), k = n, . . . , n + N − 1 (2)

Now, consider µ(xk, uk) : Rnx ×Rnu → Rnz which is the mapping from the predicted
state and control law sequences to the estimated trajectory sequence. This is written as

ẑk := µ(xk, uk), k = n, . . . , n + N − 1 (3)

Our objective is to use an optimization methodology to determine the estimated
reference trajectory ẑk and the state xk (whose subset is zk) sequences that both converge to
the stabilization setpoint xss = xre f

N . To do this, a cost function J(xk, ẑk) is chosen to penalize
the deviation of the system states from the reference, and the predicted output from the
estimated reference trajectory, as shown below in Algorithm 1 and the cost function in (5).

Robotics 2021, 10, 90 6 of 23

Algorithm 1 NMPH algorithm with stabilizing terminal condition xss.

1: Let n = 0; measure the initial state x0 ← x(n)|n=0
2: while ‖xss − x0‖ ≥ δ do

Solve the following Optimal Trajectory Problem,

min
xk ,ẑk

(
J(xk, ẑk) :=

n+N−1

∑
k=n

L(xk, ẑk) + E(xn+N)

)
(4)

subject to xk=0 = x(n) (4a)
xk+1 = f (xk, uk), k = n, . . . , n + N − 1, (4b)
uk = g(xk, ẑk), k = n, . . . , n + N − 1, (4c)
xk ∈ X , k = n, . . . , n + N, (4d)
ẑk ∈ Z , uk ∈ U , k = n, . . . , n + N − 1, (4e)
Oi(xk) ≤ 0 , i = 1, 2, . . . , p (4f)

if xk → xss then (estimated trajectory converging to terminal condition)
n← n + 1;

else
break;

end
end

In Algorithm 1, N is the prediction horizon, x(n) is the current measured state at a
time instant tn, which represents the initial condition of the OTP, and L(·, ·) and E(·) are
the stage cost function and the terminal cost function, respectively. The constraint sets X ,
U , and Z will be defined in Section 2.2, and the inequality constraints Oi(xk) ≤ 0 allow
modeling a set of p static and dynamic obstacles. The optimization process of Algorithm 1
is summarized as follows:

1. Measure or estimate the actual closed-loop system’s current state x(n);
2. Obtain a prediction of the reference trajectory sequence ẑk for an admissible control

input by minimizing the cost function over the prediction horizon subject to the
dynamics of the closed-loop system plus state and input constraints;

3. Send the predicted reference trajectory sequence to the closed-loop system for tracking;
4. Repeat until the system reaches the desired terminal point or encounters an infeasible

optimization solution.

Within NMPH, convergence can be achieved by proper choices of the stage cost L(x, ẑ)
and the terminal cost E(x) for a setpoint stabilization problem [10]. The requirements for
these cost functions are summarized below in Assumption 1:

Assumption 1 (Cost Function). The stage cost L(x, ẑ) : Rnx ×Rnz → R+
0 and terminal cost

E(x) : Rnx → R+
0 functions introduced in (4) have the following properties:

• The stage cost is continuous and bounded from below, meaning that L(x, ẑ) ≥ α for all
(x, ẑ) ∈ X× Z\{0, 0} and L(0, 0) = 0.

• The terminal cost is a positive semi-definite function, which is continuously differentiable
and satisfies

∂E
∂x

f
(
x, g(x, ẑ)

)
+ L(x, ẑ) ≤ 0

• The terminal constraint set EN is a subset of the state constraint set X and it is compact.
• For every xN ∈ EN , there exists an estimate of the reference trajectory ẑk and predicted output

trajectory zk sequences where both converge to the terminal setpoint and stay within the
terminal region EN .

Robotics 2021, 10, 90 7 of 23

Our cost function is chosen to penalize the deviation of states from their reference
values, and the deviation of the predicted output trajectory from the estimated reference
trajectory, as follows:

J(xk, ẑk) :=
n+N−1

∑
k=n

(
‖xk − xre f

k ‖
2
Wx

+ ‖zk − ẑk‖2
Wz

)
+ ‖xN − xre f

N ‖
2
WN

(5)

where xre f
k ∈ X is the reference states sequence used in the optimization problem. The ter-

minal cost ‖xN − xre f
N ‖2

WN
with its weighting matrix WN steers the system towards the

stabilization setpoint xss = xre f
N , while the stage cost function L(xk, ẑk) uses the weighting

matrices Wx and Wz to penalize deviations of the states and outputs, respectively. The en-
tries of the weighting matrices are selected to adjust the relative importance of these three
factors for the optimization problem.

A visual interpretation of the NMPH process can be seen in Figure 3, where the path
planning task is to guide the closed-loop system described by (1) to follow a predicted
trajectory from x(n) (at time instant tn) to xss (at a future time tn+N) while minimizing the
cost function (5) and respecting the system’s state and input constraints.

prediction horizonpast time

optimal estimated
trajectory Ƹ𝑧𝑘

optimal predicted
trajectory 𝑧𝑘

penalize
the difference

mapping 𝜇 𝑥𝑘 , 𝑢𝑘 ≜ Ƹ𝑧𝑘

control values 𝑢𝑘 from the control law

terminal
constraint

past predicted
trajectory

past control values

current state

𝑥0 = 𝑥 𝑛

𝑡𝑛 𝑡𝑛+1 𝑡𝑛+𝑁

Figure 3. NMPH process at time tn, which predicts the optimal trajectory until time tn+N . The dif-
ference between the predicted output zk and the estimated reference ẑk trajectories is penalized to
ensure their convergence towards each other.

Some of the features of the predicted trajectory sequences are:

• The first j elements of the reference trajectory sequence ẑk are passed to the closed-
loop system, which is different from the NMPC control problem where only the first
element of the predicted control sequence u∗(n) is used. This provides some flexibility
in choosing the rate at which the OTP is solved, which addresses the computation
time issue of solving a Nonlinear Program (NLP).

• Thanks to recent advancements in computing, specifically graphics processing units
(GPUs), the computations required for optimization problems can be performed very
quickly, meaning solving the NLP problem for OTP or even OCP can be done in real-
time. Irrespective of this, OTP has an advantage over OCP since the computational
power requirement can be controlled by adjusting the rate of solving the optimization
problem while allowing the vehicle to track the first j elements of the estimated
reference trajectory.

Robotics 2021, 10, 90 8 of 23

• While the tailing N − j elements of the reference trajectory sequence are discarded,
the entire trajectory is still required to be calculated over the prediction horizon.
The reason for this is that optimizing over the full horizon ensures a smooth trajectory
from the initial state to the terminal setpoint.

• The optimization problem is solved iteratively using a reliable and accurate optimization
approach based on the multiple shooting method and sequential quadratic programming.

