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Abstract: The closed-loop human–robot system requires developing an effective robotic controller
that considers models of both the human and the robot, as well as human adaptation to the robot.
This paper develops a mid-level controller providing assist-as-needed (AAN) policies in a hierarchical
control setting using two novel methods: model-based and fuzzy logic rule. The goal of AAN is to
provide the required extra torque because of the robot’s dynamics and external load compared to
the human limb free movement. The human–robot adaptation is simulated using a nonlinear model
predictive controller (NMPC) as the human central nervous system (CNS) for three conditions of
initial (the initial session of wearing the robot, without any previous experience), short-term (the
entire first session, e.g., 45 min), and long-term experiences. The results showed that the two methods
(model-based and fuzzy logic) outperform the traditional proportional method in providing AAN by
considering distinctive human and robot models. Additionally, the CNS actuator model has difficulty
in the initial experience and activates both antagonist and agonist muscles to reduce movement
oscillations. In the long-term experience, the simulation shows no oscillation when the CNS NMPC
learns the robot model and modifies its weights to simulate realistic human behavior. We found that
the desired strength of the robot should be increased gradually to ignore unexpected human–robot
interactions (e.g., robot vibration, human spasticity). The proposed mid-level controllers can be used
for wearable assistive devices, exoskeletons, and rehabilitation robots.

Keywords: wearable robots; exoskeletons; biomechatronic system; human–robot interaction

1. Introduction

The human subject wearing a robotic assistive device that interacts with the envi-
ronment forms a closed-loop system with two separate controllers: the human central
nervous system (CNS) and the robot control system [1]. These two control systems si-
multaneously modify the behavior of the closed-loop system with different approaches of
robot’s hierarchical control [2,3] and human’s optimal control [4]. Desirable performance
of wearable devices entails good coordination between these two controllers [5]. This can
be accomplished by developing an effective robot controller that considers both the wearer
and the robot in its design. Additionally, the robot controller should be appropriately
modified as the human adapts to the device to account for human–robot coadaptation. For
this purpose, researchers have either conducted human-in-the-loop studies or personalized
computer simulations [1,6–8]. Since safety is a major consideration in biomechatronics
research, this paper adopts the latter approach; the results of this research pave the way for
future experimental implementations.

The state-of-the-art control of robotic rehabilitation, assistive, exoskeleton, and pros-
thesis systems utilizes a hierarchical design: high, mid, and low level controllers [3,9]
(Figure 1). The high-level controller is responsible for interpreting the motion intent of
the user (primarily for robotic prosthesis systems) or the exerted torque and force by
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the user (mainly for wearable robotic systems); the two approaches are categorized into
cognitive human–robot interaction (cHRI) [10,11] and physical human–robot interaction
(pHRI) [12,13]. The mid-level controller transforms the determined intended motion or
wrench (force/torque) from the high-level controller into the desired motion or wrench
trajectories for the low-level controller [14]. Finally, the low-level controller is responsible
for following the desired states (from the mid-level controller) by considering the measured
device states (from the robotic sensors) and directly commands the robotic actuators [3,9].
The current paper focuses on the mid-level controller.

Biomechatronic System (XMSK)
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Figure 1. Schematic of human–robot–environment system with hierarchical strategy control. τ̂h
is estimated human joint torque and θ̂t+1 is predicted/desired joint angle computed by the high-
level controller.

Apart from the quality of the sensors, the accuracy of the interpreted intent/wrench,
the actuator, and the low-level feedback control, the mid-level controller plays a vital role
in users’ experience [15]. It governs the human–robot–environment interaction (HREI) [16];
the HREI depends on the robot’s mid-level cooperation control. Developing effective
robotic systems requires the consideration of application targets (clinical or industrial),
power augmenting purposes (resistive rehabilitation or power-assistive fixture), and the
human interaction adaption level [15,16]. An inefficient control policy may limit the normal
human range of motion or increase discomfort due to unnatural motion [17,18]. Executing
natural motions from human intent is challenging, applying volitional natural human
adjustment is difficult, and the overall applicability is limited [2]. Recently, the assist-
as-needed (AAN) strategy, which operates based on enhancing motor activity but not
replacing it, shows promising results [7,12,19–21].

