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Abstract: The manipulability of a robotic arm may be defined based on ease of motion in different
directions or ease of applying force/torque. In this study, we use manipulability measures to
investigate how the kinematics of robots can be employed to calculate the optimal power required
to drive the actuation systems of their arms. We hypothesize that the isotropy measure is related to
the power consumption of the robotic arm. In addition to theoretical aspects, we consider practical
applications that can minimize power consumption in robotic systems. Since the method is simple to
implement and has no assumption on the robot’s work environment or dependence on information
on the main power supply, manipulability measures can be used as a tool to predict the power
consumption of robotic manipulators.

Keywords: dexterity; fluid-driven systems; force ellipsoid; manipulability; power consumption;
power ellipsoid; robotic arm; velocity ellipsoid

1. Introduction

Measuring power consumption in robotic systems creates advantages such as in-
creasing the working time of robots without changing the power supplied [1]. Power
consumption measures can inform designers of how robotic arms’ weight, size and config-
uration impact maneuverability and energy efficiency. This is particularly important for
robotic systems situated remotely. More efficient energy use has positive environmental
impacts, such as decreasing greenhouse gas emissions and slowing the growing demand
for energy, especially in emerging economies [2].

To optimize power consumption in robotic systems, it is of the utmost importance to
identify quantifiable tools which control and minimize the amount of power required. For
instance, if the configuration of a stationary robot is correlated to the power consumed,
adding a mobile base to the stationary manipulator would help in altering the configuration.
In practice, relocating the base in stationary manipulators is not practical. Redundant
stationary robots, however, can be positioned so their posture is optimal for a given task
using the path-planning algorithm [3].

In this study, we define quantitative tools related to the energy required to run a
system. These tools, the manipulability ellipsoids, help us to visualize how the manipulator
configuration of a robot can contribute to its task execution. They visualize the directions
and particular properties of arm end effectors [4]. A task is executable if the vectors stay
within their ellipsoids.

Manipulability velocity ellipsoids (MVE) and manipulability force ellipsoids (MFE)
are very well-known and are valuable tools to analyze, design and control robotic manip-
ulators [5]. The shape of MVE and MFE reflect the constraints to which the robot will be
subjected, such as moving or applying force in a specific direction [6]. The ellipsoids do not
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provide exact numerical information about maximum velocity or force values but suggest
directions in which the robot can access or apply force more efficiently [7].

Manipulability measures play significant roles in quantitatively evaluating the effi-
ciency of robotic systems. The manipulability measures indicate the ability to position
and orient the end effectors or to apply force or torque. We use Yoshikawa’s measure of
manipulability [5], condition number [5], isotropy index [8] and the eccentricity measure
of manipulability [9]. In this study, we normalize the manipulability indices for ease
of comparison.

The manipulability measures are highly related to the structure and configuration
of the robot [10]. For example, when the manipulator is in a singular configuration, the
manipulability measures of MVE in some directions become extremely poor, while in
others they are very good. Conversely, the robot may be placed in a configuration in
which the measures of MVE are identical in all directions. Dexterity analysis is key when
designing and evaluating the performance of robotic manipulators. Researchers have used
the concept of manipulability to analyze the motion of robotic manipulators for different
purposes, often to avoid singular configurations [11–14].

Although the manipulability ellipsoids are helpful tools in motion analysis of robotic
manipulators, they do not offer sufficient information on how fast or slow the manipulators
may move along the arbitrary direction or if they suffer from a physical inconsistency
when position and orientation information are combined into a single scalar performance
parameter [15]. The power manipulability ellipsoid was based on a new parameter that
is independent of the selection of mechanisms’ physical unit to overcome the drawback
of the physical inconsistency [16]. Specifically, Mansouri et al. [16] presented the concept
of a power manipulability ellipsoid: a homogenous tensor defined in six dimensions
that includes both translational and rotational components (only motion components of
the robotic manipulator). This concept uses a hybrid presentation of the manipulability
velocity and force ellipsoids to introduce a vectorial presentation of the power consumed
by a robotic manipulator.

The power manipulability ellipsoid had the same drawback as the manipulability
ellipsoid and required further modifications to enable us to extract quantitative information
on the power and/or kinematic measures. The concept was improved by the authors [17]
by forming a quaternion formulation of the power manipulability, previously introduced
as a new homogeneous performance index of robot manipulators [14].

In this paper, we utilize the concept of MVE and MFE to define the manipulability
power ellipsoid (MPE) to show whether the power consumption and manipulability of a
fluid-driven robotic manipulator could be theoretically correlated. We hypothesized that
when the isotropy measure of an MPE increases, the robot’s consumed power reduces.

