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Abstract: Small-scale production is relying more and more on personalization and flexibility as
an innovation key for success in response to market needs such as diversification of consumer
preferences and/or greater regulatory pressure. This can be possible thanks to assembly lines
dynamically adaptable to new production requirements, easily reconfigurable and reprogrammable
to any change in the production line. In such new automated production lines, where traditional
automation is not applicable, human and robot collaboration can be established, giving birth to a kind
of industrial craftsmanship. The idea at the base of this work is to take advantage of collaborative
robotics by using the robots as other generic industrial tools. To overcome the need of complex
programming, identified in the literature as one of the main issues preventing cobot diffusion into
industrial environments, the paper proposes an approach for simplifying the programming process
while still maintaining high flexibility through a pyramidal parametrized approach exploiting cobot
collaborative features. An Interactive Refinement Programming procedure is described and validated
through a real test case performed as a pilot in the Building Automation department of ABB in
Vittuone (Milan, Italy). The key novel ingredients in this approach are a first translation phase,
carried out by engineers of production processes who convert the sequence of assembly operations
into a preliminary code built as a sequence of robot operations, followed by an on-line correction
carried out by non-expert users who can interact with the machine to define the input parameters
to make the robotic code runnable. The users in this second step do not need any competence
in programming robotic code. Moreover, from an economic point of view, a standardized way of
assessing the convenience of the robotic investment is proposed. Both economic and technical results
highlight improvements in comparison to the traditional automation approach, demonstrating the
possibility to open new further opportunities for collaborative robots when small/medium batch
sizes are involved.

Keywords: collaborative robots; small-scale production; skill-based programming

1. Introduction

The increasing diversification of customer needs as well as greater regulatory pres-
sure [1] add further costs and complexity to industrial operations. Companies throughout
the world have embraced mass customization in an attempt to avoid these pitfalls and pro-
vide unique value to their customer in an efficient manner. Readily available information
technology and flexible work processes permit the customization of goods or services for
individual customers in high volumes and at a relatively low cost, but mass customization
can still produce unnecessary cost and complexity. Customers can no longer be thought of
as members of a homogeneous market grouping. In fact, the concept of markets also needs
to be redefined as customization becomes more commonplace.
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Instead of focusing on homogeneous markets and average offerings, mass customizers
have identified the dimensions along which their customers differ in their needs. These
points of common uniqueness reveal where every customer is not the same. In addition,
it is at these points that traditional offerings, designed for average requirements, create
gaps in customer satisfaction: the difference between a company offering and what each
customer truly desires [2].

Due to this, automation is currently undergoing a strong process of evolution, keeping
the pace with an economic context characterized by dynamic manufacturing systems:
demand becomes more and more unstable, with batches of production shrunk and highly
customized, requiring companies to be incredibly flexible in changing from one production
to another quickly and cheaply. In such production systems, as well as in artisan enter-
prises, robotics penetration is rather low due to the limiting characteristics of traditional
automation: rigid, fixed to a single process and demanding steady and high volumes, to
repay the large investment costs and risks.

To meet these needs, scientists around the world are trying to implement modern
solutions to traditional robot controllers aimed at defining control procedures to allow a
safe interaction between human and robot [3] and advanced programming methods based
on the physical interaction between human and robot (e.g., learning by demonstration [4],
gesture and voice communication [5,6]).

Some experimental user interfaces are also being proposed for traditional industrial
robots, since, due to the specificity of operations they can carry out, the need of adapting
their control programs to the changing assortment is an important issue [7–9]. However,
collaborative robots have certainly a great potential to satisfy the needs of this variable
customer demand [10,11]. They are often used as traditional automation, i.e., fixed to
a single process with the only advantage of not requiring safety cages and therefore
lowering investment costs [12]. On the other hand, they could be exploited on assembly
lines: dynamically adaptive to new production requirements and easily reconfigured and
reprogrammed to the changes in production line [13]. The idea previously investigated by
researchers, and further explored in this paper, is to transform these robots into tools that
can be applied by non-expert robotics users into the desired production process when they
are actually needed, according to the daily production agenda, in a fast and easy way.

Four main challenges arise when trying to implement a methodology to exploit cobots
in the above-mentioned conditions; these are the starting points of this project:

• Expert engineers are needed for designing, programming and testing the
robotic application.

• Programmers need to know the workstation requirements for developing the precise
production process.

• The robot adoption in such production process conditions has to be technically justified,
since small and varied batches are involved.

• Investment costs are certainly significant, and the economic return has to be assured.

Robot programming is recently evolving from the traditional written language to
new more accessible directions. For example, kinesthetic teaching applied to a walk by
demonstration approach simplifies a lot the workload required for programming a machine,
and its path towards industry is on track, being regulated by ISO/TS 15066.