The discrete-time representation (1) shown in Section 2.1 was presented to under-
stand the problem formulation analysis and NMPH development, with the optimization
being performed in the discrete-time domain as in sampled-data MPC [17]. Conversely,
a continuous-time representation is important for NMPH implementation since our chosen
optimization algorithm (ACADO [18]) has the ability to discretize the system equations.

Consider the continuous-time nonlinear closed-loop system

ẋ(t) = f
(
x(t), u(t)

)
(6)

z(t) = h
(
x(t)

)
u(t) = g

(
x(t), zre f (t)

)
where x(t) ∈ Rnx are the system states and u(t) ∈ Rnu are the system inputs. z(t) ∈ Rnz

are the system outputs, assumed to be a subset of the state vector x(t). The maps f and g
are the nonlinear system dynamics and control law, respectively.

The optimization problem presented in Algorithm 1 can be rewritten in the continuous-
time domain as

min
x(t),ẑ(t)

(∫ tn+T

tn
L
(
x(τ), ẑ(τ)

)
dτ + E

(
x(tn + T)

))
(7)

min
x(t),ẑ(t)

(∫ tn+T

tn

(
‖x(τ)− x(τ)re f ‖2

Wx
+ ‖z(τ)− ẑ(τ)‖2

Wz

)
dτ

+ ‖x(tn + T)− x(tn + T)re f ‖2
WN

)
subject to x0 = x(tn) ,

ẋ(τ) = f
(
x(τ), u(τ)

)
,

u(τ) = g
(
x(τ), ẑ(τ)

)
,

x(τ) ∈ X , ẑ(τ) ∈ Z , u(τ) ∈ U ,

Oi(x(τ)) ≤ 0 , i = 1, 2, . . . , p.

The continuous-time optimization problem must be solved over the full time interval
τ ∈ [tn, tn + T]. As discussed above, the closed-loop system will be asked to track a portion
of the resulting reference trajectory running from tn to tn + tj, where tj < T and where tj
can be adjusted online to affect the trajectory generation and tracking performance and
control the computational power required by the optimization.

2.2. NMPH Constraints

Support for constraints within the NMPH algorithm provides full control over the
optimization problem. The constraints can apply to the state, input and output trajectories,
and also model dynamic obstacles.

State constraints belong to the subset X ⊆ X, while outputs, which are assumed to be
a subset of the state vector entries, belong to the subset Z ⊆ X . U (x, ẑ) ⊆ U is defined by
physical input constraints in the system, for instance due to actuator limits.

The objective of introducing the constraint sets are to ensure that the optimized
trajectories are bounded and lie within their allowable ranges. The following assumptions
regarding the constraint sets are made [3,10]:

Robotics 2021, 10, 90 9 of 23

Assumption 2 (Closed and Bounded Sets). The constraint sets of the state X and the reference
trajectory Z are closed, and the control constraint set U is compact.

Assumption 3 (Differentiability and Lipschitz). The system dynamics f (x, u) : Rnx ×Rnu →
Rnx is continuously differentiable for all (x, u) ∈ X ×U . Also, f (x, u) and the reference trajectory
mapping µ(x, u) : Rnx ×Rnu → Rnz are considered to be locally Lipschitz.

Assumption 4 (Uniqueness). For any element of the estimated reference trajectory ẑ resulting
from a control input u and any possible initial states x0 ∈ X , the system dynamics produce a
unique and continuous solution.

Assumption 5 (Viability). For each state x ∈ X and estimated reference trajectory ẑ ∈ Z there
exists a control u = g(x, ẑ) ∈ U such that f (x, u) ∈ X .

Taking Assumptions 2–4, we can make the following definition:

Definition 1 (Admissibility). In the discrete-time OTP, consider the system dynamics xk+1 =
f (xk, uk) and the control law uk = g(xk, ẑk), which maps the state to the estimated trajectory as
µ(xk, uk) := ẑk ∈ Z , with the constraint sets for state X ⊆ X, control U (x, ẑ) ⊆ U, and reference
trajectory Z ⊆ X.

• The system states xk ∈ X and the estimated reference trajectory ẑk ∈ Z are called admissible
states and trajectories, respectively, and the control uk = g(xk, ẑk) ∈ U are called admissible
control values for xk and ẑk. Hence, the admissible set can be defined as

Y := {(xk, ẑk, uk) ∈ X× Z×U | xk ∈ X , ẑk ∈ Z , uk = g(xk, ẑk) ∈ U} (8)

• The control sequence uk and its associated estimated reference trajectory ẑk and state sequence
xk from the time t0 of the initial value x0 ∈ X up to time tN of the setpoint stabilization value
xN are admissible if (xk, ẑk, uk) ∈ Y for k = 0, . . . , N − 1 and xN ∈ X .

• The control law is called admissible if g(xk, ẑk) ∈ U for all xk ∈ X and ẑk ∈ Z .
• The estimated reference trajectory is called admissible if µ(xk, uk) ∈ Z for all xk ∈ X and

uk ∈ U .

A feasible problem is defined as an optimization problem in which there exists at least
one set of solutions that satisfies all the constraints [3]. Based on Assumptions 2–5 and the
admissibility Definition 1, the feasibility of the OTP is determined by Theorem 1.

Theorem 1 (Feasibility). If the OTP is feasible for an initial condition x0 and the cost function
for a setpoint stabilization problem with associated constraint sets satisfy Assumptions 2–5, then
the OTP is recursively feasible, meaning the state converges to the stabilizing terminal point xN ,
and both the estimated reference trajectory ẑk and predicted output trajectory zk sequences converge
toward the terminal stabilization setpoint under sampled-data NMPH.

Proof. The solution of the OTP is feasible for an initial value x0 ∈ X to a stabilizing
terminal point xN ∈ X if the sets over which we optimize are nonempty. The viability
considered in Assumption 5 for Z and X implies that the OTP is feasible for each initial
state x0 and consequently ensures that the control g(xk, ẑk) is properly defined for each
x ∈ X and ẑ ∈ Z . Since the OTP is performed with respect to admissible predicted state
trajectory and control law sequences (as stated in Definition 1), the future behavior of the
system is consequently feasible.

It is important to note that the solution of the OTP is viable in the case of a stabilizing
terminal constraint, meaning the NMPH problem is confined to feasible subsets since the
terminal constraint is viable. The closed-loop system embedded within NMPH satisfies

Robotics 2021, 10, 90 10 of 23

the desired constraints, which will lead to a feasible solution in the OTP. The stability of a
feasible solution is governed by Theorem 2.

Theorem 2 (Stability). Assume that the OTP within Algorithm 1 satisfies Assumption 1 and
has a feasible solution as determined by Theorem 1. Then the optimized solution leads to a stable
prediction of the system state xk and estimated reference trajectory ẑk.

