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Abstract: This work is aimed to demonstrate a multi-objective joint trajectory generation algorithm
for a 7 degree of freedom (DoF) robotic manipulator using swarm intelligence (SI)—product of
exponentials (PoE) combination. Given a priori knowledge of the end-effector Cartesian trajectory
and obstacles in the workspace, the inverse kinematics problem is tackled by SI-PoE subject to
multiple constraints. The algorithm is designed to satisfy finite jerk constraint on end-effector,
avoid obstacles, and minimize control effort while tracking the Cartesian trajectory. The SI-PoE
algorithm is compared with conventional inverse kinematics algorithms and standard particle swarm
optimization (PSO). The joint trajectories produced by SI-PoE are experimentally tested on Sawyer
7 DoF robotic arm, and the resulting torque trajectories are compared.

Keywords: PoE; machine learning; swarm; robot-manipulation; inverse kinematics; trajectory generation

1. Introduction

Trajectory generation and motion planning is an important part of robot control,
which most often is carried out with end-effector’s position and orientation in mind. This
is not problematic when the closed-form analytical solution is available. However, in
cases where there is no such solution, the process of obtaining joint trajectories or inverse
kinematics (IK) becomes a challenging task, especially in the presence of obstacles or when
the effort minimization is of importance as well. The inverse kinematics (IK) problem has
been a hot topic in robotics field for a long time, and many different approaches were
demonstrated to generate joint trajectories that satisfy a specific end-effector Cartesian
trajectory. As the agility of robotic manipulators becomes a crucial design consideration,
which increases the number of joints, the IK problem becomes even more involved as
redundancy is introduced. Thus, opting for a machine learning (ML), artificial neural
networks (ANNs), or SI algorithms to handle such highly non-linear problem looks very
attractive, which is evident by the recent interest in using SI/PSO algorithms to tackle the
IK problem.

Generally, the algorithms solving the IK problem can be classified into two categories:
pseudo-inverse Jacobian and iterative non-linear root finding methods, and ANN/ML/SI
methods. The first category can be considered as the conventional method of approaching
the IK problem, where the algorithm most often aims to solve for the joint trajectory while
satisfying only a single objective, such as minimizing joint effort and/or movement. Some
works proposed using Jacobian pseudo-inverse methods to prioritize tasks in workspace [1]
and keep the joint limits within the physical bounds [2]. Amongst iterative approaches,
the most often appearing is the Newton–Raphson iterative non-linear root-finding method
which considers the IK problem as a non-linear optimization problem [3]. One recent
study explored the idea of searching suboptimal paths using graph theory and Dijkstra
algorithm [4] which minimized the movement time between the given positions while
avoiding collisions with the obstacles at the same time [5].
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The latter category can be described as a fresh view on the IK problem, since, in
this approach, techniques that were only recently developed and applied to engineering
problems are leveraged. Various metaheuristic methods, such as genetic algorithms (GA)
and SI have proven to be effective in solving IK even for robotic manipulators with high
DoFs. For instance, procedural, non-linear, and multi-modal GA with parallel populations
and migration technique was implemented to produce time-optimal trajectory planning
for hyper-redundant manipulators [6]. Deep deterministic policy gradient (DDPG) and
normalized advantage function (NAF) algorithms have shown their usefulness in continu-
ous action spaces and, more specifically, in robotic manipulation [7,8]. Deep Q-Networks
(DQN) proved their usefulness in the robotics field, where its architecture was used for
vision-based manipulation [9,10], path planning [11,12], navigation [13,14], IK solution for
a high-DoF robotic systems [15–17], and even collision avoidance [18]. This work focuses
on developing a SI algorithm satisfying multiple objectives at once. Amongst SI techniques,
the particle swarm optimization (PSO) received the most attention due to its performance
on high-DoF IK problems [19]. Plenty of the literature is available on different variations
of PSO applied to IK problems. One work’s approach was to decouple the manipulator
into two segments, thus approaching the IK in a bidirectional fashion [20]. Another work
decoupled position and orientation by applying two PSO algorithms to achieve faster
convergence, and, in addition to that, used inverse Jacobian to smooth the trajectories, thus
achieving position control [21]. Attempts to improve artificial algorithm’s performance
were made by adding constriction factor and adaptive inertia to the PSO [22], applying
non-linear dynamic inertia weight adjustment [23], and even combining PSO with Ago-
raphilic for obstacle avoidance [24]. The scalability of the PSO to high-DoF IK problems
was explored [19]. Furthermore, a quantum-behaved PSO was proposed as an IK solution
where it showed an improvement in performance [25].

