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Abstract: Motivated by grasp planning applications within cluttered environments, this paper
presents a novel approach to performing real-time surface segmentations of never-before-seen objects
scattered across a given scene. This approach utilizes an input 2D depth map, where a first principles-
based algorithm is utilized to exploit the fact that continuous surfaces are bounded by contours of
high gradient. From these regions, the associated object surfaces can be isolated and further adapted
for grasp planning. This paper also provides details for extracting the six-DOF pose for an isolated
surface and presents the case of leveraging such a pose to execute planar grasping to achieve both
force and torque closure. As a consequence of the highly parallel software implementation, the
algorithm is shown to outperform prior approaches across all notable metrics and is also shown to
be invariant to object rotation, scale, orientation relative to other objects, clutter, and varying degree
of noise. This allows for a robust set of operations that could be applied to many areas of robotics
research. The algorithm is faster than real time in the sense that it is nearly two times faster than the
sensor rate of 30 fps.

Keywords: autonomous grasping; unstructured environments; novel object grasping, first-principles
robot perception

1. Introduction

Research surrounding robot grasp planning has accelerated tremendously as a result
of recent advancements in areas relating to computer vision, perception-based sensors, and
mechanical systems. While these strides have paved the way for more robust grasping
methods, limitations in computational prowess and control strategies continue to constrain
grasp synthesis to predefined grasping patterns or computationally heavy grasping al-
gorithms that are infeasible for day-to-day real-time operations. Moreover, the demand
for a more robust autonomous grasping algorithm, which can manipulate arbitrary ob-
jects within unstructured environments, has significantly increased within the past few
years as economic pressures push more robots into the day-to-day activities of the mar-
ketplace. This is made even more necessary and critical in the field of assistive robotics
where an aging generation will require the aid of machines to fulfill their daily needs.
While achieving human-level grasping requires the consolidation of a vast array of re-
search domains, ranging from biology, physics, engineering, and computer science, this
research seeks a first-principles-based approach to identify graspable features within a
scene for object manipulation. It is shown that the most primitive elements of these features,
edges and object surfaces, constitute enough information to immobilize the associated
object. Thus, the primary objective of this research is to present a faster-than-real-time
framework for segmenting object surfaces from a depth image. Furthermore, a six-DOF
surface pose is computed for specified surface segments and serves as a framework to ease
the use of generating the appropriate grasping configuration necessary to manipulate the
desired object.
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According to Sahbani [1], grasp algorithms can be separated into analytical and
empirical techniques. Sahbani determines that an analytical grasping approach must
be dependent on a geometric, kinematic, and/or dynamic formulation to immobilize
an object. While analytical approaches provide guarantees regarding positioning and
kinematic grasping execution, inconsistencies and ambiguities regarding robot modeling
and sensor data, however, undermine their effectiveness. This is further exacerbated by
the computationally expensive algorithms which yield error-prone kinematic/dynamic
approximations during grasp synthesis. In contrast, an empirical approach, also known as
a data-driven approach, avoids the heavy computation needed to process the mathematical
and physical models by mimicking human grasping strategies derived from predetermined
objects or geometric shapes. Bohg et al. [2] further classify these empirical objects into
known, familiar, and unknown categories. To summarize, both known and familiar objects
are dependent on querying a grasping database for supported grasping strategies in
the presence of a known shape. Unknown objects, on the other hand, are reliant on
identifying features that could be re-interpreted as primitive shapes that are utilized as
potential grasping candidates. Consequently, the empirical approach is wholly reliant on a
representative model for associating an arbitrary object with a set of grasping candidates.
Nevertheless, Refs. [3–5] present robust techniques for representing arbitrary objects
as a set of geometric primitives which, in turn, are investigated as potential grasping
strategies. Detry et al. [6] advance this approach by encapsulating a bounding box around
a desired object and then initiate grasping given a set of intersection rays projected from
the bounding region. This method disassociates the need to infer the overall shape of the
object, instead relying on a computationally heavy mean of sampling surface boundaries. In
contrast, Kroemer et al. [7] rely on a kernel method approach to encode grasping patterns
for the portions of an object’s surface that are most commonly grasped. This approach
greatly reduces the time taken to infer grasping candidates from the surface of the entire
object. Furthermore, Kopicki et al. [8] build on this work by defining a similarity measure
between never seen before and previously sampled surfaces. As such, grasp prototypes
may be transferable across locally correlated object typologies. Although these approaches
improve performance over prior methods, they remain incapable of achieving real-time
performance. Detry et al. [6] note that it takes 18 s on average to match grasping prototype
against candidates on a single object.

The seminal work of Saxena et al. [9] on the identification of grasp points using visual
data has paved the way for many other data-driven approaches in the robotic field. These
approaches are distinguished by the format in which they represent input data and output
grasp [9–11]. Providing grasping points, oriented 2D rectangles, or the 6D pose of specific
end-effectors, are key examples. The scale and type (synthetic/real world) of the training
data are also varied in the literature [12–14]. However, it is noticeable that a common key
feature among most of the recent approaches is focusing solely on either a specific gripper
solution or a specific grasping policy, which makes such approaches difficult to adapt to
other standard grippers and generic environments [15–17]. An interesting technique for
grasping novel objects using tactile sensors in the fingers is presented in [18].

Recently, Jabalameli and Behal [19] proposed a novel solution for generating a grasping
configuration for unknown objects within unstructured scenes. The proposed framework
searches for sharp discontinuities or local maxima within a depth image for potential
contact candidates to perform a planar grasp. Incidentally, these features are characteristic
of boundaries and edges where force closure principles could be applied. Moreover,
observing human grasping reveals that people tend to grasp objects by contacting edges and
corners [20]. This allows for greater grasping stability by permitting a larger wrench convex.
Consequently, Ref. [19] goes on to rely solely on a 2D depth image to extract potential
contact set-points instead of relying on clustering to analyze 3D point-cloud coordinates.
While such an approach provides effective contact points needed to immobilize an unknown
object, it is unable to perform in real-time due to inefficient computational procedures. In
addition, because of noise and other inconsistencies within a depth frame, the pixel-level
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approximation was attributed to significant errors which resulted in inconsistent grasping
proposals. Finally, because of the algorithm simplifying assumptions such as avoidance of
contour formation, the potential grasping regions were needlessly constrained to parallel
edges which therefore constrain grasping configurations to two-fingered grippers.