We further conduct a comparative simulation study between the properties of previ-
ously used ellipsoids (MVE and MFE) and the newly defined ellipsoid (MPE). The study
is conducted using numerical techniques based on assumptions, such as considering qua-
sistatic properties for the hydraulic system. Compared to Mansouri et al. [16,17], our
proposed power ellipsoid does not require complex evaluations and mainly focuses on the
specification of the fluid-driven actuation system.

2. Materials and Methods

The following subsections explain the concept of manipulability of robotic manipula-
tors and the manipulability ellipsoids and describe the manipulability measures. We then
address the power measurements required to drive a fluid-actuated robotic arm. Finally,
we define the novel power ellipsoid and describe the test rig and robot equations.

2.1. The Manipulability Velocity and Force Ellipsoids
2.1.1. Jacobian Matrix

Let [xe ye ze θx θy θz]
T denote the generalized coordinates of the robot’s end effector

with respect to the reference frame, xRyRzR, which is composed of parameters describing



Robotics 2022, 11, 32 3 of 15

the robot geometry and joint variables. The reference frame is shown in Figure 1 in the side
view (xRzR plane) of a typical hydraulic manipulator with two degrees of freedom (DOFs):
xs,i and xs,j. In general modelling, the robot’s end effector possesses six linear and angular

velocity components [
.
xe,

.
ye,

.
ze,

.
θx,

.
θy,

.
θz]

T
with respect to the reference frame {xRyRzR}.
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Figure 1. The coordinate system of a typical 2-DOF hydraulic manipulator.

Configuration and velocity/torque limitations are limiting factors affecting the robot’s
motion. Increasing the velocities or accelerations of the end effector along the desired
trajectory intensifies the effects of the manipulator kinematics and dynamics, which may
violate the workability of actuators. Locating the manipulator in an improper configuration
can also increase these effects.

An improper configuration is defined when the robot’s configuration is close to the
singular situation, e.g., the isometric index is close to zero. Enabling movement along
improper trajectories by measuring and improving quantitative tools compensate for the
robot’s disability. Since the formulations used in this study are based on the kinematics
equations, the following presents the manipulator’s kinematics concept.

The manipulator DOF is denoted by n. Meanwhile, the end effector DOF in Cartesian
space is shown by s. Assuming the robot is nonredundant, which means n ≤ s, the Jacobian
matrix of the manipulator, J(q), is given by:

.
→
Xe = J(q)

.
→
q (1)

In (1),
→
q = [q1 . . . qn]

T ∈ Rn,
.
→
q = [

.
q1 . . .

.
qn]

T ∈ Rn represents the vector of joint
angular or linear displacement and velocity for revolute or prismatic joints, respectively.
Indeed,

→
q describes the relative displacement between two adjacent links (see qj in Figure 1).

The end effector velocity vector,
.
→
Xe ∈ Rs, is generally defined as

[ .
xe

.
ye

.
ze

.
θx

.
θy

.
θz

]T

when s = 6. Note that if (detJ(q) 6= 0), i.e., when the Jacobian matrix has full rank, the
robot would be in a nonsingular condition. In this case, the system can be kinematically
evaluated. Hereafter, the dependence on q will be omitted for notational compactness.
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2.1.2. Manipulability Ellipsoids

In order to correlate the consumed energy of a fluid-power-driven manipulator to the
manipulability concept, we define the existing manipulability ellipsoids: the manipulability
velocity ellipsoid (MVE) and manipulability force ellipsoid (MFE). Having these ellipsoids,
we can visualize the directions of velocity (MVE) or force (MFE) at the end effector [18].
The definitions of MVE and MFE will later be used to correlate the consumed power to the
manipulability of the robot. This helps us observe the variation of the power required to
run the robotic manipulator in terms of variations in the robot’s kinematic parameters.

In order to analyze the properties of each manipulability ellipsoid, we use quantifiable
tools such as determinants, eigenvalues and eigenvectors. This generalizes the singular
value decomposition (SVD) of the mapping matrix (e.g., K and KL) in the manipulability
ellipsoid [19]. Using SVD, some manipulability measures are defined to quantitatively
observe the variation of the consumed power.

The manipulability velocity ellipsoid is obtained using kinematics equations and
helps us visualize the velocity of the end effector. In (1), if we map the unit circle{ .
→
q ∈ Rn

∣∣|| .q || = n
∑

i=1

.
q2

i = 1
}

by J to the space of end effector velocities,
.
→
Xe, it will result in

the manipulability velocity ellipsoid, which is expressed by:{
→
Xe ∈ Rs :

.
→
Xe = J

.
→
q
∣∣ || .q|| = 1

}
(2)

This is illustrated in Figure 2. As shown, applying the norm, || .q|| = 1 , results in a circle
in the joint space. The circle is mapped through the Jacobian matrix into an ellipsoid in the
Cartesian space, called the manipulability velocity ellipsoid. By mapping the normalized
value of torque by J−T , we obtain the MFE.
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As concluded from (2) and in Figure 2, in MVE, a Jacobian matrix is shown as the
mapping matrix of velocity. Therefore, three submatrices of J are derived as follows:

J =
→
UMVEΣMVE

→
V

T

MVE (3)
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where
→
UMVE =

[ →
u 1,MVE . . .