An interesting approach in the field of easy-programming research is the task-level
layered framework, as described in [14]. A productive process, referred to as a task, is
constituted by a sequence of standard, modular and parametric blocks named skills [15],
arranged as a state machine architecture [16]. Skills may have different structures, implying
a motion and a trajectory component as in [13], or have a slightly modified template as
in [17–21]. In general, a skill is composed of a pre and post check phase, where preconditions
and objectives are evaluated, and an execution phase in which elementary activities or
component manipulation are performed. It must be remarked that most state-of-the-art
task level programming still requires engineers or experts for creating a real industrial
application, thus reducing the operative range of non-expert users. Some recent work is
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aimed at developing a framework that alleviates the problem of a high programming effort,
e.g., exploiting the advantages of Learning by Demonstration, Learning by Programming
and Learning by Interaction, combined [22].

Another relevant issue is the impossibility for programmers to standardize, in advance,
the workstation, which would be needed for a reliable utilization of robots in the production
process. Indeed, centering and positioning must be considered to guarantee the typical
precision recognized in robotic applications. In [23] the robot can find the workstation center
by means of its vision system, recognizing a QR code and using it for the correct positioning
of the machine’s Cartesian origin. Other calibration methods have been investigated by
researchers, for example in [24] by applying hand-eye calibration or laser triangulation
aided by image processing.

The last issues to be considered are related to the economic feasibility of the robotiza-
tion process. Investing in robotics and automation requires great capital, usually repayable
only if high and constant volumes are involved. The economic investment return can be
guaranteed only by transforming robotics, typically rigidly utilized as a stable workstation,
into a flexible tool that can be applied to different processes without involving significant
costs or times.

The methodology proposed in this paper, named Interactive Refinement Programming
(IRP), allows non-expert users to newly develop a production process by refining, step by
step, built-in standard and parametric tasks in an easy way. The elements of novelty in this
approach is a first translation phase carried out by engineers of production processes (in
which the process to be carried out is translated into a robotic metalanguage based on skills),
followed by an on-line setup and correction carried out by the non-expert user. Moreover,
an economic analysis to generate a standardized way of assessing the convenience of the
robotic investment is proposed. This also allows the production department to decide lot
by lot the convenience of carrying out the production in a robotic or manual way.

First, a company department skilled in robotics, e.g., engineering of production pro-
cesses, is responsible for a first translation of the production process from the manual
activities, typically assigned to the operators, to a list of skills, thus creating a robotic
metalanguage. This code structure is built by adopting pre-built skill blocks (which is a
topic widely studied in the literature [17,18]) developed in our case by using the ABB code
robot studio. At this stage the code is still not executable by a robot, since the created list of
skills still needs an initialization and to be characterized by the actual process data. The
process is then refined and finalized by a non-expert user into the real production process,
by inserting the required parameters and correcting possible errors that may arise during
its execution. From the point of view of industrial operation, this approach allows the shift
of some operations typical of the production line department to the design stage. Each
product can be conceived directly with its assembling procedure, and the robotic code
structure can be directly given as an output of the design stage.

In production lines, non-skilled operators in the use of robots are enabled to provide
input data to the pre-built code. The robot itself already has an inbuilt behavior that allows
skill initialization. Moreover, the machine is able to drive a correction phase: even if each
skill is standardly programmed, and the robot thus knows how the required activities
or manipulations must be carried out, the specificities of each different workstation may
cause some errors that make the task not properly executable. Built-in correction strategies
are then preliminarily implemented, so that the machine can guide a non-expert user in
this correction.

The paper is organized as follows: Section 2 gives an overview of the proposed
methodology, of the exploited hardware and of the developed software. Section 3 details
the Interactive Refinement Programming procedure. In Section 4 an economic analysis
to evaluate a standardized way of assessing the robotic investment is proposed. The
industrial test case and results are described in Section 5 and, finally, conclusions are drawn
in Section 6.
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2. Overview of the Proposed Methodology

The intrinsic properties of interaction and security of collaborative robots permit
the flexibility needed in the reference context for this work, i.e., the possibility of being
relocated and reused in an easy way. A widespread solution of cobots available on the
market is the single-arm configuration with 6 or more Degrees of Freedom (DoF) and a
payload on the order of 5–10 kg. An exception is made by the ABB YuMi, a double-arm,
7 + 7 DoF robot with a payload of 0.5 kg per arm. All the mentioned cobots present useful
features that are exploitable to achieve the target of flexible implementation, such as the
hand-guiding modality and the multi-modal interaction system (composed of a vision
system, voice recognition and force/torque sensing), which are both very useful to interact
with humans.