This paper proposes a novel (faster than) real-time segmentation framework which
builds upon the established algorithm of Jabalameli and Behal [19]. To clarify, surface
segmentation is defined as the grouping of individual faces of objects within a scene.
Consequently, the proposed approach can generate contours bounding object surfaces
within a scene, which has the potential to permit an N-fingered grasping configuration
to immobilize and manipulate unknown objects within unstructured environments. In
addition, this approach establishes a novel means of assessing additional potential grasping
candidates by simply altering a camera-in-hand end-effector position and orientation in real
time. While our approach relies on an empirical foundation for deriving graspable features
for unseen objects, it abstracts the grasping dynamics from the physical object by reducing
an object to a set of closed contours. As such, our algorithm requires no prior knowledge of
objects within a scene while maintaining a faster-than-real-time and consistent performance
that cannot be obtained by an analytical approach. Akin to [19], our algorithm remains
solely reliant on a 2D depth stream to produce potential grasping configurations without
the need to perform complex clustering algorithms on 3D point-cloud data. Instead, a set
of simple transformations is applied to a depth image to obtain a list of surface contours
with poses, rendering enough information to achieve planar grasping. The real-time video
demonstration shown in [21] illustrates the proposed surface segmentation approach being
applied to a real-world data stream.

This paper is organized as follows. Section 2 lays out the details of the system inputs
and outputs. This is followed by Section 3, which presents the segmenting algorithm
used to identify object contours bounding object surfaces within a depth scene and further
introduces the robustification measures needed to mitigate external perturbations that may
arise when working with real-world measurements. Section 4 presents the details of the un-
derlying segmentation algorithm and touches on the software architecture used to maintain
real-time performance. In addition, this section describes means of extracting bounds and
six-DOF pose needed to perform grasping on a designated surface. Section 5 validates the
proposed approach by quantifying the performance against that of [19]. Qualitative results
are also presented using data from Microsoft’s Azure Kinect sensor. Section 6 presents a
brief discussion conveying the shortcomings associated with the presented work. Finally,
Section 7 reviews the presented work and offers potential trajectories for further research.

2. Problem Definition

The principle problem that is addressed involves the identification of closed contours
bounding object surfaces with an aim to constrain and manipulate these objects within
unstructured environments. As the sole input, the process relies on capturing a single
two-dimensional depth frame representing the partial depth information of the specific
scene recorded from a target perspective. In applying the presented segmentation pro-
cedures, the resulting output defines a set of contours and associated six-DOF surface
pose corresponding to individual object surfaces within the given scene. As noted in [19],
applying contacting points along these contour regions allows for a more stable grasp.
We do not address the problem of applying such finger placements on a target object but,
instead, present the necessary information needed to improve force closure stability by
identifying these contour locations in real time. The process can be repeatedly applied
to a specific scene and maintain faster-than-real-time segmentation when tracking these
contours. Accordingly, it is assumed that the depth capturing device is able to capture the
scene at 30 frames-per-second or more. It is also assumed that the resulting contours and
surface poses satisfy the reachability and feasibility constraints given the specifications of
an end-effector. Finally, it is assumed that all objects present within a given scene are rigid
bodies, and therefore cannot be significantly deformed at any moment in time.
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3. Approach

This section starts with a description of the desired features for identifying and seg-
menting object surfaces in a depth image. This is followed by a series of first-principles-
based procedures that must be employed in order to complete the surface segmentation
process. After evaluating the presented method on both synthetic and real-world datasets, it
is clearly seen that, while the presented formulation is fully sufficient for synthetic datasets,
it fails at isolating the required features in real-world datasets. Therefore, additional robus-
tification operations are proposed and evaluated to achieve improved results in real-world
data while maintaining real-time performance. To begin, 2D surface segmentation tech-
niques generally require a three-dimensional representation of a particular scene or some
prior understanding of the topology of objects within the scene. While these techniques
can infer object poses from pre-computed data, the high computational cost required to
both train and perform inferences on arbitrary objects limits its application in many use
cases. In contrast, our approach can perform real-time surface segmentation on arbitrary
objects within a scene by applying the presented contouring procedures to a 2D depth
input represented in (1)

Depth Map: z = f (x, y) : R2 −→ R
Vector Field: F = 5z

(1)

Figure 1 illustrates the desired features within a depth image that are needed to isolate
surface segments to form closed contoured regions. These features are categorized as Depth
Discontinuity (DD) and Curvature Discontinuity (CD) edges. Depth Discontinuity (DD)
edges, depicted by red lines, represent regions of significant discontinuity across the depth
map. Specifically, these edges comprise of contiguous points separating foreground and
background regions within the image. In contrast, Curvature Discontinuity (CD) edges, are
represented by a significant change in the surface direction. These regions are emphasized
by a contiguous range of points lying on the boundaries of adjacent surfaces. To elaborate,
consider a depth frame defined by an arbitrary surface z, we seek to isolate closed surface
segments {S} bounded by discontinuous regions in the form of contours Di, where Di is a
one-dimensional list representing a closed-contour bounding surface segment Si ∈ {S}.

Figure 1. An illustration showcasing Depth Discontinuity (DD) and Curvature Discontinuity (CD)
features that are used to isolate surfaces within a scene.
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3.1. Isolating Depth Discontinuity Edges

Figure 2 presents the first-principles-based procedures needed to isolate Depth Discon-
tinuity (DD) edges. As noted, a Depth Discontinuity (DD) edge is represented by regions of
discontinuity about all directions surrounding a point of interest with the exception of the
direction tangential to the interceding boundary separating foreground and background
elements. To isolate these regions, we first calculate the gradient5 f , which results in the
vector field F that is oriented in the direction of maximum ascent. Thus, the gradient vector
along a DD edge, denoted as ~Gx, lies perpendicular to said edge. From these gradients,
we calculate the gradient magnitudes, GM, and further produce the normalized gradient
vector ~gx and the associated orthonormal basis vector ~gy. Specifically, the ~gx and ~gy vectors
lay perpendicular and tangential, respectfully, to the underlying depth discontinuity edge.
Thus, DD edges are isolated by computing the limit of the depth map f (x, y) along the per-
pendicular vector ~gx in both the positive and negative directions. Given any discrepancies
along said path suggests a discontinuity within the depth map and is therefore associated
with a DD edge.

Figure 2. A flow diagram indicating the logic operations performed on a depth map to obtain DD
and CD features necessary in generating surface contours.

3.2. Isolating Curvature Discontinuity Edges

In addition to depth discontinuity edges, Figure 2 also presents a set of first-principles-
based procedures needed to isolate curvature discontinuity (CD) edges to complete the
surface segmentation process. To begin, we employ the principle curvature which indicates
the direction of maximum slope of a surface and is defined as the derivative of the unit
tangent vector to the arc length at that particular point. Thus, the curvature is dependent
on regions where the second derivative f ′′(x, y) exists within the surface. As mentioned in
Section 3, CD edges can be further classified by their convex or concave features. These
features are correlated with the direction in which the surface deviates away from the
normal plane at the point of interest. As a result, given the Hessian H of the surface
presented by the depth map z, the curvature at a point is associated with the definiteness of
the Hessian. Thus, given the eigenvalues < λ1, λ2 >= eig(H): a concave edge is associated
with a positive semi-definite Hessian, or by the condition λ1 ≥ 0 and λ2 ≥ 0 while a convex
edge is associated with a negative semi-definite Hessian, λ1 ≤ 0 and λ2 ≤ 0. Both values
assume λ1 6= λ2 = 0. Table 1 reviews the relationship between eigenvalues of the Hessian
and the type of local curvatures; we ignore elements such as saddle points and planes that
do not correspond with the desired curvatures. To isolate the CD edges, we first quantify
the curvatures K by calculating the Gaussian curvature across the surface z. Regions of
locally maximum curvatures are then located by applying the gradient operator5K and
selecting regions of high gradient in the curvature of the surface as illustrated in Figure 2. In
addition, the concavity of the surface is further identified by determining the definiteness
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of the Hessian at these points of interest. We capture this information on a binary surface
of similar dimensions as our initial surface z.