So far, common strategies have been used for controlling wearable robots: finite state
machines/prerecorded motion [22,23], master–slave [16], proportional [24,25], fuzzy map-
ping [26–28], and combination control strategies [14,29]. The preprogrammed method
is mainly used for cyclic movements [23] (e.g., walking, running, and stair climbing) or
classified movements (e.g., hand/finger posture), and the user only activates the strategy
at the start. The controller does not utilize feedback during the maneuver, which is non-
volitional. Although the master–slave control uses human motions and simultaneously
commands the same motions, the robot wearer feels an uncomfortable contact force if
there is a human–robot size inconsistency [16]. A proportional controller was established
to produce a proportional control signal from EMG signals [10,11,24,25,30]. However,
the EMG–torque relation is not proportional, and, hence, using this approach makes an
uncomfortable motion for the wearer. The decision-based fuzzy controller system was
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developed to avoid the complex dynamic modeling system [26–28]. However, generalizing
this method is difficult due to different subject biomechanical signals. Researchers have
used a hybrid assistive control since signal-based control strategies are inefficient for differ-
ent motions [31]. Depending on the motion requirements, the controller was segmented
into various control phases [31].

Overall, the inefficiency, application limitation, uncomfortable movement, and usage
anxiety challenges are still important issues to resolve [15,17]. They result from the follow-
ing: ignoring the limb dynamics or assuming constant limb dynamics, neglecting the robot
stiffness and inertia, adapting to an overly simplified strategy that does not capture the
mathematical relationships between variables, and struggling with tuning/adjusting the
controller for participants. The system dynamics play an essential role since the applied
torque to robots, external wrench (from disturbance or manipulation object), and the re-
action wrench on the user lead to the motion according to the system dynamics [18]. The
sources of human–robot–environment system dynamics consist of inertial properties of hu-
man segments and robot links (proportional to the joint acceleration, according to Newton’s
law), centripetal force (proportional to the joint velocity squared and toward the center of
rotation), Coriolis effect (interaction of two rotating links/limb), gravity wrench (caused by
gravity), and external wrench (caused by friction, environment, or heavy object handling).

For example, in the presence of an external load, the amount of necessary activation
torque increases compared to the free human limb movement. The robot’s dynamics
(stiffness and inertia) and the environment/external load result in extra necessary torque.
The AAN mid-level control of wearable robots should be designed to provide this extra
torque [19,21]. As a result, the primary goal of this project is to create a model for a mid-level
controller that includes two distinct parts: the robot and the environment. This method is
similar to a combination of torque and gravity compensation control approaches [14,32].

Previous research has converted the human–robot–environment interaction system to
an overly simplified rule. Consequently, adjustments are necessary for any changes in the
dynamics of limb, robot, and environment [2,24,27,31]. To overcome these challenges, or at
least mitigate the inefficiencies and limitations, considering the human–robot–environment
dynamic interaction is a viable solution.

The human CNS, involving the brain and the spinal cord, controls the human body’s
motion [4,33,34]. It concurrently manages the kinetics and the kinematics, despite un-
certain/unknown trajectories and complicated muscle dynamics [4,35]. According to
experimental studies of human movement, it is hypothesized that the CNS coordinates the
body movement in an optimal manner [36,37]. Multiple research has postulated that the
CNS obtains the optimal inputs by minimizing a cost function that can include jerk [38],
torque [39], muscle activation [40], metabolic energy [41], and muscle fatigue [42] terms.
However, in most mid-level controller assessment studies, the central neural system is mod-
eled with a Proportional-Integral-Derivative (PID) controller [43,44]. The wearer can adapt
to the robot dynamics and the controller in the long term, yet the adaptation level is low in
the initial and short-term experiences. We aim to test a mid-level controller by modeling
the CNS as an optimal controller [4] for the initial, short-term, and long-term experiences.

The distinguishing novelties and contributions of this work are:

1. Consideration of the distinctive effect of the human’s and robot’s dynamic models, as
well as the wrench of the environment;

2. Optimization, evaluation, and comparison of a proportional, a novel model-based,
and a novel fuzzy-logic mid-level controller for assist-as-needed control of a wearable
robot during two free motion and lifting tasks;

3. Assessment of the three mid-level controllers for three phases of (A) initial, (B) short-
term, (C) long-term experiences of wearing a powered robot.

In this paper, the mid-level controller within a hierarchical strategy in assistance-
resistance control is first introduced with three methods of proportional, model-based, and
fuzzy-logic rule. Second, the CNS controller is described for studying the adaptation. Third,
the results and the evaluation of the controllers on the system of human–robot–environment
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are presented. Finally, the effectiveness of controllers for AAN goals and initial, short, and
long-term experiences is discussed.

2. Mid-Level Controller

The input variables to the mid-level controller are from the high-level controller,
such as estimated human joint torque τ̂h and the system kinematic feedback measured
by sensors, such as predicted/desired joint angle q̂d, velocity p̂d, and acceleration dp̂d

dt ,

feedback/measured joint angle q f , velocity p f , and acceleration
dp f
dt . The strength and

direction of the applied wrench are defined in the mid-level controller. The user can define
the strength of assistance or resistance Ω. The output of this controller is the desired robot
torque τr, which is commanded to the low-level controller.