→
u n,MVE

]
∈ Rn×n and

→
V MVE =

[ →
v 1,MVE

T . . .
→
v s,MVE

T
]

∈ Rs×s are orthogonal matrices and ΣMVE ∈ Rn×s is a diagonal matrix with non-negative
real numbers on the diagonal and can be written as:

Σ =

 σ1,MVE 0
. . .

0 σn,MVE

∣∣∣∣∣∣
0
0
0

 (4)

where σ1,MVE > σ2,MVE > . . . > σn,MVE (i = 1 . . . n) are the eigenvalues of JJT .
The length of each principal axis of the MVE is given by eigenvectors of JJT , and the

principal axes are shown by σn,MVE
→
u n,MVE. The major axis of the ellipsoid, σ1,MVE

→
u 1,MVE,

corresponds to the direction of the end effector. When the ellipsoid becomes a sphere, the
end effector can move with uniform ease in all directions. This type of configuration is
called isotropic configuration.

Let
→
T be the vector of the joint torque and

→
F e denote the vector of external forces

applied to the end effector; then the virtual work theory will result in
→
T = JT

→
F e. Assuming

that the manipulator is in a nonsingular condition, the following relationship can be
expressed as:

→
F e = J−T

→
T (5)

Moreover, the force ellipsoid can be defined by the eigenvalues of
(
JJT)−1, which

are equal to 1/σn (n = 1, 2, . . . , n). Thus, the principal axes of the force ellipsoid are
→
u 1/σ1, . . . ,

→
u n/σn. While the MVE reflects the uniformity of the velocity of the end effector,

the MFE reflects the force/torque applied from/to the end effector.

2.1.3. Manipulability Measures

The manipulability measure is used as a quantitative index to evaluate the performance
of the robotic manipulator. For each ellipsoid, we can define measures based on the matrices
using SVD. The measures we used in evaluating the dexterity of robotic manipulators are
in Table 1.

Table 1. Manipulability measures used in the simulation study.

Measure Equation Description

Yoshikawa’s measure

ΣY = cnω,
cn =

(2π)
n
2

2×4×...×n , n is even
(2π)

n−1
2

1×3×...×n , n is odd

Yoshikawa [18] is a measure of
manipulability which is in relation to

the volume of the ellipsoid (ΣY = cnω)
where ω = σ1 . . . σn and cn.

Condition number ΣC = σ1/σn
1

The condition number of a mapping
matrix measuring the directional

uniformity of the ellipsoid.

Isotropy index ΣI = σn/σ1

The ratio of the length of minor
semiaxis to the length of major semiaxis
of the manipulability velocity ellipsoid.

Eccentricity measure ΣE =
√

1− (σn/σ1)
2

The eccentricity of the ellipsoid and the
ability of the end effector to move in a

desired direction.
1 σ1 and σn are the largest and smallest eigenvalues of JJT .

2.2. Power Consumption in Fluid-Power-Driven Robotic Arms

In the code developed, the hydraulic system is considered to have quasistatic prop-
erties. The actuator dynamics are slowly changing, and the capacitances of the cylinder



Robotics 2022, 11, 32 6 of 15

chambers and hydraulic lines are neglected. Moreover, it is assumed that the mechanical
power that enables the actuator to move back and forth is measured at the inlet of the
actuator. Since the loss in the values of piping and connections cannot be correlated to the
kinematics of the robot, they are ignored.

The 4th order Runge–Kutta method is used to generate the numerical simulation
model described in this paper. System parameters used in simulations, formulation of the
actuators and the method of modelling are described in detail in Banthia et al. [20].

For the hydraulic actuator shown in Figure 3, the mechanical power supplied by the
hydraulic pump is the product of the input pressure and flow of the hydraulic fluid. The
equation used to calculate the required power depends on the direction of the link motion
when the piston either moves back (

.
xs < 0) or forth (

.
xs > 0). For the current direction of

movement when
.
xs > 0,

Wi = POQO (6)

where PO is the input pressure, supplied by the pump, and QO is the flow of the hydraulic
fluid. By substituting QO =

.
xs AO into (2), the following equation results:

Wi = PO
.
xs AO (7)

where AO denotes the annulus area of the piston. As shown in (7), the mechanical power
required to run the hydraulic link is calculated by measuring the pressure in the inlet
chamber, PO and calculating the linear velocity of the rod,

.
xs. According to Figure 3, when

.
xs,i < 0, the consumed power is obtained using PI

.
xs AI .
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Bernoulli’s equation is used to express the power in terms of robot kinematics variables.
To apply Bernoulli’s equation, it is assumed that the flow is inviscid and steady (velocity
pattern constant). The fluid is incompressible, and the friction losses are negligible. In
this study, it is also assumed that the energy required for fluid elevation is negligible
with respect to the total energy of the system. By applying these assumptions, Bernoulli’s
equation for the system shown in Figure 3 is written as in (8).