Table 1. Correlation between the sign of the Eigen values of the Hessian matrix and curvature type.

λ1 >0 =0 <0
>0 Concave Concave Saddle
=0 Concave Plane Convexλ2
<0 Saddle Convex Convex

3.3. Generating Closed Contours

Given the binary depth discontinuity map, DD(x, y), and curvature discontinuity
map, CD(x, y), that both identify the depth and curvature discontinuity edges within the
scene, a final union operator is applied to merge these element. This results in raster map
of all closed contours M(x, y). This is a 2D binary representation of the sets of points that
are associated with all closed contour identified in the scene; this process is illustrated
Figure 3. As mentioned earlier at the beginning of this section, we then seek to convert
these closed-contours embedded in 2D space, M(x, y) into a set of 1-dimensional vectors Di
such that Di ∈ D, where D is the set of all closed contours and Di is a single-dimensional
list of all points associated with the contour indexed at ’i’. We employ a boundary following
method defined by Suzuki and Be [22] to convert the rastered contour map M to a set of
contours D, with each Di ∈ D representing the boundaries of a surface segment within the
scene. We briefly review the details of this approach in Section 4.2.

Given the basic approach described above, Figure 4 demonstrates the segmentation
quality when applied to synthetic and real-world datasets. The results indicate that noise
and other external perturbations, when not accounted for, can severely impact segmentation
performance. Correspondingly, it is expected that all real-world capturing instruments are
susceptible to such noise and other negative influences. Thus, we continue by proposing
a set of robustification measures that are applied to attenuate noise and other adverse
artifacts that can quickly undermine surface segmentation performance.

Figure 3. Series of steps relied upon to isolate individual surface segments. (a) Initial Scene (usually
depicted by an RGB image). (b) Depth Map in accordance with z = f (x, y). (c) Extracted DD (red)
and CD (blue) features as described in section above. (d) Closed contours generated by a union
operation of DD and CD maps. (e) Final segmentation process separates the surfaces with respect to
their bounding contours. In this case, each contour is represented by a distinct color.

3.4. Robustification of Approach

While the surface segmentation approach presented above may perform well on syn-
thetic scenes, applying such an algorithm on real-world data may produce poor segmenta-
tion results. This is demonstrated in Figures 4 and 5 which contrast the difference between
directly applying a naive surface segmentation approach versus utilizing robustification
measures to mitigate unwanted artifacts. These artifacts are a result of the measurement
noise and other negative perturbations that may hinder the algorithm’s performance. No-
tably, noise resulting from object textures, lighting conditions, pixel dropout, signaling
interference, and countless other external ailments is inherent to any image-capturing
procedure and may introduce volatility that may undermine the segmentation process.
In addition to noise, modern depth sensors utilize a technique called "Time-of-Flight",
whereby an infrared projector is used to illuminate a scene while a light sensor collects the
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reflecting photons and measures the round-trip-time taken to interact with the scene and
return to the sensor. Because of the physical offset between the floodlight projector and
depth sensor, a depth frame may be subjected to a parallax effect whereby the projected
regions that are not visible from the depth sensor’s imaging frustum are presented as a
shadow of obstructed pixels in the depth frame perspective. These shadowed pixels are
called non-depth-return pixels (NDP) and are routinely set to zero, infinity, or NaN to
distinguish from valid pixel values across the scene. Thus, this section deals with strength-
ening the approach defined in Section 3 against this interference to maintain high-quality
real-time segmentation regardless of the scene, camera, or lighting conditions.

Figure 4. Naive surface segmentation approach applied to synthetically generated scene (above)
contrasted naive results applied to an unfiltered real-world scene (below). (left) RGB capture of the
scene. (center) Depth Image. (right) resulting segmentation.

Figure 5. A series of steps needed to robustify a depth frame against noise. (a) RGB Image. (b) Filter-
ing results without any robustification measures. (c) Results with a Wiener filter applied. (d) Results
with Wiener Filter and Sobel Operator. (e) Results with Wiener Filtering, Sobel Operator, and Edge
Smoothing.

3.4.1. Depth Frame Noise Filtering

According to Sweeney et al. [23], frames captured by a depth camera are subjected
to Gaussian noise and other systematic biases such as range noise, whereby the variance
in depth values across time is impacted by pixel distance. We sought to minimize these
inconsistencies by introducing a set of filtering techniques before the segmentation process
is performed on a frame. To begin, we apply a Wiener filter, as shown in (2), to individual
frames to remove any zero-mean Gaussian noise while preserving the topological structures
underlying edges and faces. This is achieved by applying a low-pass filter in which the
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gain is inversely correlated to the variance of a target neighborhood. During this procedure,
non-return-depth pixels (NDP) may disproportionately impact statistical values and are
therefore carefully omitted from all filtering operations. Thus, regions with a high variance
of in-depth values, such as edges, are preserved while regions of low variance, such
as planes, are filtered more aggressively. Figure 5 presents the results of our surface
segmentation output with and without a Wiener filter applied.

Wiener Filter: G(r, c) = µ + σl
σl+σg

[ f (r, c)− µ] (2)

Given a depth frame with marginal noise, derivative operators may greatly exacerbate
the noise profile within the frame, thereby undermining the contouring operation. Unlike a
Gaussian filter or any other low-pass filtering mechanism, a Wiener filter applies a blurring
operation relative to the variance in the spectral density within a local area of the image.
Hence, regions with high variation in depth values are more likely to represent corners,
edges, or more complex patterns within the scene which may require minimum filtering; in
this case, regions showcasing high variance spectral density are left untouched. Likewise,
regions with little variation in pixel values are likely to represent flat regions whereby
significantly more blurring may be applied. For each pixel, a surrounding region is used
to sample pixel values to determine the valid pixel count (αc), local mean (µl), and local
variance (σl) for the targeted pixel ( f (r, c)). Following these calculations, we rely on the
variance across the entire frame (σg) as the representative RMS value of the power spectrum;
this is obtained by averaging the local variances. To maintain edges and corners while
mitigating noise, the filtering coefficient,µ, is imposed at a pixel by a proportionate amount
relative to the local versus global variances. Together, all associated values are used to filter
the noise within the depth frame while preserving quality depth edges and corners for the
Canny edge operation [24].