In this research, two new model-based and fuzzy-logic-based mid-level controllers
are introduced, considering the distinctive effect of the human and the robot’s dynamic
models. The common proportional rule is also applied for comparison with the above two
approaches. For a fair comparison, the gain of all controllers is optimized.

2.1. Proportional Rule

Researchers have commonly used the proportional gain method [2,24,25] (Figure 2A).
The desired robot torque τr is calculated as a proportion of the estimated human joint
torque τ̂h (Equation (1)). This conventional controller does not consider distinctive human,
robot, and environment system models. Directly using the human torque as the command
of the robot torque causes subject discomfort in exoskeletons, as described in Section 1.

τr = Ωτ̂h (1)

Mid-level Controllers
A. Proportional Rule

B. Model-based Rule

C. Fuzzy-logic Rule

Predicted
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Joint
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∑
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)
Qγ(x)

γ δ

×

Ω

∑
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×
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Figure 2. Schematic of proportional rule (A), model-based rule (B), and fuzzy-logic rule (C) as
mid-level controller.
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2.2. Model-Based Rule

This novel approach uses the identified limb model and the robot model to find the net
torque of the human joint without the shared portion for the limb and the robot fixture; this
approach resolves the previously mentioned issues by considering the human and robot
dynamics. The net torque may multiply to the desired strength variable to further increase
or decrease assistance or resistance (Figure 2B). The detailed model has been presented in
Equations (2)–(4).

τr = ΩQγ(τδ) + Q̂r

(dp f

dt
, p f , q f

)
(2)

Qγ(τδ) = τδ

 1

1 + e−
4

γ−δ

(
τδ− γ+δ

2

) +
1

1 + e
4

γ−δ

(
τδ+

γ+δ
2

)
 (3)

τδ = τ̂h − Q̂h

(dp f

dt
, p f , q f

)
(4)

where Q̂r and Q̂h are the calculated torque from the wearable robot model and the human
limb model (without the external load impact), respectively. We used a 1-DoF limb model
with an elevation joint variable for Q̂r and Q̂h for simplicity. The 1-DoF limb model is
selected so that our simulations are better aligned with our exoskeleton physical setup,
which only has a shoulder joint kinematic sensor and cannot measure the elbow joint angle.
Qγ is the model-based threshold torque function that eliminates the controller chattering
effect. It is defined by a hyperbolic relation in Equation (3). γ and δ denote the threshold
value and the dead zone, respectively. The effect of the dead zone becomes more significant
as the accuracy decreases for the τ̂h and Q̂h estimates. The threshold γ should not be more
than the maximum torque of the robot actuator. Ω is the desired strength variable, which
is negative for resistive and positive for assistive control. τδ introduced in Equation (4)
is the difference between the estimated human joint torque and the torque of the human
limb model.

2.3. Fuzzy-Logic Rule

The model-based control method (Section 2.2) can be implemented by fuzzy logic
rules that regulate the actuator. The detailed novel model is presented in Equation (5) and
is shown in Figure 2C.

τr = ΩQ́γ

(
τ́δ, qd − q f

)
+ GrQ́r (5)

τ́δ = Gδ

[
τ̂h − GhQ́h

]
(6)

where Ω, Q́γ, and Q́r are the strength, threshold, and robot gravity function, respectively.
The three functions are defined in Table 1, using the fuzzy-logic condition-statement rules.
The rules can be more complex and use more feedback, such as velocity p f or acceleration
dp f
dt . τ́δ is the difference between the estimated human joint torque and the torque of the

human limb model, which is defined in Equation (6). Gr, Gh, and Gδ are the gains of the
robot fuzzy-logic model, human fuzzy-logic model, and environment fuzzy-logic model,
respectively; Ω is the desired strength variable. The degree of membership and membership
function for the two models (the three inputs and two output), as well as the surface plot of
the input–output functions are shown in Figure 3.
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Figure 3. The membership function and degree of membership for the two models with three inputs
(top) and two outputs (middle). The surface function plots of the outputs of the models for all input
variables (bottom).

Table 1. Fuzzy-logic rule of three functions of the mid-level controller.