Even though many works have been published with different SI/PSO variants, there
are certain aspects that most often were left obscured such as unclear indication of how
exactly inverse kinematics problem was set up and solved, unclear collision identification
algorithm, absence of torque trajectories, absence of initial conditions for each SI/PSO
iteration, absence of error in end-effector position/orientation, application of the algorithm
on planar (2-D) manipulators, experimental evaluation almost exclusively in simulation, etc.
The objective of this work is to address the aforementioned shortcomings by demonstrating
a novel SI-PoE algorithm and experimentally validating it by applying it directly to 7 DoF
Sawyer robotic manipulator. It should be noted that this algorithm is not limited to the
Sawyer robotic arm and can be generalized to any n-DoF robotic system, either by defining
screw axes and home configuration or, if Denavit–Hartenberg (D-H) parameters are known,
the kinematics model can be transformed to the PoE formulation as outlined in [3]. The
SI-PoE algorithm is used for the cases when the end-effector trajectory and obstacles are
defined a priori in the workspace. The main idea is that the IK problem is solved by the SI,
given multiple goals such as minimizing control effort, avoiding obstacles, and enforcing
finite jerk on the end-effector. An additional quintic polynomial finite jerk (QPFJ) method
of trajectory generation is also explored to demonstrate the possiblity to enforce finite jerk
on joint space. The PoE is used as means of identifying any collisions with the obstacles in
the workspace. However, it should be noted that most often these goals overconstrain the
solution leading to cases where a trade-off has to be made; for example, the end-effector
Cartesian trajectory accuracy might suffer for some cases if finite jerk hard constraint is
imposed on the joints.

The rest of the paper is outlined as follows: Section 2 describes the robotic arm,
finite jerk end-effector trajectory generation, and the PoE forward kinematics (PoE-FK)
algorithm used in setting up an IK problem and fitness function for SI. Section 3 outlines
the SI-PoE algorithm and its fitness function along with parameters, collision detection
mechanism, particles’ initial conditions, and computational performance. Section 4 presents
the resulting joint trajectories, methods used to smooth them, and error in end-effector’s
position. Section 5 provides the simulated and experimental torque profiles and discussion
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on how the SI-PoE parameteres can be varied case by case for optimal performance. Finally,
Section 6 concludes the work with final remarks.

2. Robotic Arm Description, End-Effector Trajectory, and PoE-FK

The robotic arm used in the simulation and experiments is Rethink Robotics’
7-revolute (7R) Sawyer robot, which is shown in Figure 1, where the robotic arm is at
its home configuration with all joint positions at zero (θ1 = 0, θ2 = 0, · · · , θ7 = 0). Home
configuration and all of the dimensions were taken from universal robot description format
(URDF) file dedicated to the Sawyer robot [26], and simple geometry reconstructed in
Matlab is shown in Figure 2. Sawyer has 7 links and 7 revolute joints, 4 of which are rolling
and 3 are pitching joints.

Figure 1. Sawyer joints and links.

Figure 2. Home configuration of the Sawyer robotic arm represented in Matlab.

Forward kinematics is realized using PoE-FK. This method was chosen because it
enjoys certain advantages over a conventional D-H parameters approach, which includes
but is not limited to intuitive geometric interpretation that leads to easier set up process,
uniform treatment of revolute and prismatic joints, absence of strict rules to assign frames,
and concise and elegant formula [27,28].
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Given physical locations of joints in home configuration from URDF file, the screw
axes in the space frame can be shown in Equations (1) and (2).