Beyond the Wiener filtering procedure, gradient operations are applied to the depth
image z to isolate desired features necessary for the surface segmentation process. As
mentioned, gradient operations may exacerbate noise inherent to the depth input; thus,
we rely on a Sobel kernel instead of a generic gradient operator when performing 2D
differentiation. The Sobel operator conveniently applies a low-pass filter after a high-pass
differential operator, thereby, smoothing any disturbances that may have been amplified
by the gradient operation. Figure 5 underscores the benefit of the Sobel procedure versus a
non-smoothing gradient. The additional noise that is filtered is critical to acquiring clean
edges while suppressing false positives.

3.4.2. Temporal Depth Jitter

Given a video stream captured from a depth camera, some depth pixels tend to
oscillate between valid and Non-Depth-Return Pixels (NDP) values. This is especially the
case around boundaries separating NDP and non-NDP pixels. We define this phenomenon
as temporal depth jitter and attempt to compensate by applying a running average across
a set of consecutive frames. Instead of estimating the values for these pixels as proposed
below in Section 3.4.3, we attempt to capture the appropriate value presented by the depth
camera. Thus, given j consecutive frames featuring correlating elements that indicates
continuity within the scene, we average valid pixel values across time while ignoring
invalid values as presented in (3). Because the underlying application for our surface
segmentation procedure is to perform robot grasps, we considered a computation feasible
solution that may sacrifice microseconds of latency for overall accuracy. Thus, in testing,
we found that averaging the prior four frames significantly attenuated noise resulting from
jitter while also providing additional filtering to frame-level zero-mean Gaussian noise.
Additionally, this procedure strengthens edge quality by filtering uncertainty resulting
from noise and other structural biases resulting from the depth sensor.
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Frame Averaging: It(ri, ci, t) =
1

s(ri, ci)
∑t

k=t−j

{
0 if fk(ri, ci, k) = NDP
fk(ri, ci, k) if fk(ri, ci, k)! = 0

(3)

3.4.3. Non-Depth-Return Pixel (NDP) Filling

In addition to zero-mean Gaussian noise and temporal jitter described above, real-
world depth images are also subjected to Non-Depth-Return Pixels (NDP) as discussed
earlier in this section. While pixel jitter oscillates between valid and invalid values, NDP
regions remain invalid across time. Thus, we sought to fill these regions before the seg-
mentation process to maintain consistency across the depth image. This is especially
important between foreground and background regions whereby a uniform separation is
required to accommodate surface or object manipulation by a robot. Thus, we developed
an NDP filling operation to estimate the appropriate values for each depth pixel while
also maintaining continuity across the underlying surface. This is especially important
when applying any gradient operations across a filled depth image where artifacts may
arise from incorrect estimates. This may be the case when estimated values are equal to
those of the surrounding environments in which case applying a gradient operator may
associate 0 in regions that are not specifically constant. As a result, such a method tends to
generate additional artifacts that may undermine the segmentation process. To avoid these
artifacts, the the proposed approach attempts to estimate a value that retains the local pixel
distribution within the neighborhood of the pixel to be set. To accomplish this, we propose
the presented Algorithm 1:

Algorithm 1: The NDP filling process. Each NDP pixel on a valid–invalid
boundary is assigned a the mean of its neighborhood.

Result: Fill NDP regions
while pass < MAX_PASSES do

pass++ ;
{B} = Identify all valid points neighboring an NDP
foreach b ∈ {B} do
{Ωb} = Identify all 3×3 neighborhoods containing b
foreach ωb ∈ {Ωb} do

{µb}←mean(ωb)
end
{Φb} = All NDP pixels adjacent to b
foreach φ ∈ {Φb} do

{φ} = argminµb ({µb}−b)
end

end
end

For each filling pass, for all NDP pixels, φ, neighboring valid pixels are assigned an
expected value associated with the means of all eight-connected neighborhoods containing
φ. While this method does not produce precise estimations of NDP regions, the final
solution allows accurate enough contours that closely match the underlying surfaces. The
resulting offsets are usually within a margin of error of a few pixels from the ground truth.
Such an approach robustifies the depth image from unintended artifacts and uncertainties
as a result of NDP regions, while also maintaining real-time performance as a consequence
of its simplicity. Figure 6 illustrates the filling process and a filled depth image.
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Figure 6. NDP filling passes. Left to right: beginning with initial depth image (left), set boundary
NDP pixels using the proposed averaging technique until NDP regions are filled (right).

4. Implementation

This section describes the implementation details used to perform real-time surface
segmentation on depth maps recorded from real-world data. We apply the approach as
described in Section 3 to perform the surface segmentation procedure, and also employ
the robustification measures to attenuate noise and other adversarial artifacts stemming
from real-world data. We begin by presenting the hardware and software required to
perform the actual experiments. This is followed by an overview of the data structures and
software architecture used to maintain real-time performance. Finally, we present the entire
integration pipeline; from a frame captured from a depth camera to scene segmentation
and finally six-DOF surface pose estimation.

4.1. Software Design Architecture

A depth frame is represented by a 2D map of discrete pixel values. In order to perform
the surface segmentation operations described in Section 1 while maintaining real-time
performance (30+ frames per second (FPS)), we sought to translate the presented continuous
algorithm to discrete pixel-wise operations. This section covers software design details and
the necessary application structures utilized to maintain real-time performance. We touch
on libraries and dependencies used in constructing our application. Data structures and
performance algorithms are heavily relied upon to maintain real-time performance. We
begin this section by introducing the application pipeline and architecture choices used to
maintain faster than real-time performance.

4.1.1. Software and Hardware

During testing, we relied on multiple off-the-shelf RGB-D cameras and online datasets
to ensure our algorithm operated robustly across many input devices. We utilized Mi-
crosoft’s Azure Kinect RGB-D cameras in addition to an online RGB-D dataset (captured
on Microsoft’s Kinect v1 cameras) as inputs to our algorithm. During testing, we rely on
the Azure Kinect sensors, wherein the color sensor was configured to operate at 30 frames-
per-second with a resolution of 1920 × 1080 while the Depth sensor had been configured to
operate at 30 frames-per-second with a resolution of 640× 576. The depth sensors maintain
an operating range of 0.25 to 3.86 m with a depth uncertainty of less than 0.2% and a
random standard deviation error of 17mm. The testing procedure was executed on the
Ubuntu 18.08 operating system. This platform consisted of an Intel Core i5 6600K that is
clocked at 3.9 GHz across 4 physical cores. For the parallel computing tasks, we relied
on an Nvidia GTX 1070 comprising of 1920 CUDA cores clocked at 1683 MHz. Given
these specifications, we were able to achieve nearly perfect surface segmentation while also
maintaining real-time performance at 30 FPS. On the software side of things, we sought to
rely on performant and portable software to maintain cross-platform support. Thus, our
algorithm was primarily written in C++ along with a highly parallel procedures written in
Nvidia’s CUDA. We also relied on the OpenCV computer vision library which allows us to
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integrate the more trivial algorithms into our pipeline. This includes Canny Edge Detect to
visualize our detected edges, and a contour extraction procedure which is used to separate
contours embedded in a 2D frame to a set of 1D vectors defining the contour shape.