# Condition Statement

1

If q f is

Large Negative (LN)

, then
Q́r

or
Q́h

is

Zero (Z)
2 Medium Negative (MN) Medium (M)
3 Zero (Z) Large (L)
4 Medium Positive (MP) Medium (M)
5 Large Positive (LP) Zero (Z)

6

If τ́δ is

Negative (N)

& qd − q f is

Negative (N)

, then Q́γ is

Large Negative (LN)
7 Negative (N) Zero (Z) Medium Negative (MN)
8 Negative (N) Positive (P) Zero (Z)
9 Zero (Z) Negative (N) Small Negative (SN)
10 Zero (Z) Zero (Z) Zero (Z)
11 Zero (Z) Positive (P) Small Positive (SP)
12 Positive (P) Negative (N) Zero (Z)
13 Positive (P) Zero (Z) Medium Positive (MP)
14 Positive (P) Positive (P) Large Positive (LP)

3. Control System Evaluation

To evaluate the robot control, it is essential to test it on a virtual system before experi-
mental testing with humans. The virtual system should consist of a human, a robot, and
an environment model, which should simulate systems and produce kinematic feedback,
kinetic feedback, and activation signals. The inputs to this system are the robot’s actuator
command and the desired motion (shown in Figure 4). The schematic of the multibody
system of the human and the wearable robot is depicted in Figure 5.
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Figure 5. Schematic of the human–robot multibody system. The CNS is represented by the NMPC
controller. The MTG model relates the torque to joint angle and angular speed. The InverseMuscleNET
block estimates the sEMG signals.

The dynamic system model consists of the human skeletal model and the robot
dynamics in Equation (7).M 0 CT

0 1 0
Ψp 0 0


 dp

dt
dq
dt
f

 =

Q + Cp + G + H + JT f́
h
ε

 (7)

where M, C, and Ψ are the mass matrix (n × n), constraint reactions coefficient matrix
(m× n), and the Jacobian matrix of the velocity constraint equations concerning the gen-
eralized velocity p. Q, C, G, and H are the applied wrench, relevant matrix to Coriolis
effect and centrifugal force, gravity vector, and the vector of further joint torques from the
inherent stiffness and friction, respectively. J and f́ are the Jacobian matrix relevant to
human–environment system force/torque locations, and the vector of the external forces
and torques of the environment. h, ε, and f are the right-hand side of transformation
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between the derivative of coordinates and generalized speeds, the error, and the reaction
wrench that enforces the kinematic constraint equations.

The activation signal, which is estimated via InverseMuscleNET, maps the human
activation torque, joint torque, joint angle, joint velocity, and joint acceleration to the
activation signals or EMG signals [45].

The performance of muscles and joint constraints have been modeled using muscle
torque generators (MTGs) [46]. An MTG model allows simulation of the muscle model
components without modeling individual muscle forces by, for example, the Hill-type
muscle model [47]. Explicitly, the components of muscle modeling consist of the joint angle
relation (passive behavior of muscle) and the joint velocity relation (dynamic behavior of
muscle) [46,48]. MTG model is exhibited in:

τh = τactτaτv + τp (8)

where τa, τv, and τp are the position-scaling function, the velocity-scaling function, and the
passive torque function, respectively. τact and τh are the input activation torque and the
total human joint torque as output, respectively.

As mentioned earlier, the CNS coordinates human arm motion by complex commands,
which are the mixture of (I) the motion prediction and (II) the corrective command [4,33,34].
(I) the motion prediction or feed-forward control is calculated from an internal model or
representation of the complex system. (II) the corrective command or feedback control is
computed from the sensory organs to correct any errors due to model uncertainty, external
disturbance, or unknown environment. NMPC can achieve this multiple-purpose control
complexity (feed forward and feedback control) with an infinite or finite (as in our case)
horizon formulation. The NMPC uses an internal model (IM) to represent the human
dynamics for predicting the optimal motion (feed forward) and sensory information for
correcting the prediction errors (feedback) [4]. It utilizes a cost function to evaluate the
optimal motion. This cost function is a combination of joint angle and velocity errors, as
well as the torque and the torque derivative:

J =
∫ t f

0
ωT

1 (q− qd)
2 + ωT

2 (p− pd)
2 + ωT

3 (τact)
2 + ωT

4 (τ̇act)
2 (9)

Subject to :

qmin ≤ q ≤ qmax
pmin ≤ p ≤ pmax

τmin ≤ τact ≤ τmax
τ̇min ≤ τ̇act ≤ τ̇max

(10)

The CNS learns and identifies the IM in the long term [49,50], and the muscles can
adapt in the short-term [50–52]. Clearly, after the initial use of a wearable robot, the CNS
only has information about the IM of the human and the old weights for the limb, and
has no model for interacting with the wearable robot. In short experiences, the human
can adjust and tune the weights for the new condition, subject to the wearable robot’s
assistive or resistive torque [53]. We use the human limb model as the IM for the initial and
short experiences. The IM incorporates the robot dynamics in the long-term experience. In
addition, the weights (ωi) are tuned for free limb motion only and are used for the initial
experience. The weights are adjusted for the short-term and long-term experience.

The weights in the cost function (Equation (9)) are manually adjusted for three con-
ditions of (I) initial, (II) short-term, and (III) long-term experience (Table 2). The initial
experience shows the human–robot interaction but has the same weights as the human-
only mode. The short-term experience is when the IM is not updated, and the weights are
adjusted for the optimal motion. The long-term experience is when the robot dynamics and
mid-level controller are incorporated into the IM, i.e., the human has adapted to the robot.