S1 =



0
0
1
0
0
0

 S2 =



0
1
0

−0.317
0

0.081

 S3 =



1
0
0
0

0.317
−0.1925

 S4 =



0
1
0

−0.317
0

0.481

 (1)

S5 =



1
0
0
0

0.317
−0.024

 S6 =



0
1
0

−0.317
0

0.881

 S7 =



1
0
0
0

0.317
−0.1603

 (2)

The PoE-FK formula, which represents the position and orientation of a frame (point)
attached to n-th link, is shown below:

Tsn = e[S1]θ1 e[S2]θ2 · · · e[Sn ]θn Msn (3)

where, Msn ∈ SE(3) is a frame (position and orientation) attached to the robotic arm’s
n-th link given in home configuration. Since the screw axis is a normalized twist, the
skew-symmetric representation [S ] of S = (ω, v) is:

[S ] =
[
[ω] v
0 0

]
∈ se(3), [ω] =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 ∈ so(3) (4)

Thus, the matrix exponential mapping becomes:

e[S ]θ =

[
e[ω]θ (Iθ + (1− cos θ) + (θ − sin θ)[ω]2)v

0 1

]
∈ SE(3) (5)

where exponential e[ω]θ comes from Rodrigues’ formula for rotations:

e[ω]θ = I + sin θ[ω] + (1− cos θ)[ω]2 ∈ SO(3) (6)

The complete derivation of the PoE-FK can be found in our previous work [29]. Now,
the choice of frames (points) to be tracked by PoE-FK is of paramount importance and is
up to the user. For example, if the center of gravity (CG) of each link has to be tracked, the
following matrices extracted from URDF file can be used:

Ms1 =


1 0 0 0.0244
0 1 0 0.0110
0 0 1 0.2236
0 0 0 1

 Ms2 =


0 −1 0 0.1078
0 0 1 0.1425
−1 0 0 0.3201
0 0 0 1

 (7)

Ms3 =


0 0 1 0.3568
0 1 0 0.1775
−1 0 0 0.3172
0 0 0 1

 Ms4 =


0 −1 1 0.5091
0 0 1 0.0663
−1 0 0 0.3218
0 0 0 1

 (8)
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Ms5 =


0 0 1 0.7401
0 1 0 0.0309
−1 0 0 0.3189
0 0 0 1

 Ms6 =


0 −1 0 0.9047
0 0 1 0.1314
−1 0 0 0.3109
0 0 0 1

 (9)

Ms7 =


0 0 1 0.9860
0 −1 0 0.1517
1 0 0 0.3170
0 0 0 1

 (10)

However, it is important to mention that the computation effort increases per incre-
ment of the number of points calculated by PoE-FK. The SI-PoE algorithm uses these
points calculated by PoE-FK to detect collisions, which could pose certain problems if few
points on the robotic arm are tracked. For instance, if few points are checked for collision
a small obstacle might be passing between these two points without collision. However,
the physical links might be colliding with the said obstacle. Thus, the size of obstacles in
the workspace is an important consideration, since both the computation effort and the
collision detection accuracy of the SI-PoE directly correlate to the number of virtual points
on the robotic arm that are chosen to detect collisions and avoid obstacles. If few number of
virtual points are implemented, the boundary surrounding the obstacle can be increased in
size to reflect collision. However, this approach constrains the joint movement even further,
which would limit the search space for the SI-PoE algorithm leading to underutilized
collision-free space, undesirable joint trajectories, or even an absence of the solution in
critical cases. In this case, a good approach would be to choose, for instance, the CGs of all
links as frames (points) for tracking, interpolate between them depending on the heuristic
of relative obstacle sizes, and choose the appropriate size of boundaries surrounding ob-
stacles. This way, the PoE-FK (Equation (3)) has to be called only for the CGs and not for
virtual points between them, which considerably decreases the computational effort while
maximizing the collision-free space.

The trajectory of the end-effector is generated by utilizing Bézier curves for path
generation and finite jerk model for the time-scaling [29]. However, it is important to
mention that the Cartesian end-effector path does not have to be a Bézier curve, and the SI-
PoE algorithm can work with any Cartesian space end-effector paths. In order to satisfy the
finite jerk constraint on the end-effector, a quintic polynomial time scaling of the following
form is employed:

s(t) = 10(t/t f )
3 − 15(t/t f )

4 + 6(t/t f )
5 (11)

The plots of the time-scaling used to obtain the finite jerk trajectory are presented
below in Figure 3. The finite time t f is chosen to be large enough so that the Sawyer robotic
arm’s joint rates are not saturated to the maximum.