4.1.2. System Architecture

One of the main goals in designing our applications was to allow various strategies to
be chained together in such a way as to allow a robot to robustly interact with its environ-
ment in real-time. To accomplish this, we rely on a pipeline architecture approach wherein
each frame captured from a scene is fed into an algorithm stack and a final rendering policy
is presented as an output. The internal group of perception-based algorithms used within
the pipeline to accomplish such a task is commonly known as filters. To maintain real-time
performance, each filter within a pipeline should accomplish its task within 30 milliseconds,
and the entire pass-through time along the pipeline should also not exceed 30 milliseconds.
A brief example of a simple filtering pipeline is present in Figure 7 where a pre-processing
filter captures and performs filtering on an input before forwarding the resulting data to
the next pipeline stage. This process continues until a final consumer stage renders the
resulting data to display. For thread safety, a shared double-ended queue implemented
as an underlying circular buffer is used to transfer information across pipeline stages.
After completing its task, a pipeline filter waits for subsequent data to be provided by
the prior filter. Each filter is allocated a set of CPU threads depending on its performance
requirements. Thus, our application pipeline can capture RGB-D frames on a FIFO basis,
wherein pre-processing filtering is applied as described previously in Section 3.4 before
relaying these frames to the Surface Segmentation process. This process further applies
a series of lower-level filtering algorithm to remove additional noise and capture object
segments within the scene. Because the procedures to perform the surface segmentation
algorithm are performed in series, each executable step underlying the algorithm may also
be considered a self-contained node that could be assigned its pipeline stage. For instance,
the DD edge procedure, and CD edge procedure may have been extracted as an entirely
separate node. We decided to keep these procedures in line to maintain design cohesion.
Moreover, the application architecture allows algorithms to be executed on any arbitrary
device. In this case, the underlying surface-segmentation algorithms utilize the GPU to
accelerate performance. Thus, these procedures were written primarily in CUDA, but GLSL
or general x86 implementations may also be utilized where possible. The individual stages
of our architecture are illustrated in the UML diagram of Figure 8.

Figure 7. An example of a pipeline containing multiple filtering stages.

The surface-segmentation stage of the pipeline outputs an array of closed contours
defined by a list of connected points underlying the contour overall shape. To calculate the
six-DOF pose for each contour, a subsequent plane-fitting stage is appended to the pipeline.
This stage applies a random sampling consensus operation to each surface segment to
estimate its six-DOF pose as described in Section 4.2.4. While beyond the scope of this paper,
a final grasp querying stage could also be outfitted to the pipeline whereby individual
contours are assessed for potential grasping candidates using their contour information
and associated six-DOF pose. Furthermore, in an attempt to maximize performance, highly
parallelizable operations are executed on system’s GPU using Nvidia’s CUDA application
interface. To summarize, a CPU-based implementation is generally executed in series on
the platform processor, which is adept at highly complex branching routines. In contrast, a
CUDA-based algorithm is executed on the system’s Graphics Processing Unit (GPU) and
is dependent on highly parallel numerical routines. Image processing, for instance, relies
on per-pixel mathematical operations to achieve desired results. In this case, each pixel is
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allocated a particular CUDA thread that performs the actual mathematical operation and
stores the desired results to an associated image buffer. As an added performance bonus,
during GPU execution, the CPU thread is also left free to perform complex operations.
As such, in the case of the surface-segmentation pipeline stage, the Depth Discontinuity
operation is initially calculated on the GPU while the CPU prepares for the Curvature
Discontinuity algorithm by allocating the necessary resources. At completion, both the
GPU and CPU results are merged to create a set of closed contours which is then advanced
to the next pipeline stage.

Figure 8. Overall program architecture use to perform surface segmentation and extract 6-DOF
surface pose.

4.2. Software Implementation

Beginning with a depth image received by the Frame-Producer Pipeline node, we
present the software implementation details necessary to transform the input data into a
set of 1D contours embedded in 2D or 3D environments. This is achieved while mitigating
input noise and internal system biases. On completion, we explore localizing potential
contact regions and grasping configuration to execute planar grasping on a specified object.

4.2.1. Segmentation Procedure

We sought to limit our research to a video stream comprising solely of 2D depth data
visualizing a target scene. We also build upon the premise of [19] which states that stable
grasps can be achieved by enacting force closure at contact regions with (i) sharp depth
discontinuities or (ii) locally maximal principle curvature in the depth image. As such, we
follow the multi-stage approach for achieving real-time surface segmentation as defined in
Section 1. We begin with the following data structures:

Depth Frame: dt(.) : R2 → R
Filtered Depth Frame: d f (.) : robusti f ication(dt)
Filtered Depth Value: z = d f (r, c, t)

(4)

Here, dt denotes a 2D array representing a depth frame at time ( t), and ( z) represents
the depth value located at the coordinates ( r, c) at time t. The algorithm begins by applying
the robustification measures to the incoming frames to attenuate noise and other negative
artifacts. To begin, a running average is performed on the previous 5 incoming frames.
As mentioned in Section 3.4.2, this is performed to remove jitter and other range noise
associated with any particular frame. This is followed by a heuristic based filling algorithm,
established in Section 3.4.3, to close NDP regions with the most likely depth values. Finally,
the Wiener filter, as described in Section 3.4.1 is applied to remove zero-mean Gaussian
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noise. This is all accomplished in the Frame-Producer pipeline subsystem prior to being
forwarded to the surface-segmentation subsystem. Subsequently, the filtered frame would
finally be routed to the surface-segmentation subsystem where the contouring procedure is
applied. To identify DD edges representing surface boundaries within the given scene, we
leverage the Canny Edge detect operation to trace regions of high gradient disparity within
a single depth frame. This follows the DD extraction approach defined in Section 1 where
the horizontal derivatives ( Gx), vertical derivatives ( Gy), and gradient magnitude ( IM) are
used to identify regions of high gradient disparity calculated from (5).

Gradient Vector: 5I =
(

∂d f

∂x
,

∂d f

∂y

)T

Gradient Magnitude: IM =

√(
∂d f

∂x

)2

+

(
∂d f

∂y

)2
(5)

The Canny operation considers potential edges as contiguous sets of pixels with
locally maximal gradient magnitudes where the associated gradients points in the direction
perpendicular to the underlying edge. Thus, it locates region of significant discontinuities
within the presented depth image. Though this is able to register edges bounding regions
of high gradient changes, it fails to recognize CD edges within the silhouetted regions of the
scene. Notwithstanding, the Canny operator is implemented according to the literature [24]
to produce edges associated with the scenes’ silhouette. We classify these edges as depth
discontinuity (DD) edges and store them in binary 2D array called DD f rame.