Robotics 2022, 11, 20 9 of 18

Table 2. The cost function weights and internal model are used for three simulated conditions of (I)
initial, (II) short-term, and (III) long-term experience. The 1st and 2nd scenarios are implemented
with full and variable strength of the mid-level controllers, respectively (Sections 5.1 and 5.2).

Experiences Initial Short-Term Long-Term1st Scenario 2nd Scenario

Weights

ωT
1 (angle) [39, 183, 39, 183] [39, 183, 39, 183] [40, 000, 40, 000]

ωT
2 (angular velocity) [1234, 1234] [1234, 1234] [1000, 1000]

ωT
3 (torque) [1/120, 1/70] [1/120, 1/70] [1/200, 1/200]

ωT
4 (torque derivative) [1360, 1360] [2720, 2720] [2040, 2040] [2000, 2000]

IM
human limb dynamic Yes Yes Yes

known robot’s assistive
torque No No Yes

4. Case Study

We have used a two degree-of-freedom (DOF) limb model with segments for the
upper and the lower arm as the human skeletal model [54]. In addition, as mentioned in
Section 2.2, the exoskeleton is providing assistance and measuring the joint angle only for
the human shoulder joint. The human elbow joint has no assistance and no sensor for the
robot’s controller; this is to make the case study model similar to our physical setup. This
human skeletal model has been equipped with a shoulder exoskeleton for assisting the
elevation angle. The position-scaling, velocity-scaling, and passive functions, employed
from [48,55], use dynamometry measurements for the shoulder and elbow joint.

The IM of the NMPC only has the limb model (without the exoskeleton model). The
controller constraints are biomechanically-inspired limits, such as minimum and maximum
range of motion, joint velocity, joint torque [48,55], and an assumed joint torque rate of
5 (Nm/s).

An instance of the task motion and the desired trajectory (consisting of two different
tasks of free motion and lifting) for an object pick-and-place in the sagittal plane subject to
an external load is shown at the top of Figure 6 and in Figure 6A. Other reference trajectory
planning methods, such as regression analysis using a Kinect and point cloud, can also be
used [56]. In addition, the optimal desired trajectory can be obtained by defining the start
and end points and then solving an optimization problem comprising cost function terms
from the robot (e.g., minimize robot input and jerk) and the subject (e.g., minimize joint
acceleration or muscle activation) [57].

In addition to the task-space path of the palm of the hand in Figure 6A, the shoulder
and elbow joint angles are obtained using the inverse kinematic geometric calculation and
shown in Figure 6B. The vertical force that is transferred to the palm of the hand due to
gravity and the object weight is shown in Figure 6C. As depicted, the force is −20.0 N
starting from the grasping time and goes back to zero at release.

Different activation torques of the shoulder joint in different conditions are shown
using the inverse dynamic simulation of the skeletal-MTG model in Figure 6D. The different
conditions consist of (I) not wearing an assistive shoulder exoskeleton and no presence
of the external load (motion-only), (II) wearing an inactive exoskeleton with no presence
of the external load, and (III) using an inactive exoskeleton subject to the external load of
an object. Evidently, wearing an inactive robot requires more joint torque since the robot
joint has stiffness and the robot link has inertia (the lower highlighted area in Figure 6D).
Additionally, the amount of the required activation torque increases in the presence of the
external load. Thus, the sources of extra required torque are the dynamics of the robot
(stiffness and inertia) and the environment/external load. The goal of the AAN mid-level
control of wearable robots is to provide this extra required torque. Consequently, the
main reason for this work is to provide a model with two distinct parts of the robot and
the environment.
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0% 20% 30% 50% 70% 90% 100%

Figure 6. The motion capture system markers (Vicon Motion Systems Ltd, UK) and wireless EMG
sensors (Delsys Inc, MA, USA) are attached to the subject who is wearing an inactive EVO exoskeleton
(Ekso Bionics Holdings Inc., CA, USA) (top); The sagittal pick and place task with active shoulder
and elbow joint (A). The desired trajectory of the shoulder and elbow joint angles (B). The external
vertical load of the object at the palm of the hand (C). The required activation torque of the shoulder
joint with and without an inactive robot using inverse dynamic simulation (D).

The criterion for assessing the proficiency of each mid-level controller is how accurately
they can provide the required extra torque with the presence of the robot and environment
load. If the robot provides an excessive assistive torque, the human joint will provide less
torque than the no-robot condition (when the skeletal dynamics is performing the motion
without the robot and the external load). This lower than normal human joint torque results
in discomfort; for example, it suggests to the CNS that the inertia of the human limb has
decreased from the usual amount [17].