Figure 3. Plots of s(t), ṡ(t) and s̈(t) for a fifth-order polynomial time-scaling.

An example of Bézier end-effector path is shown in Figure 4. By applying the time-
scaling given in Equation (11), the trajectory now can be fully defined. The resulting
trajectory is smooth and satisfies finite jerk constraint throughout the whole duration of
the movement. However, it should be noted that only the end-effector movement satisfies
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the finite jerk constraint, and applying a similar constraint on joint movement is shown in
Section 4 (QPFJ).

Figure 4. A sample trajectory generated using Bézier path and quintic polynomial time scaling.

The trajectory shown in Figure 4 was used throughout the paper as an input example
to both the SI-PoE algorithm simulation and the SI-PoE Sawyer experiment. The path of
the end-effector was generated using the Bézier curve, and quintic time scaling given in
Equation (11) was used to produce the finite jerk profile. The SI-PoE simulation’s aim is to
check the algorithm’s accuracy and efficiency, and the experiment’s aim is to validate that
the joint trajectories produced by SI-PoE can be followed accurately by the Sawyer robotic
arm. The experimental torque profile obtained in Sawyer experiments was compared with
the PoE inverse dynamics formulation for the Sawyer robot developed in our previous
work [29].

3. Swarm Intelligence—Product of Exponentials (SI-PoE) Algorithm

The core of the SI-PoE algorithm is PSO and PoE. The latter was described in Section 2,
while the former is a method that is a part of a larger family of SI algorithms, which
describe social behavior of various ecosystems and animals such as bird flocks, schools of
fish, etc. [30,31]. PSO is metaheuristic by nature, straightforward in implementation, and
converges relatively quickly [32]. These are the main reasons why it is utilized in a variety
of disciplines and applications. In simple terms, PSO iteratively searches through the
solution space using particles. Each particle contains parameters representing a solution
(fitness), which denotes its current position in the given solution/search space, as well
as velocity, which influences its position (fitness), guiding it to the most optimal solution.
In general, PSO is a global optimization algorithm and therefore can provide solutions
within a large search space, which is very attractive when it comes to high-DoF robotic
manipulators. However, PSO suffers from high computational effort when solutions to a
large degree of accuracy are required. Thus, combining PSO with a relatively fast PoE-FK
algorithm is proposed in this work. Furthermore, an additional advantage of combining
PSO and PoE is the ease of implementation of multiple objectives due to the concise and
elegant forward kinematics implementation. The SI-PoE method can be easily generalized
to any n-DoF robotic manipulator.

The SI-PoE algorithm is initialized by assigning particles xi ∈ R7 to a search space
(S-space) Sspace ∈ R7. The initial location of the particles can be assigned arbitrarily or in a
specific fashion which was proposed for this work.
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In the proposed SI-PoE particle assignment, particles are evenly spaced in the S-space
with an equal offset of ±1 rad from the “previous” solution in each (joint) coordinate,
such that the swarm consists of 15 points as demonstrated in Figure 5, where each seven-
dimensional swarm particle is a line. This method of particles’ initialization works remark-
ably well due to the fact that each swarm point is essentially a change only in one of the
seven joint positions.

Figure 5. Particles x0
i assigned to S-space starting from home configuration.

Most works choose the random method of swarm particles’ initialization. However,
when solving an IK problem, the known previous joint positions can serve as an initial
condition or basis for the particles’ distribution for each time step, which speeds up the
search process while not limiting S-space. The IK computation time comparing random and
the proposed particles’ initial conditions is demonstrated in Table 1, where both a single
end-effector position and a trajectory IK solution times are shown. The random particle’s
initialization was realized by adding random offsets in the range of [−0.01, 0.01] rad to
the previous successful joint positions. The stopping criteria were a number of iterations
(k ≤ 20) and fitness to the desired end-effector trajectory ( f < 0.0005) .

Table 1. Comparison of random and proposed particles’ initialization (average of 30 runs).