While a DD f rame is being processed, the surface-segmentation subsystem also begins
to isolate internal CD edges. As mentioned in Section 3, curvature discontinuity edges are
highly correlated with significant change in the curvature of the depth frame. Thus, we
establish a series of first principles presented in (6) to isolate these CD edges:

Gradient Direction: Iθ = tan−1
((

∂Id
∂y

)
/
(

∂Id
∂x

))

CD* Edges: 5 ICD =

(
∂Iθ

∂x
,

∂Iθ

∂y

)T
(6)

Instead of relying on the Hessian H as presented in Section 3, we rely on the gradient of
the angular offsets within the vector field F. This allows us to forego complex mathematical
operations such as calculating the determinant of the Hessian, for a more simple approach
of calculating differences in angles. As described in Section 3, the definiteness of the
Hessian matrix is still relied upon to determine weather the underlying curvature is convex
or concave while the magnitude of the angular values are use to determine the curvature.
As a result, we are able to determine CD edges by isolating regions of significant change in
the curvature of the depth image. Similar to DD edge, this is accomplished by performing
a Canny edge detect operation on the magnitude of the curvature values. The isolated CD
edges are stored in a binary 2D array, labeled CD f rame, with positive values representing
regions of locally maximum curvatures in the depth map.

4.2.2. Contour Smoothing

As a result of these operations, we are left with a DD and CD image corresponding
to depth discontinuity coordinate locations ( IDD(.) : R2) and curvature discontinuity
coordinate locations ( ICD(.) : R2). Following these procedures, a union operator is applied
to established the closed contour regions within the scene. This is followed by an edge
smoothing operation performed by a morphological band-pass filter. To accomplish this
we perform the following morphological steps:
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Step 1. A morphological opening operation is employed to obtain the background im-
age, f01, from the binarized contours, Icntrs. The structuring element used in the
opening operation, B1, is designed to be larger than the high-frequency features
that are desired filtered. The concatenated operator is:

f01 = Icntrs∗ ◦ B1 = (Icntrs∗ 	 B1)⊕ B1 (7)

where ◦ represents a morphological opening operation encompassing an erosion
operation 	 and expansion expansion operation, ⊕. This operation expands the
bounds width of the contour edges while maintaining the overall form. High-
frequency features and noisy elements that are smaller than the structuring
elements are thereby excluded.

Step 2. The morphological opening operation is employed to obtain the image, f01 , from
the binarized test image, Icntrs∗ . The structuring element used in the opening
operation is B2, which is similar to the measured feature in shape, but slightly
smaller in size. The concatenated operator is:

f02 = Icntrs ◦ B2 = (Icntrs∗ 	 B2)⊕ B2 (8)

In this case, the measured feature and the noise, whose size is smaller than the
structuring elements, are excluded.

Step 3. The results of morphology band-pass filtering applied to the contour, Icntrs, is
obtained via image differential operations, f01 and f02. The operator is:

Icntrs = f02 − f01 (9)

The resulting binary image removes high-frequency and low-frequency features,
such as kinks and sharp corners, within the contour and presents a smooth set
of lines to be used for segmenting.

Remnants of kinks and other filtered perturbations may present themselves as short
protrusions from an edge after a morphological band pass filter is applied. To remove these
artifacts, we follow the pruning algorithms presented by Jang and Chin [25]. Specifically,
we rely on a lookup table (LUT), to decipher the appropriate morphological operation to
apply given a specific set of structuring elements B as indicated in Figure 9. Relying on
these structuring elements, the pruning process essentially follows the morphological steps
realized in (10) as follows:

I1 = Iin ⊗ {B}

I2 =
8⋃
1
(I1©∗ {B})

I3 = (I2 ⊕ H) ∩ Iin
I4 = I1 ∪ I3

(10)

The process begins by applying a thinning procedure to ensure that the contours are
within the specified width. The results are then convolved with end-point candidates to
isolate all endpoints within the image. We then track these endpoints by performing a
dilation and union operation. Finally, a union operation is able to isolate all endpoint pixels
within the image. This process is applied recursively to isolate and remove all spurs that
may occur within the image. The final result is a smooth contour with high-frequency
elements and subsequent spurs removed. From the resulting binary image of embedding
contours, we are able to isolate individual surfaces from the scene.
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Figure 9. Set of structuring elements used as Pruning templates to decide whether a pixel should be
removed [25].

4.2.3. Contour Separation

Given the filtered binarized image, Icntrs, we sought to separate the representative
contour-like features into a list of vectors of varying length whose elements are the contigu-
ous points representing a contour. To accomplish this, we rely on OpenCV’s findContour
procedure. This routine implements Suzuki et al. [22], Connected Component Labeling
(CCL) algorithm which essentially labels pixels within a binary image with the goal of
isolating boundary pixels. This is accomplished by defining a set of constraints which
may determine whether a pixel is an inner boundary pixel or outer boundary pixel. The
algorithm also keeps track of previously isolated boundaries by labeling these regions with
numerical indices. In addition, the algorithm also generates hierarchies of elements based
on the contour parent contours enclosing child contours. Thus, the algorithm keeps track
of hierarchies by maintaining an index of the previously identified inner and outer indices.
These values are defaulted to 1 which indicates that the image frame is considered the root
contour. Given the necessary parameters, the algorithm identifies the contours within the
depth image by performing the following steps:

Step 1. Raster search for pixels satisfying inner, or outer border conditions, and store
value of previous visited border as current LNBD value.

Step 2. Given a border pixel, assign a numerical index NBD and parent index LNBD to
the bordering pixel and all pixels along this currently identified border.

Step 3. Upon completion, increment NBD and continue raster search from previously
identified border pixel; step (1)

The labeling process is not only able to index individual contours within the scene,
but can also group contours into parent child hierarchies based on whether a contour lies in
the interior of another. This allows us to track groups of contours which may comprise an
entire object and offers potential additional application in the surface merging process. The
final result is a set of arrays representing a list of coordinates corresponding to the contours
within the image. Thus, we are able to extract the individual contours as a vector list of
point describing the bounds surrounding a surface segment. This structure, along with
the contour hierarchies, is passed further through our pipeline to be used for visualization
purposes or for the principle features needed to perform planar grasping.