For a fair comparison of the mid-level controllers, each mid-level controller’s gains
and parameters should be optimized. The cost function of this optimization is decreasing
the highlighted area in Figure 6D, or simply the difference between the extra required
torque in the presence of the external load and inactive robot and the condition of not
wearing the inactive robot and no external load. The particle swarm optimization method
has been used for this nonconvex optimization with a swarm size of 200 for each variable.
The NMPC adjusts for long-term experience in this optimization.

5. Results and Discussion
5.1. Full Strength (Fist Scenario)

The three mid-level optimized controllers of (A) proportional, (B) model-based,
(C) fuzzy-logic rule for three different conditions of (I) initial, (II) short-term, (III) long-term
experience of wearing a powered robot have been simulated (9 simulations in total). The
activation torques of the shoulder joint using an inverse dynamic simulation for three
conditions (1. No robot and external load, 2. Inactive robot and no external load, and
3. Inactive robot with external load) are shown in Figure 7. The goal is to decrease both the
red (extra assistance) and blue (insufficient torque) highlighted areas in Figure 7.
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Figure 7. The 1st scenario (full strength) plot of the shoulder actuation torques (solid line), the desired
shoulder actuation torque (dash line), the extra assistance (red area), and insufficient torque (blue
area). Shown are the three mid-level optimized controllers of the proportional (top-row), model-based
(middle-row), fuzzy-logic rule (bottom-rule) for three different conditions of initial (left column),
short-term (middle column), long-term experience (right column) of wearing a powered robot.

As shown in Figures 6 and 7, the desired actuation torque is equal to the condition
that the human does not wear the robot and moves without experiencing the external
load. Both model-based and fuzzy-logic mid-level controllers have a small error with the
desired actuation torque (Figure 8). Particularly, the actuation torques of the proportional,
model-based and fuzzy-logic mid-level controllers have 0.817, 0.311, and 0.268 Nm root-
mean-square error, respectively. They consider the distinctive effects of the human’s
dynamic model, robot’s dynamic model, and the required wrench of the environment.
The proportional controller only has a specific gain to the human identified torque and
provides more than necessary torque. This unnecessary torque can be seen in Figure 7;
specifically, the human shoulder actuation torque decreases too much from the normal
condition (highlighted in red). This extra torque means that humans tolerate less torque
than expected in the same motion without the external load. After using the proportional
controller for the long term and adapting to this controller, the user feels different dynamics
after taking off the robot. Thus, it takes a while for the user to adapt to the normal
condition. On the contrary, if the robot only provides part of the required torque, the
human should provide the remaining amount, which leads to fatigue in muscles and
decreases the efficiency of the wearable assistive robot.

The errors in the model-based rule result from the 1-DoF Q̂h

( dp f
dt , p f , q f

)
model

in Equation (4) without having the velocity and acceleration feedback, instead of a 2-
DoF human arm, to mimic the practical complexity of robotic sensing. Specifically, as
mentioned in Section 2.2, since the robot assists only the shoulder and has a built-in
shoulder joint sensor, we only use the shoulder joint angle for mid-level control input.

Then, Q̂h

( dp f
dt , p f , q f

)
is considered as a 1-DoF limb with the shoulder joint kinematic data

as an input variable. Practically, the 2-DoF human arm cannot be simplified to a 1-DoF
system without error.

The robot’s mid-level controllers should not have a negative impact on the CNS and
IM. Providing too much assistive torque suggests to the CNS that the upper-limb dynamics
have been changed, for example, less inertia or less stiffness at the joint [17]. This problem
can cause discomfort in industry workers every time they wear the exoskeleton [18].
Additionally, this issue can cause changes in the human sensation of inertia/stiffness even
after the workers remove the exoskeleton.
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Figure 8. The integral of absolute, negative, and positive actuation error for proportional, model-
based, and fuzzy-logic controller (left); The integral of absolute velocity error for three CNS conditions
of initial, short-term, and long-term experience (middle); The integral of absolute tracking error for
three CNS conditions of initial, short-term, and long-term experience (right).

The model-based and fuzzy-logic controllers have oscillation or vibration (velocity
error) since they are based on the joint angle and velocity (Figures 7 and 8). The proportional
controller is based on the identified torque and has no chattering. The initial experience
is evaluated with the NMPC-controlled CNS, and the weights are manually tuned for a
no-robot condition. As shown in Figure 7, assisting when the human has not learned the
interaction leads to vibration in motion (here, oscillation occurs about the shoulder joint
frontal axis). The short-term experience has been simulated with the same weights for
the NMPC except for the ω4 (weight of the torque derivative), which has been doubled
(Table 2). Doubling the weight of the torque derivative means the human has activated
both agonist and antagonist’s muscles to have a robust motion (with increasing muscle
stiffness) [58–60]. This condition results in muscle fatigue since both kinds of muscles are
activated [61]. In addition, when the weight of torque derivative increases, the impact
of the other weight decreases in the cost function, so the tracking error increases in the
short-term experience (Figure 8) [62–64].