Method 1 Point IK (s) Trajectory IK (s)

Random 0.24 13.61
Proposed 0.21 12.85

Although computational time advantage of the proposed method may seem
marginal, the real advantage becomes evident when comparing consistency of the two
methods. The computation times demonstrated in Table 1 reflect the maximum number
of iterations since both methods were not able to meet the fitness criterion. However, the
proposed method was able to generate a trajectory with better accuracy in the same number
of iterations as the random method. This is demonstrated in Figure 6, where the proposed
swarm assignment has consistent small error throughout the trajectory, and the random
swarm, on the other hand, exhibits large spikes of position error. It should be noted that
both methods enjoy the advantage of having previously calculated joint positions, which
drastically reduces the computation time and the scope of search in S-space.
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Figure 6. Comparison of position error of the end-effector trajectory with random swarm assignment on the left and
proposed swarm assignment on the right.

As the objectives of the SI-PoE algorithm is to track pre-assigned trajectory while
satisfying finite jerk, minimizing joint effort, and avoiding obstacles, the fitness function is
shown in Equation (13), where both the orientation and position of the end-effector can
be tracked:

fi = σp‖p
i
− p

d
‖+ σR arccos

(
tr(RiRT

d )− 1
2

)
+ σT

J | xk
i − θp |e + coll (12)

where Ri ∈ SO(3) and p
i
∈ R3 are computed from PoE-FK,

Tsi = e[S1]xk
i (1)e[S2]xk

i (2) · · · e[Sn ]xk
i (7)Mse =

[
Ri p

i
0 1

]
∈ SE(3) (13)

Mse =


0 0 1 0.9860
0 −1 0 0.1517
1 0 0 0.3170
0 0 0 1

 (14)

The σp and σR are the weighting parameters for position and orientation, respectively,
either of them can be set to zero for the cases when only the position or attitude tracking
is desired; σJ = [0.01 0.009 0.008 0.007 0.006 0.005 0.004]T is the parameter penalizing
excessive joint movement, where the joints closest to the base are prioritized as they move
more mass; | · |e is the element-wise absolute value operator; Mse is the end-effector’s
home configuration; xk

i is the i-th particle in the k-th iteration, θp is the current joint
positions (successful previous iteration); and coll is a scalar representing if any of the
virtual points collide with an obstacle in the workspace if the robot assumes the xk

i swarm
particle’s posture.

The collision is detected using PoE, where the number of virtual points (frames)
checked by the SI-PoE depends on the obstacles’ size. The virtual particles are attached to
a specified link, and this would dictate their PoE-FK formula. For an arbitrary j-th particle
that is attached to a m-th link, the PoE-FK can be demonstrated as:

Tsj = e[S1]xk
i (1) · · · e[Sm ]xk

i (m)Msj (15)
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where Msj is the position and orientation of the virtual particle in home configuration
given in the inertial frame.

coll =

{
+1, if virtual point collides with an obstacle
0, if virtual point does not collide with an obstacle

(16)

After the x0
i ∈ R7 particles are initialized, the velocities of the particles v0

i ∈ R7 are
randomly initialized with values from the [−0.1, 0.1] range. The SI-PoE update law for
the velocities and particles are presented in Equations (17) and (18), respectively. The
numerical values of update law hyperparameters are shown in Table 2.

vk+1
i = κ[ωvk

i + c1r1(PBk
i − xk

i ) + c2r2(GBk − xk
i )] (17)

xk+1
i = xk

i + vk+1
i (18)

κ =
2

|2− φ−
√

φ2 − 4φ|
, φ = c1 + c2 > 4 (19)

where κ is the constriction factor limiting the magnitude of particles’ velocity, ω is the
inertia weight which controls the exploration and exploitation in the search space, c1 and
c2 are cognitive and social parameters, respectively, r1 and r2 are random variables with a
range of [0, 1], PB is the best recorded individual particle’s location in S-space (R7), and GB
is the best recorded global (swarm) particle location in S-space (R7). The SI-PoE algorithm
stops if either 20 iterations were attempted or if the fitness of the current global best particle
is less than the set parameter ( fGB < 0.0005). The SI-PoE algoritm steps are summarized in
flowchart shown in Figure 7.