Proof. Assume that at any time instant ti, i ∈ [n, ..., n + N − 2], x∗i and ẑ∗i are the optimal
solutions of the OTP in Algorithm 1, with their associated control value u∗i . A Lyapunov-
like function is defined as

V(xi, ẑi) = min
x∗i ,ẑ∗i

J(xi, ẑi) = J(x∗i , ẑ∗i) (9)

The cost function in (5) guarantees a positive semi-definite Lyapunov-like candi-
date [19], meaning that 0 ≤ V(xi, ẑi) < ∞, which can be written at time ti as

V(xi, ẑi) = E
(
x∗n+N

)
+

n+N−1

∑
i=n

L(x∗i , ẑ∗i) (10)

Considering the solution at a subsequent time ti+δ, the feasible solution of the cost
function is

J(xi+δ, ẑi+δ) = E(xn+N+δ) + L(xn+N−1+δ, ẑn+N−1+δ) +
n+N−1

∑
i=n+δ

L(x∗i , ẑ∗i) (11)

Since V(xi+δ, ẑi+δ) ≤ J(xi+δ, ẑi+δ), we have

V(xi+δ, ẑi+δ)−V(xi, ẑi) ≤ J(xi+δ, ẑi+δ)−V(xi, ẑi)

≤ E(xn+N+δ) + L(xn+N−1+δ, ẑn+N−1+δ)

+Σn+N−1
i=n+δ L(x∗i , ẑ∗i)−

(
E(x∗n+N) + Σn+N−1

i=n L(x∗i , ẑ∗i)
)

≤ L(xn+N−1+δ, ẑn+N−1+δ) + E(xn+N+δ)

−L(x∗n, ẑ∗n)− E(x∗n+N)

where E(xn+N+δ)− E
(
x∗n+N

)
+ L(xn+N−1+δ, ẑn+N−1+δ) ≤ 0 based on the inequality con-

sidered in Assumption 1. Therefore,

V(xi+δ, ẑi+δ)−V(xi, ẑi) ≤ −L(x∗n, ẑ∗n)

this implies that the rate of change in the Lyapunov-like function is decreasing with time.
Hence, the solution of the OTP problem in Algorithm 1 converges asymptotically to the
terminal setpoint.

To perform safe navigation, it is necessary to include the obstacle constraints within
the optimization problem. The inequality constraint presented in (4f) accounts for the space
that the predicted trajectory should avoid. For instance, the obstacle constraintsOi(xk) ≤ 0
are defined as

‖xpos
k − oi‖ − εi ≥ 0 , i = 1, 2, . . . , p

where xpos
k ∈ R3 is the predicted vehicle position over the prediction horizon, oi ∈ R3 are

the position of the obstacles centers, and εi represents the safety distance between the ith

obstacle and the vehicle, which accounts for the drone and obstacle sizes, including the
safety tolerance.

Robotics 2021, 10, 90 11 of 23

2.3. NMPH Closed-Loop Form with Feedback Linearization Control Law

In this section, we cover the feedback linearization-based control law design within
the NMPH. The nonlinear system studied in this work, a quadrotor drone, is a Multi-
Input Multi-Output (MIMO) system. We thus start by reviewing the method of feedback
linearization for a class of MIMO systems.

Consider a MIMO nonlinear control-affine system of the form

ẋ = f (x) +
nu

∑
i=1

gi(x) ui , f (x) + G(x)u (12)

in which x ∈ Rnx , and f , g1, . . . , gnu are smooth vector fields in Rnx . G(x) is an nx × nu
matrix and its rank at x = 0 is rank G(0) = nu. For notation simplicity in the following
sections, take nx ≡ n and nu ≡ m.

Prior to feedback linearization analysis, the following theorems and definitions are
presented in the context of differential geometry.

Definition 2 (Diffeomorphism). A diffeomorphism is a differentiable map ϕ between two mani-
foldsM and N , such that ϕ : M→ N is one-to-one and onto (bijective), and its differentiable
inverse map ϕ−1 : N →M is bijective as well. ϕ is called a Cω diffeomorphism if it is ω times
continuously differentiable. If ω = ∞, then ϕ is called a C∞ smooth map [20].

A change in coordinates can be defined globally or locally. A map ξ : Rn → Rn is
called a global diffeomorphism between two coordinates if, and only if, the determinant
det ∂ξ

∂x 6= 0 for all x ∈ Rn, and lim‖x‖→∞ ‖ξ(x)‖ = ∞ [21]. For a local change in coordinates,

let U be an open subset of Rn with ξ : U → Rn. If det ∂ξ
∂x 6= 0 at some x ∈ U , then there

exists V ⊂ U , which is an open set that includes x such that the map ξ : V → V(ξ) is a
diffeomorphism [20].

A specific class of nonlinear systems can be transformed into a linear state feedback
controllable form by satisfying the conditions to be presented in Theorem 3. To facilitate our
understanding of this process, we first define a nonsingular state feedback transformation
and controllability indices in Definitions 3 and 4, respectively [20]:

Definition 3 (Nonsingular state feedback transformation). Consider V0 ⊂ U0 which is a
neighborhood of the origin. On the one hand, the nonsingular state feedback is defined as:

u = β(x) + D(x)−1v (13)

where the function β(x) is smooth from V0 into Rn and β(0) = 0. D(x)−1 is the inverse of a
nonsingular m×m matrix in V0.

On the other hand, a local diffeomorphism in V0, which is defined by (ξ = T(x), T(0) = 0),
exists if, and only if, in U0 the distributions Gl = span

{
adj

f gi : 1 ≤ i ≤ m, 0 ≤ j ≤ l
}

are
involutive and of constant rank for 0 ≤ l ≤ n− 2, and the rank of the distribution of n− 1 is
rank Gn−1 = n.

A transformation that contains a nonsingular state feedback and a local diffeomorphism
is called a nonsingular state feedback transformation.

Definition 4 (Controllability Indices). The controllability indices ri, i = 1, . . . , m associated
with control-affine systems of the form (12) are calculated as

ri = card
{

mj ≥ i : j ≥ 0
}

(14)

Robotics 2021, 10, 90 12 of 23

with

m0 = rank G0,

mk = rank Gk − rank Gk−1, k = 1, . . . , n− 1.

Employing Definitions 3 and 4, the sufficient conditions for feedback linearization
and the form of its feedback transformation are given in Theorem 3 [20].

Theorem 3 (MIMO Feedback Linearization). A system of the form (12) can be locally trans-
formed by means of a nonsingular state feedback transformation as given in Definition 3 into a
linear Brunovsky controller form in U0 if:

(i) The controllability indices satisfy the condition r1 ≥ . . . ≥ rm;
(ii) The distributions Gri−2 are involutive and of constant rank for i = 1, . . . , m;
(iii) The rank of the distribution Gr1−1 is rank Gr1−1 = n.