To obtain the required high level of flexibility, the workstation and all the related
equipment (grippers, pliers or input and output systems) must be as general and standard
as possible. A suitable solution consists in developing a general frame and some specific
dowels per product, allowing for variation in as few components as possible when changing
the production process. Obviously, the possibility of developing some specific components
as well is still valid, but it would increase the implementation and setup times.

To increase system mobility, it could be useful to mount the robot on a cart, which can
be manual or automatic, and to organize the shop floor into different fixed workstations
which can be used both by human operators and robots independently. Each station should
be of course provided with a proper blockage body and with a calibration system useful to
correctly setting up the workstation itself. (This last part of activity is not carried out in the
present work.)

As for the software, in order to obtain a tool that can be completely handled by
a common robot-non-expert worker, the solution adopted is a pyramidal parametrized
programming approach: a layered pyramidal framework composed of Primitives, Skills
and Tasks, depicted in Figure 1:

• Primitives are the basic robot code command lines.
• Skills are blocks of code, composed by Primitives, that allow the robot to execute a

specific operation.
• Tasks are logical and precise sequence of Skills used to allow the robot to complete an

entire production process.

Figure 1. Layered pyramidal framework.

Each block of code, named Skill, represents a real activity or operation performed by
the robot on the product to be manufactured. It is composed of a series of basilar command
lines, called Primitives. The choice of creating a Skill equivalent to a production step is
driven by robotics experts, in charge of developing Primitives and Skill libraries according
to what the operator is used to doing during manual operations.
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The structure of the considered Skills is divided into three main parts, reported in
Figure 2.

Figure 2. Structure of a standard and parametric skill.

• Pre-Check: the preliminary verification that has to be done before starting the execution
of operations; the effective Execution can start only if all the Input States of the system
have been verified.

• Core Execution: the parts that effectively execute the working cycle; the Core is always
preceded by an initial movement to the working position, before starting the actual
operation on the workpiece. In parallel to the Execution, a Continuous evaluation of
the process in the workstation is carried out, and, consequently, certain methods to
handle occurring errors are implemented.

• Post Check is performed when the working cycle is completed, in order to verify
if the Core has correctly been executed and if the Output States are equal to the
expected ones.

When a sequence of skills is created, each block, therefore, has Input and Output States
which represents all the variables necessary for the execution of the current working cycle
and for the execution of the following one.

Tasks, at the top of the layered pyramidal framework of Figure 1, are composed by
connecting different Skills in sequence. The sequence can also present different branches,
in a sort of state machine in which each block is executed when the value of the input state
is correct. Different branches of the sequence can be thus executed on the basis of what has
happened before.

The chosen Skill architecture is then very useful in order to keep what is happening
under control and to avoid inconsistencies or mismatching errors. Input and Output States
of each Skill, and thus Pre and Post Checks, are fundamental for the correct and congruent
creation of a complete robot running code.

In the above-described scenario, the competencies required for creating a robotic
application are split among different players. Robotics experts write the code for primitives
and skill libraries, which are created after an analysis of all the involved production
processes in the company, to make them as standardized as possible. The job of creating
the application—generating a list of skills and thus creating a robotic metalanguage—is
then assigned to the production process engineering department, who already possess
the required competencies. Finally, shop floor non-expert users merely have to set input
parameters for each skill during a Teaching Phase (which specifically relates each skill
to the particular process), and to carry out, as a second step, a Correction phase to fix
occurring errors. Non-expert users are helped in this phase by a software managing the
entire teaching and correction procedure through a Graphical User Interface. These two
phases will be described in detail in the following section.

Skill based programming has been extensively studied in the literature [17,18]. In
this work, it has been adopted as an instrument to define and test an overall procedure
accounting for every step in the flow of operations in an industrial environment, ultimately
enabling the fine-tuning of a robotic cell by non-skilled operators.



Robotics 2022, 11, 9 6 of 13

3. Interactive Refinement Programming Procedure

This section describes the Interactive Refinement Programming (IRP) procedure,
through which non-expert users can carry out the teaching and correction phases, ul-
timately leading to task execution. The main steps of the IRP are represented in Figure 3.

Figure 3. Steps of the Interactive Refinement Procedure (IRP).

3.1. Setup

Engineers in charge of designing and developing new products and manufacturing
processes have to define the skill tree being executed based on operations traditionally
done by hand, generating a list of skills in a robotic metalanguage. This sequence, at this
stage, contains general purpose items that can still take shape accordingly to the context
of the considered process. The task is not yet ready to be executed by the robot, since the
inputs of each skill are still to be defined. This phase, named the Translation Phase, also
includes the design and development of specific hardware or software components, in case
specific adjustment of hardware or software, different from the general bundle, is required.