Start

Input desired end-
effector trajectory

Initialize swarm x0
i

Initialize ve-
locities v0i

Perfrom PoE-FK
on end-effector

and virtual points

Compute fi

Update xk+1
i

and vk+1
i

Save xGB

Last point on
trajectory?

End

k = 20 or
fGB < 0.0005

no

yes

no

yes

1

Figure 7. SI-PoE algorithm flowchart.

Figure 8 demonstrates an example of the swarm convergence in the S-space. The
SI-PoE swarm consists of 15 points in S-space (R7), and it can be seen that the swarm almost
converged at 50% completion. Because of the stochastic nature of the parameters within
the update law, the number of iterations till convergence varied from run to run from
approximately 17 to 20 iterations. However, most of the time for the cases with σR = 0, the
SI-PoE was able to find an accurate posture of the robotic arm within 10–12 iterations with
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the position error of the end-effector being less than 8–9 mm, and the rest of iterations the
algorithm brought down the position error to around 5–6 mm. It was observed that the
constriction parameter κ reduces the number of iterations required to achieve said accuracy,
thus positively contributing to the algorithm by shortening the computation time.

Figure 8. Evolution of the SI-PoE swarm.

Table 2. Selected SI-PoE parameters.

Description Variable Value

Initial swarm point x0
i 1 rad offset at each joint

Initial velocity v0
i random values between [−0.1, 0.1]

Inertia weight ω 1
Cognitive parameter c1 2

Social parameter c2 2.5
Random variable r1 random value between [0, 1]
Random variable r2 random value between [0, 1]

Convergence parameter φ 4.5
Constriction factor κ 0.5

4. Resulting Joint Trajectories and Quintic Polynomial Finite Jerk (QPFJ) Method for
Trajectory Generation

The SI-PoE algorithm was tested on different trajectories. For the purpose of illustra-
tion and without the loss of generality, the end-effector trajectory shown in Figure 4 served
as an input to the SI-PoE algorithm, and three obstacles were added to the workspace. All
of the obstacles were spheres: two of them had a diameter of 20 cm centered at [0.5, 0, 0.35]T

and [0.6,−0.13, 0.4]T , and the third obstacle had a diameter of 40 cm with its center at
[0.5, 0, 0]T . The center of gravity of each link served as a virtual point for obstacle detection
outlined in Equation (15), resulting in a total of 8 virtual points.

The resulting joint trajectories obtained from the SI-PoE contained short-term fluctua-
tions, which were filtered using the moving average filter. The filtering takes negligible
computational resources and takes approximately 0.02 s of computational time for a trajec-
tory with 100 points. The raw and filtered joint trajectories along with their position error
for a desired trajectory shown in Figure 4 are demonstrated in Figure 9. Applying moving
average filter smooths the trajectories and eliminates spikes on the expense of slightly
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increasing the position error overall that happens due to the “flattening” of the spikes.
Along the trajectory, the maximum error reduces from approximately 13 mm (unfiltered) to
4 mm (filtered) at 10 s. The total error integrated over time in all 3 axes is 0.0363 ms for the
unfiltered joint trajectory and 0.0440 ms for the filtered SI-PoE joint trajectory. The resulting
movement of the simulated robotic arm is shown in Figure 10, where it can be seen that
the SI-PoE was able to successfully generate obstacle avoiding trajectory with additional
constraints such as the finite jerk on the end-effector and prioritized penalty on excessive
joint movement. At approximately 10 s, the robotic arm’s virtual points approach the third
obstacle. In response, the robotic arm starts actively utilizing rolling joint number 5 in
order to stop the movement of the robotic arm toward the obstacle and continue advancing
the end-effector along the desired trajectory.

Figure 9. Comparison of SI-PoE unfiltered and filtered joint positions and position errors.
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Figure 10. Obstacle avoidance trajectory generated using SI-PoE.