4.2.4. Identifying 6-DOF Surface Pose

Figure 10 presents a set of six-DOF poses associated with the segmented surfaces.
This is achieved by first applying the proposed segmentation procedure to obtain a set
of contours {S}. The subsequent stage of the algorithm extracts the six-DOF pose of the
surface segment bounded by the selected contour Di, where the six-DOF pose is comprised
of the central position of the surface in addition to 3 degrees associated with orientation.
Thus, given a camera’s intrinsic parameters K, we are able to project the depth image into
a point cloud using the matrix transform P = K−1[x, y, z]T , where x, y, and z are the 2D
coordinates and depth values of the 2D depth image. This results in the transformation of
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our surface into its associated location in 3D camera space. To determine the centroid of
the surface in camera space, we first determine the centroid of the associated contour in the
2D depth-image space. This is achieved by averaging all points across a selected contour,

c =
1
M ∑M

j=1 Di j, where i is the index of the selected contour for the surface whose six-DOF
pose is desired. The 3D camera-space position is determined by directly transforming
the previously determined centroid location, C = K−1[cx, cy, f (cx, cy)]T . We then attempt
to determine the the orientation of the selected surface by means of plane fitting using
a Random Sampling Consensus (RANSAC) algorithm. To summarize, we generate a
random consensus set, R, of points derived from the 3D camera space and bounded by
surface contour Di. We also define k super-sets of randomly sampled sets G ∈ R3, where
each element Gj in G is a random set of 3 points derived from 3D camera space bounded
by contour Di. To expand, element Gj contains 3 non-collinear points defining a plane.
Thus, given k iterations where j identifies the iteration from 1 to k, a plane Gj ∈ G is
selected and the distances distj is define between each point in the consensus set, R, and
the iterated plane Gj. Thus the plane Gα that best fits the surface segment Di is determined
by maximizing the formula max(distj < THRESH), where THRESH is the maximum
allowable distance from the points to the plane. Thus, the best fitting plane, Gα, is selected
and its normal axis Anormal or Aroll further used to identify the pitch and yaw axis of the
surface. The yaw axis is obtained by performing a cross product between the calculated
normal axis and the general up axis, Ayaw = Aroll × Z. The pitch axis is then determined
by the cross product between the surface normal and the previously determined yaw axis
Apitch = Aroll × Z. As a result of these operations, the final six-DOF pose of the surface
can be represented as [Cx, Cy, Cz, Apitch, Ayaw, Aroll ]

′. We note here that, given a camera’s
extrinsic parameters, these parameters could be trivially transformed to world orientations
to aid in robot manipulation.

Figure 10. Illustration of 6-DOF Surface pose estimation. (Left) Scene. (Center) Contours. (Right)
Point Cloud showcasing various surface poses.

5. Results

This section presents the image segmentation algorithm applied to multiple imaging
sources. Specifically, the OSD dataset is utilized to contrast application performance against
Jabalameli and Behal [19]. (Object Segmentation Dataset (OSD) has been collected by
researchers in Vienna University of Technology for the purpose of segmenting unknown
objects in RGBD images. This dataset consists of 111 manually annotated RGBD images
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representing table-top isolated objects, stacked objects, and occluded scenes. Diverse
kinds of objects in terms of size and shape are included in OSD and these objects are
boxes, cups, bowls.) Furthermore, the segmentation procedure is applied to various
scenes streamed through Microsoft’s Kinect Depth Camera to showcase the improved
segmentation performance on a relatively modern RGB-D capture device. To review, for
testing purposes, the algorithm has been applied on a variety of scenes, from basic single
object scenes to, highly cluttered scenes filled with variously shaped objects that have
not been previously identified. These scenes have been selected to present objects of
diverse shapes, sizes, and poses. Performance metrics, such as segmentation accuracy,
segmentation run-times, accuracy relative to the number of objects within a scene, and
run-time length relative to the number of objects within a particular scene are presented.
To elaborate, segmentation accuracy corresponds to the total number of positive surface
segments identified within a scene with the true number of surfaces that are present.
Likewise, segmentation run-time, represents the total time taken between receiving a single
frame of a particular scene and the time presented after the segmentation procedure has
been completed. Both accuracy and segmentation run-time performance are also assessed
against the number of objects within a given scene. Finally, we conclude with a qualitative
results to emphasize the surface-segmentation quality across numerous test scenes of
varying levels of clutter. As for the evaluation metrics, the authors aimed to identify
groups of surface patches that possibly belong to the same object (perceptual grouping)
and categorized the collected scenes into different levels of complexity. For evaluation
purposes, eight images were chosen from the OSD with different complexity levels and
all the reachable edges for the existing objects were manually marked and considered
as graspable edges. If each graspable edge is detected along with correct features, it is
counted as a detected edge. In addition, a surface segment is determined graspable if it
provides at least one planar force-closure grasp in the camera view and is counted toward
the available ground truth surface. In a similar way, graspable ground truth object, and
detected object are specified. In this terminology an object is graspable, if there exists
at least one feasible grasp configuration compatible with the proposed framework. In a
similar way, we consider an object as detected, if the algorithm provides at least one 6D
grasp configuration.

5.1. Performance Comparison

This section scrutinizes the segmentation performance as compared with the results
presented in [19]. Because the primary source of comparison is the OSD dataset, the
section is primarily focused on static images. As such, the principle objective of this section
involves isolating all surface segments within a particular scene and labeling the presented
edges as either graspable or non-graspable. It is noted that graspable edges satisfy the
convexity test as described in Section 3. To compare our results with [19], we select scenes
that are referenced in that research. A select set of these scenes is presented in Figure 11.
Scenes are chosen to represent a diverse set of objects and scenarios to challenge even the
most state-of-the-art segmenting procedure.

Figure 11. The subset of images presented by [19] during their simulation illustration
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Ground truth data presented by Jabalameli and Behal [19] have been used as the
primary mean of comparison. Ref. [19] defines a graspable surface segment as an edge that
provides at least one force-closure grasp in the camera view. Thus, it is possible to utilize
the isolated closed contours, as discussed in Section 3, by bounding the surface segments
to distinguish graspability. This is achieved by simply correlating closed contour convexity
(as discussed previously in Section 3.2) to graspability. Thus, a direct comparison could
be invoked between [19] and the presented work, including graspable edge classification.
Table 2 contrasts the quality of the proposed algorithm against the results presented in [19].
Comparing the presented results underscores the significant gains that the proposed surface
segmentation approach has over the prior implementation.

Table 2. Column comparing the number of Detected objects, surface segments, and edges with
Jabalameli and Behal [19]. GT: Ground truth; LC: low clutter; HC: high clutter.

Scene GT. Object Proposed [19] GT. Surface Proposed [19] GT. Edge Proposed [19]

1 Boxes 3 3 3 6 6 6 17 17 14
2 Boxes 3 3 3 8 8 8 20 20 17
3 Cylinders 3 3 3 6 6 5 12 12 10
4 Cylinders 5 5 5 10 10 9 20 20 19
5 Mixed - LC 6 6 6 13 13 9 28 28 21
6 Mixed - LC 7 7 7 13 13 9 28 28 22
7 Mixed - HC 11 11 11 24 24 17 55 53 42
8 Mixed - HC 14 14 10 22 22 16 49 47 33

100.00% 92.31% 100.00% 77.45% 98.25% 77.73%

Our review of the data shown in Table 2 showcases not only the significant gains in
the amount of positively identified surface segments, the proposed approach also betters
the approach in [19] by successfully labeling edges according to graspability. Moreover, it is
shown that 99% of all edges across the chosen scenes are positively identified as graspable
or non-graspable. Furthermore, the surface identification results showcases near perfect
scores across the chosen scenes. Likewise, object identification, which deals with identifying
all surfaces for a particular objects, presents near perfect results for the chosen scenes. In
comparing run-time performance, the presented algorithm averaged 15.6 milliseconds from
the time take to receive a frame to an associated output. In contrast, Ref. [19] notes that
the required time needed to proposed edge detection procedure averages approximately
281 milliseconds. These results underscore significant gains achieved by adopting the
proposed robustification measures coupled with highly parallel software architecture
needed to maintain peak computing performance.