After the Translation Phase is completed, the operator in the production department
receives the list with the sequence of Skills and the instructions to manage production (i.e.,
instructions and information for the operators on how to handle the workstation). The
workstation can be set up and all the equipment mounted and verified according to the
prescriptions in the list. When the station is ready, the setup phase is over. The operator
uploads the sequence of Skills into a manager software in charge of driving the beginning
of the Teaching phase for each Skill.

3.2. Teaching

If the manager software detects it is the first time a specific production process is
implemented on a robot, a procedure to insert the precise input parameters for each skill is
run. During this teaching phase, the user, guided by the manager software, exploits the
interaction capabilities of the cobot to set the correct parameters needed for the execution
of each skill. This procedure can be done in different ways, for example by using the
keyboard and moving the robot into the correct positions using the teaching pendant (as in
the present work), or by exploiting kinesthetic teaching (and thus moving manually the
robot in the necessary positions) or, finally, by exploiting gestures [5] and voice recognition
systems [6,25] or even more advanced interaction methods [26].

3.3. Correction

Once all the input parameters have been assigned, the robot contains an effectively
runnable program. However, the execution could still find errors that should be detected
in advance and corrected. Thus, a Test and Correction phase is performed: each operation
is executed slower than the actual executing speed, so that the operator can supervise and
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intervene if any error or problem occurs. In such a circumstance, the program stops and the
issue can be recovered through proper editing. Some typical problems are related to the arm
movements (e.g., singularity points, wrong configurations, out of reach points or physical
interference with other objects in the working area) or to the gripping/contact forces.

Some predefined corrective packages have been developed and preinstalled into the
manager software to drive error recovering: this is the fastest and most straightforward
procedure, which, however, requires all the possible occurring errors to be known in
advance to permit the development of a pertinent correction procedure for each one. The
list of correction packages developed is the following:

• Automatic Trajectory Generator.
• Waypoints Addition: the movement of the robot can be stopped and some passing

points can be added to the path.
• Avoid Singularity.
• Lead by Demonstration: the operator drags the robot along the desired path between

two points and the robot records the trajectory in order to re-execute it.
• Force routine: the robot closes the gripper repeatedly around an object, at each

iteration increasing the force until the operator confirms that the object has been
grabbed correctly.

When the Correction phase has been completed for each Skill, a low-speed test is
performed in order to verify the correctness of the overall task.

3.4. Execution

At this point, the Task is ready for the Execution. The complete IRP procedure is
obviously necessary only the first time that the process is implemented: the parameters
are then saved and made available for the next time the same product will have to be
manufactured. Nevertheless, each time a task has to be redeployed, the station must be
recalibrated, and thus it is appropriate to initially perform a Test Execution and, eventually,
again the Teaching and Correction steps. When everything is correct, the production cycle
can finally start.

In manufacturing factories whose production is highly variable and whose products
are customizable, it may occur that a production process for a customized product is
slightly different from the process of the basic product. Thus, this solution allows for slight
modification of an existing Task and for saving this as new one by adding some other skill
branches to the state machine tree. This would maintain the desired grade of flexibility
required by these kinds of production systems.

4. Economic Analysis

Investing in robotics requires high costs that should be paid back by the possibility of
reducing labor hours, saving annual workforce costs or increasing production capacity.

In order to assess the economic convenience of installing a robotic cell, a deeper focus
on the production activities of the department is needed. Every process should be analyzed
to First evaluate its “robotic feasibility” (i.e., complexity of the operations to be carried
out by the robot) and then its economic impact. The threshold value Nthr for the lot size
that makes the adoption of robots convenient is computed by comparing the total robot
setup time Trobot setup (from off-state to application finalized) with the time that would be
required to the operator if production activities were performed manually. These two times
are equaled in Equation (1):

Trobot setup = Nthr × trobot act. + Tman setup for robot activities (1)

On the left side of the equation, the term Trobot setup represents the robot setup time,
consisting of the sum of:

• Robot positioning in the specific workstation (automatically or manually) and anchor-
age through a mechanical or magnetic braking system.
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• Robot controller startup routine.
• Setup of the hardware components required for a correct execution of the task and

product feeding.
• Teaching, correction and low speed test phases for every skill composing the Task.

On the right side of Equation (1), trobot act represents the manual cycle time, per unit, of
the activities that should be instead allocated to the robot. When multiplied by the number
of pieces in the lot (Nthr) this gives the time that an operator would need to manually
perform all the batch operations. Finally, Tman setup for robot activities is an additional setup time
of those activities that should be made by the workforce in standard manual operation,
and that instead can be allocated to the robot in the automatic procedure. The lot threshold
value Nthr obtained by Equation (1) can finally be multiplied by a safety coefficient to adopt
the robot in a more conservative way, only when the saved hours are a relevant percentage
of the required workforce time.