The finite jerk constraint can be applied on the joint trajectories after obtaining said
trajectories from the SI-PoE or separately if the initial and final joint positions are known.
Finite jerk joint positions, velocities, and accelerations as a function of time can be computed
as follows using the quintic polynomial finite jerk (QPFJ) model:

θfj(t) = θend[(10/t3
end)t

3 − (15/t4
end)t

4 + (6/t5
end)t

5] (20)

θ̇fj(t) = θend[(30/t3
end)t

2 − (60/t4
end)t

3 + (30/t5
end)t

4] (21)

θ̈fj(t) = θend[(60/t3
end)t− (180/t4

end)t
2 + (120/t5

end)t
3] (22)

where θfj, θ̇fj, θ̈fj are finite jerk joint positions, velocities, and accelerations, respectively;
θend is the final joint positions obtained using SI-PoE; tend is the total movement time.

Although Equations (20)–(22) produce joint position profile with finite jerk, the po-
sition error to the desired path becomes very high as demonstrated in Figure 11, which
would certainly lead to a collision with obstacles in the workspace. One way of integrating
QPFJ model to the SI-PoE is to use several via-points on the SI-PoE joint position trajectory
and “sew” the trajectory from the finite-jerk profile piece-by-piece. The downside of the
“sewing” approach is that it requires additional computational effort.
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Figure 11. Simulated QPFJ and SI-PoE trajectories compared with the desired path.

5. Sawyer Experiments

The experiments were conducted on the 7-DoF Sawyer robotic arm, shown in
Figure 12. For implementation and validation purposes, the joint positions obtained using
SI-PoE were directly fed to the Sawyer robotic arm through a robot operating system
(ROS)—Python environment on the Software Development Kit (SDK) mode. SI-PoE and
QPFJ trajectores shown in Figure 11 were tested. Joint positions, velocities, and torques
were recorded. The end-effector position error was calculated from the experimental
joint positions.
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Figure 12. Sawyer robotic arm.

The experimental results for the joint positions and end-effector position are shown in
Figure 13. The Sawyer robotic arm successfully tracked both SI-PoE and QPFJ trajectories
with minimum noise introduced, which is evident in Figure 13, where the maximum
position error of SI-PoE in any axis at any point of time within the trajectory is approxi-
mately 6 mm which correlates well with the simulated trajectory shown in Figure 11. The
integrated error in all axes is 0.1172 ms, which is larger than the simulated integrated error
of 0.0440 ms, which is attributed to the noise in the robotic arm throughout the entirety of
the trajectory.

Figure 13. Experimental QPFJ and SI-PoE trajectories compared with the desired path.
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The Sawyer end-effector tracked finite jerk profile well, while avoiding “virtual”
obstacles. Eight virtual points were used for collision detection. The entire movement took
20 s, while the computation of the trajectory took approximately 13 s, indicating that the
SI-PoE algorithm can be applied “online” while the robotic arm is operating, given that
the number of virtual points is optimized a priori. Depending on the size of the obstacles
in the workspace, the number of via-points checked for collision should be changed or
the surrounding boundaries of the obstacles should be increased in size. However, such
methods could lead to a limited S-space, which could result in undesired trajectories, errors
in the position of the end-effector, or, in critical cases, even the absence of a solution.

The experimental torque profiles were compared with the simulated torque profiles for
validation purposes. The inverse dynamics algorithm outlined in our previous work was
used to generate simulated joint torque profiles [29]. Experimental torque profiles were also
contaminated with noise. Nevertheless, the predicted joint torque trajectories approximate
the experimental ones very well, as seen in Figure 14. It should be noted that less noise was
present in QPFJ trajectories, which shows that, generally, smooth joint trajectories produce
smooth torque trajectories. Torque trajectories with and without penalty on the excessive
joint movement were compared. Although the proposed SI-PoE succeeded in minimizing
torque by minimizing the excessive joint movement as was proposed in Equation (13), the
difference was marginal with torque minimized roughly by 2–3 Nm in most of the joints.

Figure 14. Experimental QPFJ and SI-PoE torque trajectories compared with the simulated torque trajectories.