In this case, there are smooth functions {ϕi(x) : 〈dϕi,Gri−2〉 = 0, j ≥ i, i = 1, . . . , m} that
form a nonsingular matrix D(x) in V0,

D(x) =


〈dϕ1, adr1−1

f g1〉 . . . 〈dϕ1, adr1−1
f gm〉

...
. . .

...
〈dϕm, adrm−1

f g1〉 . . . 〈dϕm, adrm−1
f gm〉

, (15)

and consequently the nonsingular state feedback transformation is

v =


Lr1

f ϕ1
...

Lrm
f ϕm

+


Lg1 Lr1−1

f ϕ1 . . . Lgm Lr1−1
f ϕ1

...
. . .

...
Lg1 Lrm−1

f ϕm . . . Lgm Lrm−1
f ϕm

u , ξ =



ϕ1
...

Lr1−1
f ϕ1

...
ϕm
...

Lrm−1
f ϕm


(16)

In Theorem 3, L f ϕ = 〈dϕ, f 〉 is the Lie derivative which can be realized as a directional
derivative of the smooth function ϕ along the smooth vector field f , and adr

f g = [f , adr−1
f g]

is the iterated Lie bracket between the vector fields f and g.
Using the feedback linearization control law yields a locally stable closed-loop system

model within the NMPH structure. One of the main motivations for choosing the feed-
back linearization approach in our work was to reduce nonlinearities. Since the NMPH
works with a closed-loop system model, the optimization problem will have a reduced
nonconvexity as compared to working directly with the nonlinear plant model as in NMPC.
This will lead to better optimization performance in terms of computation time to find
feasible solutions.

Modeling errors, system uncertainties, and external disturbances can affect the perfor-
mance of the state feedback linearization control law. For instance, a constant wind gust
applied to the drone while following a trajectory will lead to an offset in the corresponding
position outputs. The baseline feedback linearization controller is unable to compensate
for this type of offset, which will consequently degrade the accuracy of the predicted states
and reference trajectories produced by the NMPH. To overcome this issue, an extension
of the state feedback linearization can be achieved by augmenting the system model with
integral states of the position vector and yaw angle of the drone. The validity of using
this extension is demonstrated by using Theorem 3 in the feedback linearization design
Section 3.2.

Robotics 2021, 10, 90 13 of 23

3. Application of NMPH to a Quadrotor Vehicle
3.1. System Model

In this section, the NMPH is developed for a quadrotor vehicle connected to a feedback
linearization control law. A standard nonlinear rigid-body dynamics vehicle model is
adopted in this work from [22]. This model is simplified by ignoring drag forces, rotor
gyroscopic effects, and propeller dynamics. A more comprehensive nonlinear model that
includes those assumptions can be considered in future work.

The rigid-body kinematics and dynamics are developed using two reference frames,
which are the fixed navigation frame N and the moving body frame B (fixed to the
quadrotor’s Center of Gravity, CG). The bases of both frames are selected based on the
North, East, and Down (NED) directions in a local tangent plane as the orthonormal vector
sets {n1, n2, n3} and {b1, b2, b3} for the navigation and body frames, respectively. The two
basis are depicted in Figure 4.

𝑓3

𝑓4

𝑓1

𝑓2

𝑏1

𝑏2𝑏3
𝑛1

𝑛3
𝑛2

𝑝𝑛

𝑚𝑔

Figure 4. Reference frames used for our quadrotor vehicle.

In general, any configuration of a rigid body in space belongs to the Special Euclidean
group SE(3), the product space of the rigid-body orientation and position (Rnb, pn) ∈
SO(3)×R3 = SE(3), where the Special Orthogonal group SO(3) is defined as SO(3) = {R ∈
R3×3 | RRT = RT R = I, det (R) = +1}, and the rotation matrix of B with respect to N is
denoted as Rnb ∈ SO(3). To represent the orientation, the ZYX Euler angle parameterization
is employed. Based on the roll-pitch-yaw Euler angles η = [φ, θ, ψ]T , the rotation matrix
can be written as

R = Rnb = RψRθ Rφ =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 (17)

where s(·) = sin(·) and c(·) = cos(·). Note t(·) = tan(·) will be used in (20).
The most prominent issue of using Euler angles is the singularity when the param-

eterization loses injectivity at θ = π/2 + kπ, k ∈ Z. A recent work by [23] tackles this
issue by using non-Euclidean rotation groups in the NMPC, but in this work the problem
is addressed simply by adding state constraints within the NMPH optimization problem
in (4d).

The rigid-body kinematics and dynamics are modeled as shown below

ṗn = vn (18)

mv̇n = −ūRn3 + gn3

Ṙ = R S(ωb)

Jω̇b = −S(ωb)Jωb + τb

Robotics 2021, 10, 90 14 of 23

where pn, vn ∈ R3 are the vehicle’s position and velocity with respect to the inertial
frame N , respectively. m is the mass of the quadrotor, g = 9.81 m/s2 is the gravitational
acceleration, and the vehicle’s mass moment of inertia matrix is assumed to be diagonal
with J = diag([J1, J2, J3]). The system input vector is [ū, τb]T , where ū = ∑4

i=1 fi > 0 is
the total generated thrust in the direction of −b3, and τb = [τb1, τb2, τb3]T are the torques
created by the rotors about the body frame axes. ωb and ω̇b are the angular velocity and
acceleration vectors, respectively. The operator S(·) : R3 → so(3) maps a vector to a
skew-symmetric matrix such that S(a)b = a× b for a, b ∈ R3.

3.2. Quadrotor Feedback Linearization Control

The system represented in (18) has to be described in a nonlinear control-affine form
as shown in (12). The state and input vectors are

x =
[
(pn)T , (vn)T , (η)T , (ωb)T

]T
∈ R12 (19)

u =
[
ū, (τb)T

]T
∈ R4

The control-affine form is as described below

ẋ = f (x) +
4

∑
i=1

gi(x)ui , f (x) + G(x)u (20)

where

f (x) =



x4
x5
x6
0
0
g

x10 + sx7 tx8 x11 + cx7 tx8 x12
cx7 x11 − sx7 x12
sx7
cx8

x11 +
cx7
cx8

x12(
J2−J3

J1

)
x11x12(

J3−J1
J2

)
x10x12(

J1−J2
J3

)
x10x11



, G(x) =



0 0 0 0
0 0 0 0
0 0 0 0

− 1
m (cx7 sx8 cx9 + sx7 sx9) 0 0 0
− 1

m (cx7 sx8 sx9 − sx7 cx9) 0 0 0
− 1

m cx7 cx8 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

J1
0 0

0 0 1
J2

0
0 0 0 1

J3


As stated in Theorem 3, the controllability indices {r1, r2, r3, r4} of the system need to

be found first to verify whether the system is state feedback linearizable or not. To find them,
first mj, 0 ≤ j ≤ 4 is computed based on the distributions

Gl = span
{

adj
f gi : 1 ≤ i ≤ 4, 0 ≤ j ≤ l

}
for l = 0, ..., 10. Therefore, the calculated con-

trollability indices are {5, 2, 2, 2}. These need to be checked against the conditions of
Theorem 3. G3 is found to not be involutive and dimG4 = 11 6= n. Hence, the system is
not state feedback linearizable as conditions (ii) and (iii) are not satisfied. It can also be
noted that ∑4

i=1 ri = 11 6= n.
From the above, the system is not locally state feedback linearizable, meaning it

cannot be transformed into a linear controllable system written in Brunovsky controller
form. The system states and inputs are thus reformulated by augmenting the state vector
with two additional states, which are the thrust x13 = ū and its rate x14 = ˙̄u, and replacing
the thrust by ¨̄u in the input vector. The same approach was successfully validated in [24–26].