The annual working hours saved for the specific process j (hsaved j) are then computed
as in Equation (2) only taking into account the batches i bigger than the defined threshold
value Nthr, which can therefore be carried out through a robotic cell. In the Equation, the
saved time is evaluated by summing up, for each batch i, the manual cycle time of the
activities to be automatized (Nbatchi,j

× trobot actj
) and the setup time that would be necessary

to the operator if the activities were performed manually and by finally subtracting the
time needed to setup the robot.

hsaved j
=

suitable batches

∑
i

(
Nbatchi,j

× trobot actj
+ Tman setup f or robot actj

− Trobot setupj

)
(2)

Dealing with the overall investment, monetary benefit is computed in the easiest
scenario by summing up, process by process, the freed person-hours multiplied by the
hourly workforce cost. On the other side, the investment costs are the robot, its moveable
station, and all the general and process-specific hardware and software costs for developing
the required components or software modifications. Comparing these fixed costs and the
annual savings, it is possible to compute the payback time and to assess the convenience
for the case of interest.

Since the target companies of the proposed work deal with a truly dynamic market
request, in order to introduce variability in the study, a Monte Carlo analysis has been used
to simulate the demand planning and the consequent outcome on the production process.

Starting from the historical data for every demanded product of the portfolio, the
probability density functions of orders’ date/size and yearly frequency have been simulated,
and random values have been extracted. The constraint of robot production capacity has
also been introduced, and the computation of annual savings has been repeated 150 times
to get a distribution of the investment benefits, whose average has been used for computing
the payback time.

A specific performance indicator on an N-year basis, named Implementation Efficiency,
has been created for benchmarking different processes in light of robotic implementation.
This indicator is computed, as in Equation (3), as the ratio between an equivalent net saving
(i.e., savings Sj minus implementation costs in HW and SW) and the equivalent workforce
cost (computed by multiplying the hourly cost by the total man cycle time necessary to
manually perform all the activities).

ηN =
Sj −

Cimpl
N

C€/h × tcycle tot/y
(3)

In the equation, N is the year horizon upon which the indicator is computed. The
equation thus computes the ratio between the yearly net savings if automation was applied,
and the production costs if the operator performed manually all the activities.
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5. Industrial Test Case

The proposed methodology has been tested in an industrial environment, in collab-
oration with the ABB Building Automation department in Vittuone (Milan, Italy). This
factory unit, dealing with the manufacturing of personalized electronic components, is
aligned with the project target, since its production is highly unstable and customized and
it involves small batches and large variety and variability.

The test case is carried out on the production process regarding firmware updates in
motherboards for security sensors. This working procedure is rather simple, but it contains
crucial ingredients for assessing the feasibility of the proposed method. The board has to be
picked out from an input tray, placed on a cable fixture connected to the PC, updated and
then picked out and placed on the output tray. The ABB YuMi two-arm robot was used.

For the test case execution, the following required hardware and software was developed:

• Hardware: a multi-board 4× 4 tray module, ad-hoc fixture and specific pliers (3D printed).
• Skills: pick and place are the two most important skills developed, completely standard

and parametric, allowing for the performing of activities on a large variety of components
in all the possible directions. They are developed in the ABB Robot Studio Software.

• Program manager: the program manager is a no-motion additional software uploaded
on the robot controller to coordinate the entire process based on the sequence of skills
generated by the engineering office. It allows the management of every phase (i.e.,
Teaching, Correction or Execution) for every skill, by transferring instructions to each
of the two arms and displaying on a screen all the instructions the operator has to
follow to define the input of each skill (as an example in the picking operation the
operator has to drive the robot in the desired position and set the pose which is saved
by the manager software). The communication interface of the developed program is
made available on the teach-pendant screen, so that the operator can directly follow
the instructions.

• Correction packages: lead by demonstration and waypoints addition are two routines
useful for solving motion problems, by respectively recording a trajectory directly
from the operator dragging the robot, or by adding waypoints interactively to avoid
obstacles or force the path to be followed. Two-hands calibration is instead used for
improving the precision of a place operation, autonomously calibrating the actual
position of the component hold by the robot gripper by using the position of the free
arm gripper as a reference (This procedure has to be activated by the operator when a
precise insertion is needed). Force calibration and angle rounding routines are instead
designed for easing the operator during the teaching phase and for improving the
accuracy of teaching-phase parameters.

Figure 4 reports an example of the code through which the program manager code
was developed (Figure 4a), and a frame of the developed robotic procedure, in which it is
visible that the two arms can operate at the same time (Figure 4b). In the figure the fixture
specifically designed to house the electronic boards is visible, for each of the two arms.