The weights in Equation (9) have been manually adjusted, and the IM (internal model)
knows the robot assistive torque in the long-term experience (Figure 7). Consequently,
the vibration does not occur in the long-term experience. This awareness or adaption
requires using the robot and motor learning for the long-term experience. One solution
to mitigate the vibration in the initial experience is using a lower desired strength Ω for
the robot controller in the first moments of using the robot and then increasing it after
a while. This approach, i.e., changing the strength from less (initial experience) to high
amount (long-term), has been experimentally evaluated in the literature [2,65,66], and the
results have reported that the method of increasing the strength over time is preferred for
human adaptation to robots. Many wearable biomechatronic device users have preferred to
initiate with lower controller strength [65,66]. Then, whenever users adapt to the wearable
device or become confident with practice after a while, they gradually tend to increase the
controller gains/strength.

5.2. Variable Strength (Second Scenario)

To decrease the vibration about the frontal axis of the shoulder in the initial experience
(shown on the left section of Figure 7), the simulation of controllers with 30% strength
for the initial experience and 50% strength for the short-term experience (2nd scenario) is
shown in Figure 9 (unlike the previous scenarios in which the strength was 100%). The
long-term experience uses the full strength optimized for the long-term. As shown in
Figure 9, unlike the initial experience section of Figure 7, the vibration does not happen.
Since the vibration in the initial experience still has a minor impact, ω4 (weight of the
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torque derivative) for the short-term experience is 1.5 times of the weight for the initial
experience. This value was used to increase 100% (from initial to short-term experience) for
the condition in which full strength has been used in Figure 7. Thus, muscles are relaxed,
and increasing muscle robustness is not required as in the previous scenario. Note that the
assistance with 30% and 50% strength does not satisfy the goal of decreasing the area in
Figure 6D. For example, in the initial experience for the proportional mid-level controller
with 30% strength, the AAN is not satisfied with the mentioned criteria (the highlighted
area from the desired value) 80% worse than a long-term experience for this mid-level
controller. The simulated controller/model is required to provide most of the torque for
handling the object for the period of 4–7 s.
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Figure 9. The 2nd scenario (variable strength) plot of the shoulder actuation torques (solid line), the
desired shoulder actuation torque (dash line), the extra assistance (red area), and insufficient torque
(blue area). Shown are the three different conditions of initial (left column) with 30% strength, short-
term (middle column) with 50% strength, long-term experience (right column) with 100% strength.

5.3. Comparison

The robot torque for both scenarios (full strength and varying strength) is shown
in Figure 10. The desired robot torque is computed with the inverse dynamic model
simulation that is highlighted in Figure 6D. The proportional mid-level controller provides
too much assistance for the free motion phase (0–3.5 and 7.5–10 s). In the case of 30% and
50% strengths, the proportional mid-level controller’s efficiency (following the desired
torque) is much lower than the desired robot torque. Although the strength is variable in
the second scenario, the model-based and fuzzy-logic mid-level controllers’ efficiencies
do not decrease as much as the proportional mid-level controller for the lifting phase
(3.5–7.5 s).

Another approach to reduce vibrations is relaxing the threshold value (γ) and the
dead zone (δ) for the initial and short-term experiences. The result of increasing γ and
δ lead to a similar simulation to Figure 9, which makes a new advantage for this model-
based mid-level control. Instead of decreasing the strength of the mid-level controller, the
threshold and the dead zone can be increased, but the strength can remain the same. A
third possible solution to reducing the vibrations may be using an adaptive controller [43]
or using a model predictive controller (MPC) with dual purposes of decreasing the joint
error and the human-provided torque for the motion.



Robotics 2022, 11, 20 14 of 18

0 2 4 6 8 10
0

5

10

15

1
s
t  S

c
e

n
a

ri
o

 
r (

N
.m

)

w
it
h

 f
u

ll 
s
tr

n
g

th

Initial Experience

0 2 4 6 8 10
0

5

10

15
Short-term Experience

0 2 4 6 8 10
0

5

10

15
Long-term Experience

Desire

Proportional

Model-based

Fuzzy-logic

0 2 4 6 8 10

Time (s)

0

5

10

15

2
n

d
 S

c
e

n
a

ri
o

 
r (

N
.m

)

w
it
h

 v
a

ry
in

g
 s

tr
e

n
g

th

30% strength

0 2 4 6 8 10

Time (s)

0

5

10

15
50% strength

0 2 4 6 8 10

Time (s)

0

5

10

15
100% strength

Figure 10. The desired robot torque is computed by the simulated inverse dynamic model (dashed),
as well as the robot torque for proportional (red), model-based (black), and fuzzy-logic (blue) mid-
level controllers. The first scenario with full strength and optimized weights for the short-term
experience shows at top-row, and the second scenario with varying strength of 30% for initial
experience at the left side, 50% for short-term experience at the middle side, and 100% for the
long-term experience at the right side.