5.2. OSD Dataset Performance

To better understand the overall performance, the framework was executed across the
entire OSD dataset. During this test, the proposed framework achieved an average accuracy
of 91.51%. In addition, the average performance for each part of the framework has been
presented in Table 3. Notably, the approach averages 15.9 ms to segment an entire image.
The run-time standard deviation was recorded at 2.6 ms. Given these measurements, we
consider the application run-time to be practically invariant to the number of objects within
a particular scene. Additionally, the six-DOF surface pose estimation required an additional
1.2 milliseconds on average to compute per selected surface segment. Thus, the average
run-time across the entire pipeline is approximately 16.8 milliseconds. The presented
time is inclusive of additional overhead required to manage system resources such as
CPU-GPU inter-process communication, and general purpose memory management and
system routines.
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Table 3. Average performance in milliseconds across individual stages of the segmentation pro-
cess. Total time includes the sum of all operations in addition to post-processing procedures and
system overhead.

NDP Fill DD Opr Wiener Sobel CD Opr Canny Morphology Validation Total Time

0.66 ± 0.0 0.21 ± 0.0 2.10 ± 0.3 0.84 ± 0.0 0.36 ± 0.3 0.34 ± 0.3 4.80 ± 0.5 1.87 ± 0.2 15.9 ± 2.6

Figure 12 presents a graph comparing process run-time against total objects within a
particular scene. According to the figure, it is show that the algorithm is executed in near
constant time. Figure 12, also illustrates application accuracy versus the level of clutter
within the environment. While the approach maintains great accuracy under less cluttered
environments, accuracy falls to 85% for highly cluttered environments.

Figure 12. Left: Number of Surfaces in a scene versus execution time. Execution time is invariant to
scene complexity. Right: Accuracy versus number of surfaces within a scene.

5.3. Qualitative Results

In additional to quantitative results, qualitative results are all presented to showcase
segmentation quality across scenes with varying levels of clutter. Figure 13 illustrates
these qualitative results across the OSD dataset. The isolated surfaces are coded a distinct
color for identification purposes. While the algorithm does not currently apply semantic
information when performing the segmentation process, it is apparent that the approach
is able to robustly identify individual surfaces of unseen objects within varying environ-
ments. Furthermore, the algorithm is able to successfully segment objects differing in
shapes—from cylinders, and boxes, to more complex objects like cups and upside-down
bowls. It can be observed that the objects are not placed in any particular order but are ran-
domly strewn about, with significant variations in their poses. Nevertheless, the proposed
surface segmentation algorithm is able to identify the vast majority of surfaces within the
presented scenes, and is able to accurately provide a six-DOF pose to interact with these
desired surfaces.

Figure 13. Qualitative surface-segmentation results of cluttered scenes from the OSD dataset. The
results presents the case that our proposed algorithm is able to capture surfaces across cluttered scenes.
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In addition to the OSD datasets, Figure 14 presents the algorithm’s performance on
real-time data taken from Microsoft’s Azure Kinect camera. Given a higher quality depth
sensor, the presented algorithm is able to better capture individual surfaces across cluttered
environments. Even with abnormal poses, the proposed approach maintains real-time
performance and high segmentation accuracy as can be seen in the video demonstration
provided in [21]. These qualitative results underscore a superior level of robustness as
it relates to unseen objects and scenes. Concisely, the proposed algorithm demonstrates
an acute level of invariance to rotation, scale, lighting conditions, clutter, and occlusion.
Moreover, the proposed approach remains highly effective at segmenting objects even in
noisy environments due to the robustification measures that are applied.

Figure 14. Qualitative surface-segmentation results of scenes streamed form Microsoft’s Acure
Kinect Camera.

6. Discussion

In this section, shortcomings relating to contouring quality and segmentation run-time
performance are discussed. To begin, small artifacts resulting from unfiltered noise may
present themselves as false-positive contours. Though many of these artifacts are a result
of transient noise that may generate fleeting contours, some noise may produce artifacts
that may persist across time. Smaller artifacts are trivially removed by filtering contours by
size. Consequently, applying such an operation removes contours in the scene after the
formation process, resulting in non-uniformly shaped contours which may not encompass
the entire surface segment. While most of these persisting artifacts are small enough to be
filtered by size, for still frames, larger transient artifacts may persist across frames and are,
therefore, more difficult to filter by size or by transient noise. In this case, these contours
routinely present themselves as subcontours dividing an actual surface segment. Likewise,
false-negative contours may arise as contours may be erroneously merged during the
robustification phase. More precisely, while we attempt to utilize a 3× 3 kernel size for the
majority of our convolution and morphological operations, edges that are relatively close
together may be merged due to resolution constraints and distance of the surface from the
camera. While this may cause a hindrance with lower resolution cameras, the presented
approach was able to decipher edges as thin as 5 mm with the camera approximately 1 m
away at a resolution of 640× 578. A corollary of this would be that, given a high-density
depth frame, our proposed approach should be able to exceed the performance presently
established in this presentation. In addition to the surface segmentation quality, Figure 12
appears to represent the non-intuitive result that run-time speed is inversely correlated
with scene clutter. This discrepancy is a consequence of the contour formation and filter
procedures defined in Sections 4.2.2 and 4.2.3 where larger surface segments require greater
execution time to calculate contours details such as size. This results in greater run-times
for less cluttered scenes with larger objects.
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7. Conclusions

The presented work relies on a first-principles-based approach to segmenting object
surfaces within a depth image. This is achieved by identifying and combining discontinuity
regions across the depths and curvatures of a depth image. In addition, as shown in the
progression in Figure 5, numerous robustification measures are applied to filter noise and
other artifacts that are inherent to any real-world data capturing system. Furthermore,
given a segment surface, a six-DOF pose is estimated and designated as an end-effector
approach vector for object manipulation. By deferring to algorithms presented in [19],
a stable grasp can be achieved by performing force and torque closure on the edges of
an object’s surface. Thus, a never-before-seen object within an unstructured scene can
be manipulated as desired given the outputs of the presented algorithm. Finally, it is
demonstrated that the segmentation procedure can achieve a high level of accuracy, even
in cluttered environments. Moreover, the segmentation and pose estimation procedures are
performed faster than real time and are shown to be more or less invariant to the number
of objects in the scene. This allows a robot to optimize strategies through querying grasps
and other manipulation techniques by merely altering its perspective. Future research
may present a means of merging surfaces to form objects, which may further allow the
ability to rank graspable objects based on their relative locations and orientations within a
scene. Insofar as the presented software implementation currently stands, this could be
implemented as an added pipeline stage to maintain real-time performance.
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