Figure 4. Implemented Firmware up-date process for security sensor electronic boards. (a) Software
development for manager program. (b) View of the two Yumi arms operating at the same time.



Robotics 2022, 11, 9 10 of 13

The robotic process has been created and set up by a non-expert user, revealing the
great potential of the methodology. Two series of tests have been carried out: a first one
with a non-expert user who, however, is up to date on robotic programming. The second
series of tests have been carried out by a person who had never used a robot before. In
both cases, the operator’s learning was rather fast, since the entire process is intuitive and
guided by a basic and practical graphical interface.

The results achieved by the two different users were not systematically different in
terms of average values and standard deviations, so that the presented results do not differ
for the single operator. This fact demonstrates that having skills in robotic does not help
to improve usage skills, and the process can be therefore easily set up by every kind of
non-expert user.

Table 1 reports in the second column the average teaching and correction times of
the two non-expert users after several trials (time of 2nd, 3rd and 4th attempts), together
with the maximum and minimum times. In the third column the times of the first trial are
reported, which are around 25% higher than the following attempts in which teaching and
correction times are stabilized.

Table 1. Times spent on teaching and correction phase by non-expert robotic users.

Skills Teaching and Correction Time
(average of 2nd, 3rd and 4th attempts for both the operators)

1st Attempt Time
(average time on two operators)

Pick a Piece from the
multi-board

4 × 4 tray module
1′41”

max 1′48”

2′06”min 1′38”

Place a piece on the fixture 2′30”
max 2′39”

3′01”min 2′21”

Connect to PC -

Pick a piece from the fixture
(after SW updating) 1′49”

max 1′58”

2′11”min 1′41”

Place a piece on the
output tray

(after SW updating)
1′54”

max 2′02”

2′19”min 1′43”

Table 2 reports the time needed for the slow speed tests, which are carried out as a test
after the teaching and correction phases for the skills of the entire task are completed, and
the final cycle time per piece. By summing up the times of Tables 1 and 2 it can be observed
that the complete application has been created in less than 10 min.

Table 2. Slow speed execution time and final cycle time.

Slow-speed test (i.e., test of the complete task executed
after defining the input parameter for each skill) 53”

Cycle time per piece 37”

The process ended up not being as optimized in terms of trajectory and cycle time as
one created by a specialist in production process engineering, but the flexibility expressed
by this approach is by far more relevant than process optimization, considering the peculiar
production conditions where robots can be continuously allocated to new processes. The
robot could perform the task correctly even without any optimization.

From an economic point of view, a Monte Carlo simulation has been conducted on all
the processes which could be feasibly carried out by robots in the considered department,
in order to assess if, for the reference factory, a robotic implementation is economically
valuable. These processes, in addition to the firmware update which is the considered test
case from a technical point of view, are related to the following products: USB Charger (wall
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charger for USB cable, involving both assemblies and customization activities), Crystal
Touch Sensor (CTS electronic boards to be assembled and tested, and frontal motherboard
to be tested only), Remote Controller for security sensors (sharing part of the process with
other products, as firmware update and laser marking) and product customization. These
are only the production processes which involve at least one activity that can be allocated
to YuMi, respecting technical feasibility and robot performance. All the processes of
interest have been simulated in the Monte Carlo simulation based on probability functions
evaluated from historical data and forecast demand.

Table 3 reports a synthesis, for each of the mentioned processes, of the main input data
(i.e., time allocated to YuMi, YuMi setup time, average lot size, pieces produced in a year)
and output data obtained from the Equations (1)–(3) described previously in Section 4 (i.e.,
Lot Size threshold, Saved person-hours, implementation efficiency). It can be noted that
the assembly of the top and bottom parts of the Crystal Touch Sensor (CTS) accounts for
the great majority of saved person-hours, given the high quantities produced per year and
the large percentage of activities which can be allocated to the robot.

Table 3. Single process data synthesis.

Process Firmware
Update

Remote
Controller USB Charger CTS

(Bottom)
CTS
(Top) Custom

YuMi allocated time 24 s (39%) 67 s (60%) 34.5 s (81%) 93 s (95%) 165 s (94%) 24 s (75%)

YuMi setup time 57 min 65 min 69 min 89 min 53 min 45 min

average lot size 150 pcs 50 pcs 135 pcs 280 pcs 280 pcs 200 pcs

pieces per year 3899 pcs 576 pcs 2440 pcs 9112 pcs 9880 pcs 2039 pcs

lot size threshold 139 pcs 56 pcs 117 pcs 56 pcs 19 pcs 108 pcs

saved person-hours 10.5 h 5.6 h 10 h 195.6 h 426.9 h 7.7 h

efficiency (N = 2) 8.19% −1.31% 17.37% 75.16% 86.20% 19.51%

Investment costs are about 50,000 € (i.e., robot 40,000 €, mobile station and general
hardware 2000 €, general software bundle 3000 €, operator training 3000 €, process imple-
mentation costs 2000 €), whereas saved person-hours are quantified to be in total 656 h/y,
which, multiplied for an average the operator hourly cost, leads to an annual savings
of 19,688 €. The payback time is therefore around 2.5 years, oscillating with ±0.5 years
depending on a positive or negative scenario. In addition to the standard case, indeed,
two further scenarios have been analyzed, repeating the simulation with an increased or
decreased demand and batch size of 10%.