The model-based and fuzzy-logic controllers are based on the joint angle and velocity.
Both can successfully provide the assistive torque required due to external load and the
robot’s dynamic. In terms of comparison, the model-based controller with the capability
of tuning the threshold value and the dead zone can slightly outperform the fuzzy-logic
controller. In the case of a nonlinear limb model or higher-speed motion, the model-
based controller can have better results than the fuzzy-logic controller, which uses linear
regulation. In comparison to [26–28], our fuzzy-logic controller in Equations (5) and (6) is
straightforward and simpler to implement.

5.4. Outcome and Future Work

In this study, the novel model-based and novel fuzzy-logic controllers are compared to
proportional model-based controllers. The idea behind the proposed mid-level controllers
is to consider both the human and the robot models. Taking into consideration models
of the human and the robot, as well as using a nonlinear controller (e.g., model-based,
fuzzy-logic, impedance control [67–69], haptic/admittance control [30,70], and adaptive
control [43,71]) improves the efficiency of AAN control of wearable robots during two
different tasks of free motion and lifting. The nonlinear controllers should be prioritized
over proportional controllers for controlling the nonlinear human limb model.

So far, one major challenge of real-time control is the controller speed and computation
delay [69,72]. The proposed controllers capture the interaction between the robot and the
subject, and are also computationally tractable and applicable for real-time control.

Overall, this work’s distinguishing novelties and contributions are categorized into
three points. (I) The effect of the human’s and robot’s dynamic model and the required
wrench of the environment are considered in the design of the mid-level controller, for
example, in Equations (2)–(4). (II) the strengths, variables, weights, and gains of an AAN
wearable robot are optimized for two tasks of free motion and lifting (decreasing the area
in Figure 6D). They are evaluated for three proportional, model-based, and fuzzy-logic
mid-level controllers. (III) the three mid-level controllers for three phases of (A) initial,
(B) short-term, (C) long-term experiences of wearing a powered robot are compared and
assessed. Two solutions to the vibration of controllers and muscle fatigue are evaluated:
decreasing the mid-level controller strength and relaxing the threshold value and the dead
zone of the model-based mid-level controller.
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To use this controller, an interface should be designed to capture the subject data and
the desired strength variable Ω. Subject anthropometric data, including limb measurement
and inertia parameters, will be incorporated in the Qh term in Equations (4) and (6), in a
future implementation. In addition, there should be a calibration scenario to adjust the
high-level controller model and parameters for each subject. On-board joint angle sensor
and EMG sensor, as well as vision-based sensors, will be used to estimate the human joint
torque or intention [2,73,74].

In a practical experiment, the noise and drift of the sensors may degrade the perfor-
mance of the model-based and fuzzy logic controllers. Consequently, it is essential to make
the control robust to any undesired motion [22]. In the future, the nonlinear mid-level
controllers should be evaluated and enriched with a robust and safe term for human usage
goals [18]. For example, to prevent rapid assistive torque changes due to noisy feedback
signals, a low-pass filter or limiter can increase the robot’s safety by preventing rapid
assistive torque changes due to noisy feedback signals.

In rehabilitation therapy applications, the desired strength variable Ω should gradually
change from a small negative value to a bigger one. In addition, visual tracking has recently
been utilized to evaluate the patient’s motor function recovery and the adaptability level to
the therapist rehabilitation exercises [56,75].

6. Conclusions

In this paper, model-based and fuzzy-logic mid-level controllers in hierarchical control
of a 1-DoF active shoulder exoskeleton robot for a 2-DoF upper-limb have been simulated.
In designing two mid-level controllers, the distinctive effects of the human’s dynamic
model, robot’s dynamic model, and the required wrench of the environment (the difference
between the estimated torque in the presence of external load and the human dynamic
model for free motion) are considered. The controller gains and variables have been
optimized for an AAN wearable robot during a task of free motion and lifting in the sagittal
plane. The CNS has been simulated with NMPC, and the three mid-level controllers for
three phases of (I) initial, (II) short-term, (III) long-term experience of wearing a powered
robot have been assessed. The results have shown that model-based and fuzzy-logic
controllers could outperform the proportional controller for AAN goals. Based on the
results, we propose to use less desired strength in the initial usage of the wearable robots.
This hierarchical controller can be used in wearable exoskeletons and rehabilitation robots.
The future study trend can focus on implementing and comparing other controllers.
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