Robotics 2021, 10, 90 15 of 23

Furthermore, the system is extended by including the integral states ζ defined by ζ̇ p = pn,
ζ̇ψ = ψ, as shown below:

x =
[
(pn

3×1
)T , (vn

3×1
)T , (η

3×1
)T , (ωb

3×1
)T , ū, ˙̄u, (ζ pn

3×1
)T , ζψ

]T
∈ R18 (21)

u =
[

¨̄u, (τb
3×1

)T
]T
∈ R4

Based on the extended system’s vectors, the presented state space control-affine form
in (21) can be written as follows

ẋ = f̄ (x) + Ḡ(x)u (22)

where

f̄ (x) =



x4
x5
x6

− 1
m (cx7 sx8 cx9 + sx7 sx9)x13
− 1

m (cx7 sx8 sx9 − sx7 cx9)x13
g− 1

m cx7 cx8 x13
x10 + sx7 tx8 x11 + cx7 tx8 x12

cx7 x11 − sx7 x12
sx7
cx8

x11 +
cx7
cx8

x12(
J2−J3

J1

)
x11x12(

J3−J1
J2

)
x10x12(

J1−J2
J3

)
x10x11

x14
0
x1
x2
x3
x9



, Ḡ(x) =



09×4

0 1
J1

0 0
0 0 1

J2
0

0 0 0 1
J3

0 0 0 0
1 0 0 0

04×4



The controllability indices of the extended system are {5, 5, 5, 3}, where ∑4
i=1 ri = 18 =

n. With r1 = 5, the distribution G3 is found to be involutive and dimG4 = 18 = n, meaning
all conditions of Theorem 3 are satisfied. Therefore, the system is state feedback linearizable,
meaning it is locally transformable into a linear controllable system in Brunovsky controller
form about the origin, as shown below in (23).

The existence of four smooth functions is guaranteed, representing the linearizing
position and yaw outputs {ϕ1(x) = x1, ϕ2(x) = x2, ϕ3(x) = x3, ϕ4(x) = x9}, such that
matrix D(x) in (15) is nonsingular about the origin. The resulting linear system is written as

ξ̇ = Ac ξ + Bc v , ξ ∈ R18, v ∈ R4 (23)

z = Cc ξ , z ∈ R4

where

ξ =
[

ϕ1, . . . , Lr1−1
f ϕ1, . . . , ϕm, . . . , Lrm−1

f ϕm

]T

=
[

x15, x1, x4, ẋ4, ẍ4, x16, x2, x5, ẋ5, ẍ5, x17, x3, x6, ẋ6, ẍ6, x18, x9, ẋ9

]T

ξ̇ =
[
ξ2, ξ3, ξ4, ξ5, v1, ξ7, ξ8, ξ9, ξ10, v2, ξ12, ξ13, ξ14, ξ15, v3, ξ17, ξ18, v4

]T

Robotics 2021, 10, 90 16 of 23

To determine the domain of the transformation, the determinant of the matrix D(x) is
calculated to be

det D(x) = − ū2 cos (φ)
m3 J1 J2 J3 cos (θ)

Therefore, the domain for a nonsingular solution is {ū 6= 0, −π
2 < φ < π

2 , −π
2 <

θ < π
2 }. As discussed earlier in Section 3.1, these constraints will be included within the

NMPH optimization problem in (4d).
The actual control law is obtained using (16), giving

¨̄u = m cx9 sx7 v2 −m sx7 sx9 v1 −m cx7(sx8 cx9 v1 + sx8 sx9 v2 + cx8 v3) (24)

+ x13

(
x2

10 + x2
11

)
τb1 =

mJ1

x13
sx7(sx8 cx9 v1 + sx8 sx9 v2 + cx8 v3) +

mJ1

x13
cx7(cx9 v2 − sx9 v1)− (J2 − J3)x12x11

+
J1

x13
(x11x12x13 − 2x10x14)

τb2 = −mJ2

x13
cx8(cx9 v1 + sx9 v2) +

mJ2

x13
sx8 v3 −

J2

x13
(x10x12x13 + 2x11x14)

+ (J1 − J3)x12x10

τb3 = − 1
cx7 cx8 x13

[
2J3

(
2x12x11c2

x7
+ sx7 x2

11 − x2
12cx7 − x12x11

)
x13sx8

+
(
(J1 − J2 + J3)x10x11x13cx7 + J3sx7(msx8 v3 − 2x10x12x13 − 2x11x14)

)
cx8

− J3
(
m sx7(cx9 v1 + sx9 v2) + x13v4

)
c2

x8

]
where vk are feedback inputs defined as

vj =
5j

∑
i=5j−4

kieξi , j = 1, 2, 3, v4 =
18

∑
i=16

kieξi (25)

where the error eξi is defined as the difference between the desired and the actual feedback
linearized system state eξi = ξd

i − ξi i = 1, ..., n. The errors can be interpreted as the

differences between the desired outputs
[
pn

d , ψd
]T with their rates and integrals, and the

corresponding actual system outputs [pn, ψ]T with their rates and integrals.

3.3. Trajectory Generation Using NMPH with Feedback Linearization

The optimization problem of NMPH uses the system dynamics (18) and state feed-
back linearization control law (24) to solve for an optimal reference trajectory for the
resulting closed-loop system. The OTP, which is written in the continuous-time domain
and presented in (7), is solved using an efficient direct multiple shooting technique [27].
The solver discretizes the system dynamics, control law, and state and input constraints
over the prediction horizon into k = n, ..., n + N at each time instant tn, as discussed in (4).
An overview of the process from the optimization problem formulation to the trajectory
generation is given in Figure 5.

Optimization
Problem

optimize w.r.t. system’s
trajectories & states

Multiple
Shooting Method

discretizes the
optimization problem

Nonlinear Program (NLP)
Solves the optimization problem that

includes nonlinear function and/or
nonlinear constraints using Sequential

Quadratic Programming (SQP)

Trajectory
Generation

Continuous online
generation of the desired
trajectory for the system

Figure 5. Optimization problem for NMPH.