The mentioned payback scenarios are represented in Figure 5. The two additional cases
reported in dashed lines make reference to a specificity of the fiscal regime that the factory
department is subjected to, which further reduces the payback time of the investment.

Figure 5. Comparison of Payback time scenarios.
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6. Conclusions

The proposed Interactive Refinement Programming (IRP) is an approach aimed at
simplifying the creation of a robotic application, allowing non-expert users to actively setup
a robot guided by the machine itself, and to correct any occurring error with an iterative
procedure. A pyramidal approach is based on primitives and general skills to be developed
by expert engineering, which can then be connected in a tree structure to generate a specific
task. The only thing that shop floor non-expert users have to do is to provide a set of
input parameters for each skill during a Teaching Phase, which specifically relates each
skill to the particular process, and a correction phase to fix occurring errors. These teaching
and correction phases have been driven by a self-developed program manager software
uploaded on the robot controller and able to display instructions on the teach-pendant
screen to assist the non-skilled operator.

Ad hoc performance indicators have been created for the economic assessment of
process automation benefits and for the daily management of production orders once the
robotic application has been set up.

The proposed approach was validated through a real industrial case—in which the
base software and hardware needed for the application were developed by expert engineers
whereas the actual set-up of the robotic application was established by non-expert users in a
very short time—and demonstrated the flexibility of the proposed method. The complexity
in creating a robotic application has been drastically reduced in light of easy programming
efforts. Collaborative features of cobots are exploited at a higher level, not only during
execution but also for correcting and finalizing the application itself.

The main limitation regards the fact that the proposed method is intrinsically based
on a trade-off between task optimization and flexibility: skills are designed as generally as
possible to obtain the needed flexibility, which implies that the resulting tasks cannot be
optimized for the specific process in terms of trajectories and cycle time.

The presented results are a further step toward the implementation of robotics in craft
manufacturing, overcoming the limitations of traditional automation and current use of
collaborative robots.
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10. Gašpar, T.; Deniša, M.; Radanovič, P.; Ridge, B.; Savarimuthu, T.R.; Kramberger, A.; Priggemeyer, M.; Roßmann, J.; Wörgötter, F.;
Ivanovska, T.; et al. Smart hardware integration with advanced robot programming technologies for efficient reconfiguration of
robot workcells. Robot. Comput. Manuf. 2020, 66, 101979. [CrossRef]

11. Djuric, A.M.; Urbanic, R.; Rickli, J. A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing
Systems. SAE Int. J. Mater. Manuf. 2016, 9, 457–464. [CrossRef]

12. Michalos, G.; Makris, S.; Tsarouchi, P.; Guasch, T.; Kontovrakis, D.; Chryssolouris, G. Design Considerations for Safe Human-robot
Collaborative Workplaces. Procedia CIRP 2015, 37, 248–253. [CrossRef]

13. Lee, J.; Lapira, E.; Bagheri, B.; Kao, H.-A. Recent advances and trends in predictive manufacturing systems in big data environment.
Manuf. Lett. 2013, 1, 38–41. [CrossRef]

14. Wahrburg, A.; Zeiss, S.; Matthias, B.; Peters, J.; Ding, H. Combined pose-wrench and state machine representation for modeling
Robotic Assembly Skills. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 28 September–2 October 2015; pp. 852–857. [CrossRef]

15. Stenmark, M.; Topp, E.A. From Demonstrations to Skills for High-Level Programming of Industrial Robots (2016) AAAI
Fall Symposium; Technical Report; ELLIIT: The Linköping-Lund Initiative on IT and Mobile Communication Department of
Computer Science Robotics and Semantic Systems FS-16-01–FS-16-05. pp. 75–78. Available online: https://portal.research.lu.se/
en/publications/from-demonstrations-to-skills-for-high-level-programming-of-indus (accessed on 30 December 2021).