Additionally, in order to demonstrate that diverse trajectories can be tracked by the
SI-PoE algorithm, the experimental implementation was extended. First, a straight-line
point-to-point trajectory satisfying the finite jerk constraint was implemented where the
desired path is a straight line in Cartesian space starting at the tip of the end-effector
at home configuration and ending at [0.25 m, 0 m, −0.25 m], which passes through one
of the obstacles. This path was chosen on purpose to demonstrate SI-PoE’s robustness.
The visualization of this straight-line trajectory is demonstrated in Figure 15, where the
straight-line path is shown as a green line. At the beginning, rolling joints are actuated
to avoid the smaller sphere at the top at 2.5 s. In the 2.5–10 s interval, the Sawyer robot
is able to move in a straight line satisfying the desired path. At approximately 10 s, the
end-effector meets the collision volume. As the desired path collides with obstacle volume,
the SI-PoE finds an alternative route that is close to the desired straight-line path but
outside of the collision volume, which forces Sawyer to move close to the boundary of
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the collision volume between 10 and 15 s. After that, the Sawyer is able to once again
accurately track the desired straight-line path with minimum actuation torque.

Figure 15. Straight-line point-to-point trajectory avoiding an obstacle generated by SI-PoE.

Furthermore, a constant screw axis (CSA) trajectory was implemented [27], with
two obstacles in the way of the end-effector path. The desired path is demonstrated as
a green line in Figure 16. The end-effector approaches the first obstacle at about 8 s, and
in order to avoid the collision, the robotic arm moves in a clockwise direction along the
collision boundary. At 10 s, the end-effector is once again on the desired path. However,
at 12.5 s, the second obstacle blocks the path. This time the robotic manipulator avoids
the collision by circumventing the spherical collision sphere from the top. At 15 s, the
robotic arm successfully avoids the collision and continues the movement and tracking of
the desired path while still avoiding collision between its links and the collision volume.

Both the straight-line point-to-point and constant screw axis trajectories were experi-
mentally implemented on the Sawyer robotic arm. The robotic arm successfully tracked
the trajectories generated by the SI-PoE algorithm. Experimental joint space trajectories,
torques, and position error are demonstrated in Figure 17. As was expected, there is
high error in end-effector position when the algorithm forces the end-effector to avoid
collision volumes. The collision avoidance maneuver happens between 10 and 16 s in the
straight-line trajectory case. For the case of the CSA trajectory, two such maneuvers are
observed—the first at 8–11 s and the second at 12–16 s.
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Figure 16. Constant screw axis trajectory avoiding two obstacles generated by SI-PoE.

Figure 17. Experimental joint angle positions, joint torques, and error in end-effector position.

6. Conclusions

In this work, the SI-PoE algorithm was outlined, simulated, and experimentally vali-
dated using Sawyer robotic manipulator. The proposed SI-PoE algorithm utilizes PoE-FK
for forward kinematics computation and collision detection. The proposed fitness function
of the SI-PoE includes both orientation and position errors, penalty for excessive joint
movement, and collision detection. The algorithm’s hyperparameters were demonstrated
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along with the proposed swarm initialization that improved both the computation time
and accuracy of the end-effector position for each step. SI-PoE was able to satisfy multiple
constraints such as avoiding obstacles in the workspace, minimizing excessive joint move-
ment and subsequently minimizing torque, and tracking finite jerk end-effector trajectory
as demonstrated in the simulation and experimental validation with a maximum position
error of 6 mm at any time throughout the trajectory with exceptions when an obstacle is
directly on the path of the end-effector. The experimental torque profiles were compared
with simulated inverse dynamics torque trajectories and showed good correspondence.
SI-PoE can be used “online” if the number of virtual points checked for collision is carefully
picked, as was demonstrated in this work. The disadvantage of this method of obstacle
avoidance is that if obstacles in the workspace are small in size, it would either require more
virtual points for the SI-PoE to track using PoE-FK, which would considerably increase
the computation time or increase the boundary surrounding the obstacle, increasing the
effective size of the obstacles and decreasing the swarm’s search space.

The finite jerk in joint space was achieved using QPFJ method, which produced
smooth joint and torque trajectories. Although the finite jerk constraint was satisfied using
QPFJ, the simultaneous obstacle avoidance was not achieved. The end-effector position
error can be reduced by utilizing constant screw axis (CSA) trajectories. Potentially, QPFJ
can be combined with SI-PoE so that the manipulator avoids obstacles and satisfies finite-
jerk on its joints. However, it is expected that such a combination would increase the
computational effort. An optimal combination of SI-PoE and QPFJ can be explored in
future works.
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