Robotics 2021, 10, 90 17 of 23

The optimization problem operates on the dynamics of a closed-loop system which
may not be convex. Therefore, the optimization problem is solved iteratively using a
Sequential Quadratic Programming (SQP [28]) approach of splitting the problem into a
sequence of subproblems, each of which solves for a quadratic objective function subject to
linearized constraints about their operating point using the qpOASES solver [29].

To ensure local convergence of the SQP, the quadratic function of the subproblem has
to be bounded within a feasible region of the optimization problem sets. Starting from an
initial condition x0, the optimization variables should be sufficiently close to the terminal
condition xss; then, the sequence xk generated by the NMPH converges to the terminal
condition at a quadratic rate.

The purpose of using the feedback linearization-based control law within the NMPH is
to reduce the nonconvexity of the optimization problem. Assuming a perfect system model,
the closed-loop system contains the linear Brunovsky system form as shown in (23), leading
to an optimization problem in which feasibility and stability of the optimized solution and
the computational power required to solve the optimization problem are notably improved
relative to working with a nonlinear open-loop system as in standard NMPC.

4. Simulation Results

In this section, several simulations are presented to validate the proposed NMPH
approach to generating optimal trajectories for a quadrotor vehicle.

The Robot Operating System (ROS) [30] is the base environment used to implement
our algorithm. It is a platform that integrates different software packages or frameworks by
handling communication between them and the host hardware. The ACADO Toolkit [18]
is used for dynamic optimization in this work. It allows users to write their code within
a self-contained C++ environment and generates the nonlinear solver that can solve the
optimization problems in real time. The compiled codes run within ROS to communicate
with either a simulation model or the actual hardware [27]. For testing and validation of the
proposed approaches on a quadrotor vehicle, we used the AirSim simulator [31], which is
an open-source software that includes a physics engine and provides photo realistic images.

The NMPH optimization problem (7) was written in C++ code using ACADO and
compiled into a highly efficient C code that is able to solve the optimization problem
online. The AirSim simulator, ACADO optimization solver, and ROS environment run on
a system with an Intel Core i7-10750H CPU @ 2.60–5.00 GHz equipped with the Nvidia
GeForce RTX 2080 Super (Max-Q) GPU. The prediction horizon of the optimization problem
was set to N = 40 with a sampling period of 0.2 s, which was found to be sufficient for
the purposes of trajectory generation. The cost function weights Wx, Wz, and WN were
adjusted heuristically to ensure a balanced trajectory generation performance towards the
terminal setpoint.

The initial state of the quadrotor is acquired from the AirSim simulator and sent to
the NMPH solver. The solution of the optimization problem is sent back to AirSim as a
reference trajectory for the vehicle. The 3D visualization tool for ROS (rviz) is used to
monitor and visualize the simulation process. Figure 6 shows the network architecture of
the nodes and topics employed for running the simulation.

Figure 6. Simulation Architecture.

Robotics 2021, 10, 90 18 of 23

In the following sections, various simulation scenarios are provided to verify the
features and evaluate the performance of the proposed NMPH approach. Note the NED
frame representation used within NMPH is converted to ENU (East, North, and Up)
representation used by AirSim, and so the simulation results will be presented using the
ENU convention as well.

4.1. Predicted Output and Estimated Reference Trajectories

The purpose of this simulation is to show the convergence of the estimated refer-
ence ẑk and predicted output zk trajectories toward the setpoint stabilization xss while
minimizing the difference between them. The quadrotor is assumed to start at position
pn = [0, 0, 0.2]T m and NMPH is used to generate a trajectory to the terminal setpoint
pd = [6,−3, 5]T m, as shown in Figure 7. The plots depict a sequence of the optimal
predicted trajectory zk, k = 0, ..., N and the estimated reference trajectory ẑk, k = 0, ..., N− 1
produced by the NMPH. It is important to mention that the convergence of the estimated
reference trajectory to the terminal point ensures that the closed-loop system is steered to
the desired endpoint.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

x
 a

x
is

predicted trajectory

estimated trajectory

0 1 2 3 4 5 6 7 8

� 3.0

� 2.5

� 2.0

� 1.5

� 1.0

� 0.5

0.0

y
 a

x
is

0 1 2 3 5 6 7 8

0

1

2

3

4

5

z
 a

x
is

z
 a

x
is

 (
m

)
y
 a

x
is

 (
m

)
x
 a

x
is

 (
m

)

4

time (s)

Figure 7. Predicted and estimated trajectories obtained from NMPH algorithm for an 8 s prediction
horizon. For conciseness, the sequences of predicted output trajectory zk and the estimated reference
trajectory ẑk represent only the quadrotor position pn.

4.2. Trajectory Generation and Initial Conditions

In this simulation, the generated trajectory is investigated for different initial condi-
tions. The initial conditions being tested are related to the quadrotor’s kinematics, where
the vehicle is commanded to move in a straight path between [4, 2, 0]T and [8, 8, 8]T while
changing its speed |v| linearly from 0 to 1.5 m/s, as shown in Figure 8. Note the objective
is not to track generated trajectories, but just to observe the behaviour of OTP solutions
towards the stabilization setpoint pd = [5, 10, 5]T .

Robotics 2021, 10, 90 19 of 23

x
ax

is
 (
m

)

0

2

4

6

8

10

y axis (m)
0

2

4

6

8

10

z
 a

x
is

 (m
)

0

2

4

6

8

10

actual path

Figure 8. Trajectory generation for different initial conditions. The quadrotor moves along the dashed
line. The trajectories all converge toward the stabilization setpoint shown to the left at [5, 10, 5]T m.

The solution of the optimization problem for eight different trajectories are plotted in
Figure 8 to show the effect of the initial conditions on them. The resulting solution of each
one shows a trajectory which convergences smoothly to the stabilization setpoint while
taking into consideration the initial position and velocity of the system. Commanding the
quadrotor to track generated trajectories which account for its initial conditions will reduce
jerky flight motions and therefore reduce flight power consumption, which is especially
important for exploration missions.

Using the setup described in Section 4, our NMPH achieves a 250 Hz generation
rate, meaning a reference trajectory is generated every 4 ms. If running on lower-powered
hardware, the computational power can be minimized by reducing the rate of trajectory
generation, which still provides a smooth reference trajectory for the vehicle.

4.3. Trajectory Tracking

In this simulation, the quadrotor’s trajectory tracking and static obstacle avoidance
performance are examined. First, the vehicle is commanded to track a continuously updated
trajectory generated on the fly by the NMPH algorithm while avoiding static obstacles,
as shown in Figure 9. Each static obstacle is considered to be a sphere of 1 m in diameter.
A radial allowance of 1 m is considered for the obstacle to avoid crashing into it. Hence,
the constraint of each obstacle represents a sphere with a diameter of 3 m, which makes
the safety distance ε = 1.5. The smooth tracking performance while avoiding the obstacles
can be seen in Figure 9, which shows the importance of using the NMPH in regenerating
the trajectory while tracking it.