16. Herrero, H.; Moughlbay, A.A.; Outón, J.L.; Sallé, D.; de Ipiña, K.L. Skill based robot programming: Assembly, vision and
Workspace Monitoring skill interaction. Neurocomputing 2017, 255, 61–70. [CrossRef]

17. Pedersen, M.R.; Nalpantidis, L.; Andersen, R.S.; Schou, C.; Bøgh, S.; Krüger, V.; Madsen, O. Robot skills for manufacturing: From
concept to industrial deployment. Robot. Comput. Manuf. 2016, 37, 282–291. [CrossRef]

18. Sorensen, L.C.; Mathiesen, S.; Waspe, R.; Schlette, C. Towards Digital Twins for Industrial Assembly—Improving Robot Solutions
by Intuitive User Guidance and Robot Programming. In Proceedings of the 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA2020), Vienna, Austria, 8–11 September 2020; pp. 1480–1484. [CrossRef]

19. Schou, C.; Damgaard, J.; Bogh, S.; Madsen, O. Human-robot interface for instructing industrial tasks using kinesthetic teaching.
IEEE ISR 2013, 2013, 1–6. [CrossRef]

20. Bøgh, S.; Nielsen, S.O.; Pedersen, R.M.; Krüger, V.; Madsen, O. Does your Robot have Skills? In Proceedings of the 43rd
International Symposium on Robotics, Taipei, Taiwan, 29–31 August 2012.

21. Pedersen, M.R.; Nalpantidis, L.; Bobick, A.; Krüger, V. On the Integration of Hardware-Abstracted Robot Skills for use in
In-dustrial Scenarios. In Proceedings of the 2nd International IROS Workshop on Cognitive Robotics Systems (CRS): Replicating
Human Actions and Activities, Tokyo, Japan, 3–7 November 2013.

22. Akkaladevi, S.C.; Pichler, A.; Plasch, M.; Ikeda, M.; Hofmann, M. Skill-based programming of complex robotic assembly tasks for
industrial application [Skill-basierte Programmierung von komplexen Roboter-Montageaufgaben für die industrielle Applikation].
E I Elektrotechnik Und Inf. 2019, 136, 326–333. [CrossRef]

23. Andersen, R.S.; Damgaard, J.S.; Madsen, O.; Moeslund, T.B. Fast calibration of industrial mobile robots to workstations using QR
codes. IEEE ISR 2013, 2013, 1–6. [CrossRef]

24. Hvilshøj, M.; Bøgh, S.; Madsen, O.; Kristiansen, M. Calibration Techniques for Industrial Mobile Manipulators: Theoretical
configurations and Best practices (2010) Joint. In Proceedings of the 41st International Symposium on Robotics and 6th German
Conference on Robotics 2010 ISR/ROBOTIK, Munich, Germany, 7–9 June 2010; Volume 2, pp. 773–779.

25. Korayem, M.H.; Azargoshasb, S.; Tabibian, S. Design and Implementation of the Voice Command Recognition and the Sound
Source Localization System for Human–Robot Interaction. Robotics 2021, 39, 1779–1790. [CrossRef]

26. Dmytriyev, Y.; Zaki, A.M.A.; Carnevale, M.; Insero, F.; Giberti, H. Brain computer interface for human-cobot interaction in
industrial applications. In Proceedings of the 3rd International Congress on Human-Computer Interaction, Optimization and
Robotic Applications (HORA), Ankara, Turkey, 11–13 June 2021.

http://doi.org/10.3390/s20216358
http://www.ncbi.nlm.nih.gov/pubmed/33171844
http://doi.org/10.3390/s21072439
http://www.ncbi.nlm.nih.gov/pubmed/33916275
http://doi.org/10.3390/app10238666
http://doi.org/10.3390/sym13010086
http://doi.org/10.1016/j.rcim.2020.101979
http://doi.org/10.4271/2016-01-0337
http://doi.org/10.1016/j.procir.2015.08.014
http://doi.org/10.1016/j.mfglet.2013.09.005
http://doi.org/10.1109/iros.2015.7353471
https://portal.research.lu.se/en/publications/from-demonstrations-to-skills-for-high-level-programming-of-indus
https://portal.research.lu.se/en/publications/from-demonstrations-to-skills-for-high-level-programming-of-indus
http://doi.org/10.1016/j.neucom.2016.09.133
http://doi.org/10.1016/j.rcim.2015.04.002
http://doi.org/10.1109/etfa46521.2020.9212072
http://doi.org/10.1109/isr.2013.6695599
http://doi.org/10.1007/s00502-019-00741-4
http://doi.org/10.1109/isr.2013.6695636
http://doi.org/10.1017/S0263574720001496

	Introduction 
	Overview of the Proposed Methodology 
	Interactive Refinement Programming Procedure 
	Setup 
	Teaching 
	Correction 
	Execution 

	Economic Analysis 
	Industrial Test Case 
	Conclusions 
	References