Robotics 2021, 10, 90 20 of 23

Figure 9. Drone trajectory tracking of a continuously updated trajectory by NMPH while avoiding
two static obstacles. The drone is commanded first to hover at a height of 1.5 m and then to track the
NMPH trajectory between the start and the terminal positions.

In the second study, the regeneration process of the predicted trajectory is limited to
one regeneration in order to examine its effect on the tracking performance while avoiding
the obstacles. The simulation result is depicted and explained in Figure 10.

0 2 4 6 8 10 12

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

y
 a

x
is

 (
m

)

predicted trajectory 1

predicted trajectory 2

actual trajectory

trajectory regeneration

x axis (m)

Figure 10. Drone trajectory tracking of the predicted reference trajectory by NMPH. At the start
position pn = [0, 0, 1.5]T m, NMPH generated predicted trajectory 1, and when the drone reached
[5.5,−0.25, 1.5]T m, NMPH reoptimized the trajectory, which is represented by predicted trajectory 2.

The continuous regeneration of the reference trajectory provides optimal flight paths in
real time based on the system’s state. This ability also enables handling dynamic obstacles,
as shown next in Section 4.4.

4.4. Dynamic Obstacle Avoidance

Figure 11a–c depict the online regeneration of the predicted optimal trajectory when
the obstacle moves in the direction of y-axis. The optimized trajectory starts at the hover
position p = [0, 0, 1.5]T m and converges to the terminal setpoint pd = [4, 0, 0.5]T m while
the predicted reference trajectory is being continuously regenerated. An obstacle placed at
the initial position (3, 0, 0.5) m with total diameter of 2 m moves at a velocity of 0.5 m/s in
the y-axis direction.

Selected predictions over 2 s are shown in Figure 11d, which illustrates the smooth
regeneration of the trajectories while avoiding the dynamic obstacle. It is important to note
that about 500 trajectories are generated in 2 s.

Robotics 2021, 10, 90 21 of 23

x axis (m
)

y axis (m
)

z
 a

x
is

 (m
)

z
 a

x
is

 (m
)

x axis (m
)

y axis (m
)

(a) (b)

z
 a

x
is

 (m
)

x
a
xi

s
(m

)

y axis (m) x axis (m
)

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

y axis (m)

� 1.00
� 0.75

� 0.50
� 0.25

0.00
0.25

0.50
0.75

1.00

z
 a

x
is

 (m
)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(c) (d)

Figure 11. Dynamic obstacle avoidance for a 2 m spherical obstacle that moves at a velocity of
0.5 m/s in the y-axis direction starting from the initial position (3, 0, 0.5) m. (a–c) show the continuous
regeneration of the NMPH predicted optimal trajectory, which avoids the moving obstacle, and
(d) depicts the smooth regeneration process for a selected number of the trajectory updates.

5. Conclusions

This paper proposed a novel reference trajectory generation method for a nonlinear
closed-loop system (in our case, a piloted quadrotor drone) based on the NMPC approach.
The proposed formulation, called NMPH, applies a feedback linearization control law
to the nonlinear plant model, resulting in a closed-loop dynamics model with decreased
nonconvexity used by the online optimization problem to generate feasible and optimal
reference trajectories for the actual closed-loop system. The feedback linearization design
includes integral states to compensate for modeling uncertainties and external disturbances
in the system. The proposed NMPH algorithm supports both static and dynamic obstacles,
enabling trajectory generation in continuously changing environments.

The NMPH was implemented on a simulated quadrotor drone and validated to
generate 3D optimal reference trajectories in real time. Four different simulation scenarios
were carried out to evaluate the performance of the proposed method. Convergence of the
predicted and estimated trajectories, trajectory generation under different initial conditions,

Robotics 2021, 10, 90 22 of 23

trajectory tracking performance, and the ability to navigate around static and dynamic
obstacles were validated through simulation results.

Future work will include testing the NMPH methodology with alternative nonlinear
control law designs such as backstepping, using a more detailed dynamics model of
the vehicle, and implementing and validating the proposed method onboard hardware
drones, which has become feasible thanks to GPU-equipped single-board computers such
as NVIDIA’s Jetson Xavier NX.

Author Contributions: Conceptualization, Y.A.Y. and M.B.; methodology, Y.A.Y.; software, Y.A.Y.;
validation, Y.A.Y.; formal analysis, Y.A.Y.; investigation, Y.A.Y.; resources, M.B.; data curation, Y.A.Y.;
writing—original draft preparation, Y.A.Y.; writing—review and editing, M.B.; visualization, Y.A.Y.;
supervision, M.B.; project administration, M.B.; funding acquisition, M.B. Both authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by NSERC Alliance-AI Advance Program grant number 202102595.
The APC was funded by NSERC.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Richalet, J.; Rault, A.; Testud, J.; Papon, J. Model predictive heuristic control: Applications to industrial processes. Automatica

1978, 14, 413–428. [CrossRef]
2. Garcia, C.E.; Prett, D.M.; Morari, M. Model predictive control: Theory and practice—A survey. Automatica 1989, 25, 335–348.

[CrossRef]
3. Grüne, L.; Pannek, J. Nonlinear Model Predictive Control: Theory and Algorithms; Springer: Berlin/Heidelberg, Germany, 2017.
4. El Ghoumari, M.; Tantau, H.J.; Serrano, J. Non-linear constrained MPC: Real-time implementation of greenhouse air temperature

control. Comput. Electron. Agric. 2005, 49, 345–356. [CrossRef]
5. Santos, L.O.; Afonso, P.A.; Castro, J.A.; Oliveira, N.M.; Biegler, L.T. On-line implementation of nonlinear MPC: An experimental

case study. Control Eng. Pract. 2001, 9, 847–857. [CrossRef]
6. Aguiar, A.P.; Hespanha, J.P. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric

modeling uncertainty. IEEE Trans. Autom. Control 2007, 52, 1362–1379. [CrossRef]
7. Hovorka, R.; Canonico, V.; Chassin, L.J.; Haueter, U.; Massi-Benedetti, M.; Federici, M.O.; Pieber, T.R.; Schaller, H.C.; Schaupp, L.;

Vering, T.; et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 2004,
25, 905. [CrossRef] [PubMed]

8. Faulwasser, T.; Weber, T.; Zometa, P.; Findeisen, R. Implementation of nonlinear model predictive path-following control for an
industrial robot. IEEE Trans. Control Syst. Technol. 2016, 25, 1505–1511. [CrossRef]

9. Matschek, J.; Bethge, J.; Zometa, P.; Findeisen, R. Force feedback and path following using predictive control: Concept and
application to a lightweight robot. IFAC-PapersOnLine 2017, 50, 9827–9832. [CrossRef]

10. Matschek, J.; Bäthge, T.; Faulwasser, T.; Findeisen, R. Nonlinear predictive control for trajectory tracking and path following: An
introduction and perspective. In Handbook of Model Predictive Control; Springer: Berlin/Heidelberg, Germany, 2019; pp. 169–198.

11. Teatro, T.A.; Eklund, J.M.; Milman, R. Nonlinear model predictive control for omnidirectional robot motion planning and tracking
with avoidance of moving obstacles. Can. J. Electr. Comput. Eng. 2014, 37, 151–156. [CrossRef]

12. Ardakani, M.M.G.; Olofsson, B.; Robertsson, A.; Johansson, R. Model predictive control for real-time point-to-point trajectory
generation. IEEE Trans. Autom. Sci. Eng. 2018, 16, 972–983. [CrossRef]

13. Neunert, M.; De Crousaz, C.; Furrer, F.; Kamel, M.; Farshidian, F.; Siegwart, R.; Buchli, J. Fast nonlinear model predictive control
for unified trajectory optimization and tracking. In Proceedings of the 2016 IEEE International Conference on Robotics and
Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1398–1404.

14. Lee, T.; Leok, M.; McClamroch, N.H. Geometric Tracking Control of a Quadrotor UAV on SE(3). In Proceedings of the 49th IEEE
Conference on Decision and Control, Atlanta, GA, USA, 15–17 December 2010; pp. 5420–5425.

15. Bristeau, P.J.; Callou, F.; Vissière, D.; Petit, N. The Navigation and Control technology inside the AR.Drone micro UAV. In
Proceedings of the 18th International Federation of Automatic Control World Congress, Milan, Italy, 28 August–2 September
2011; pp. 1477–1484.

http://doi.org/10.1016/0005-1098(78)90001-8
http://dx.doi.org/10.1016/0005-1098(89)90002-2
http://dx.doi.org/10.1016/j.compag.2005.08.005
http://dx.doi.org/10.1016/S0967-0661(01)00049-1
http://dx.doi.org/10.1109/TAC.2007.902731
http://dx.doi.org/10.1088/0967-3334/25/4/010
http://www.ncbi.nlm.nih.gov/pubmed/15382830
http://dx.doi.org/10.1109/TCST.2016.2601624
http://dx.doi.org/10.1016/j.ifacol.2017.08.898
http://dx.doi.org/10.1109/CJECE.2014.2328973
http://dx.doi.org/10.1109/TASE.2018.2882764

Robotics 2021, 10, 90 23 of 23

16. Mehndiratta, M.; Kayacan, E.; Patel, S.; Kayacan, E.; Chowdhary, G. Learning-based fast nonlinear model predictive control
for custom-made 3D printed ground and aerial robots. In Handbook of Model Predictive Control; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 581–605.

17. Findeisen, R. Nonlinear Model Predictive Control: A Sampled Data Feedback Perspective. Ph.D. Thesis, University of Stuttgart,
Stuttgart, Germany, 2005.

18. Houska, B.; Ferreau, H.; Diehl, M. ACADO Toolkit—An Open Source Framework for Automatic Control and Dynamic Optimiza-
tion. Optim. Control Appl. Methods 2011, 32, 298–312. [CrossRef]

19. Yu, S.; Li, X.; Chen, H.; Allgöwer, F. Nonlinear model predictive control for path following problems. Int. J. Robust Nonlinear
Control 2015, 25, 1168–1182. [CrossRef]

20. Marino, R.; Tomei, P. Nonlinear Control Design: Geometric, Adaptive, and Robust; Prentice Hall: London, UK, 1995.
21. Wu, F.; Desoer, C. Global inverse function theorem. IEEE Trans. Circuit Theory 1972, 19, 199–201. [CrossRef]
22. Xie, H. Dynamic Visual Servoing of Rotary Wing Unmanned Aerial Vehicles. Ph.D. Thesis, University of Alberta, Edmonton, AB,

Canada, 2016.
23. Rösmann, C.; Makarow, A.; Bertram, T. Online Motion Planning based on Nonlinear Model Predictive Control with Non-Euclidean

Rotation Groups. arXiv 2020, arXiv:2006.03534.
24. Sabatino, F. Quadrotor Control: Modeling, Nonlinear Control Design, and Simulation. Master’s Thesis, KTH Royal Institute of

Technology, Stockholm, Sweden, 2015.
25. Spitzer, A.; Michael, N. Feedback Linearization for Quadrotors with a Learned Acceleration Error Model. arXiv 2021, arXiv:2105.13527.
26. Mokheari, A.; Benallegue, A.; Daachi, B. Robust feedback linearization and GH-inf controller for a quadrotor unmanned aerial

vehicle. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada,
2–6 August 2005; pp. 1198–1203.

27. Kamel, M.; Stastny, T.; Alexis, K.; Siegwart, R. Model predictive control for trajectory tracking of unmanned aerial vehicles using
robot operating system. In Robot Operating System (ROS); Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–39.

28. Boggs, P.T.; Tolle, J.W. Sequential quadratic programming. Acta Numer. 1995, 4, 1–51. [CrossRef]
29. Ferreau, H.; Kirches, C.; Potschka, A.; Bock, H.; Diehl, M. qpOASES: A parametric active-set algorithm for quadratic programming.

Math. Program. Comput. 2014, 6, 327–363. [CrossRef]
30. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating

System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009.
31. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In

Proceedings of the Field and Service Robotics: Results of the 11th International Conference, Zurich, Switzerland, 12–15 September
2017; Springer Proceedings in Advanced Robotics; Hutter, M., Siegwart, R., Eds.; Springer: Cham, Switzerland, 2018; Volume 5,
pp. 621–635.

http://dx.doi.org/10.1002/oca.939
http://dx.doi.org/10.1002/rnc.3133
http://dx.doi.org/10.1109/TCT.1972.1083429
http://dx.doi.org/10.1017/S0962492900002518
http://dx.doi.org/10.1007/s12532-014-0071-1

	Introduction
	Nonlinear Model Predictive Horizon
	NMPH Algorithm
	NMPH Constraints
	NMPH Closed-Loop Form with Feedback Linearization Control Law

	Application of NMPH to a Quadrotor Vehicle
	System Model
	Quadrotor Feedback Linearization Control
	Trajectory Generation Using NMPH with Feedback Linearization

	Simulation Results
	Predicted Output and Estimated Reference Trajectories
	Trajectory Generation and Initial Conditions
	Trajectory Tracking
	Dynamic Obstacle Avoidance

	Conclusions
	References