1
ρ

Ps +
1
2

.
x2

s =
1
ρ

Pp +
1
2

.
x2

p (8)
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where ρ denotes the hydraulic fluid density.
.
xp and

.
xs are the linear velocity of the fluid at

the outlet of the pump and the inlet chamber of the actuator. The pump output pressure
and the inlet chamber pressure are denoted by Pp and Ps. Depending on the direction of
the link motion, Ps can be either PO or PI . The pump pressure, Pp, is set to be constant.

By applying the continuity equation to the system, given that there is no leakage in
the system, the following equation can be written:

As
.
xs = Ap

.
xp (9)

Combining (8) and (9) gives the pressure at the inlet chamber:

Ps = Pp + K
.
x2

s (10)

where

K =
ρ
(

A2
s − A2

p

)
2A2

p
> 0 (11)

Substituting (6) into (2) results in:

Wi
( .
xs
)
=

.
xs

(
Pp + K

.
x2

s

)
(12)

The angular velocity of the joint,
.
q, and the linear velocity in the hydraulic actuator,

.
xs,

are related using the geometrical correlation mechanism, shown in Figure 1, as follows:

.
xs =

dxs

dq
.
q (13)

For a robot with n DOFs, the total power needed to run all n hydraulic actuators is

calculated by summing the power needed for each actuator, i.e., W =
n
∑

i=1
Wi. Equation (13),

for the n-DOF robot, can be rewritten as:
.
→
x s = D

.
→
q (14)

where
.
→
x s = [

.
xs,1 . . .

.
xs,n]

T ∈ Rn is the vector of linear velocity, which is combined with the
linear velocity of hydraulic actuators in the manipulator. The vector of the joints angular

velocities is denoted by
.
→
q = [

.
q1 . . .

.
qn]

T ∈ Rn. The matrix of velocity, D ∈ Rn×n, maps the
joints angular velocities to the linear velocity of hydraulic actuators and is given by:

D =


dxs,1
dq1

0
. . .

0 dxs,n
dqn

 (15)

Combining (12) and (14) results in the symbolic form of the power–velocity equation
as below:

→
W = K

.
→
q (16)

where
→
W = [W1 . . . Wn]

T ∈ Rn is the vector of power consumed by each actuator. The
mapping matrix of energy, K, is defined as follows:

K =

 K11 0
. . .

0 Knn

 (17)
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where

K11 =
dxs,1

dq1
[Pp +

ρ
.
q2

1

(
A2

s,1 − A2
p

)
2A2

p

(
dxs,1

dq1
)2
]

and Knn =
dxs,n

dqn
[Pp +

ρ
.
q2

n

(
A2

s,n − A2
p

)
2A2

p
(

dxs,n

dqn
)2
]

(18)

In accordance with the properties of the real hydraulic system, it is observed that Pp �
K

.
q2
( dxs

dq )
2
. Therefore, the linearized form of the mapping matrix of energy is expressed as:

KL =


Pp

dxs,1
dq1

0
. . .

0 Pp
dxs,n
dqn

 (19)

The concept presented in (17) and (18) is then used to define the PE.

2.3. Power Ellipsoid (PE)

As presented in (17) and (18), the power supplied by the hydraulic pump is directly
correlated to the angular velocity of the robot’s joints. In this equation, if we map the unit

circle
{ .
→
q ∈ Rn

∣∣|| .q || = n
∑

i=1

.
q2

i = 1
}

by K or KL into the space of actuators’ powers,
→
W, the

MPE is:{→
W ∈ Rn :

→
W ∝ K

.
→
q
∣∣ || .q|| = 1

}
(Nonlinear form)

{→
W ∈ Rn :

→
W ∝ KL

.
→
q
∣∣ || .q|| = 1

}
(Linear form) (20)

Figure 4 depicts the concept of MPE. As seen, the mapping matrix of energy is K in
the nonlinear form and KL in the linear form.
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Here, similar measures for MPE are used to correlate the power consumption and
manipulability of the robot. According to the definitions used for the manipulability of
robotic manipulators, it can be concluded that by decreasing the isotropy measure of MPE,
ΣI,PE, the consumed power by the robot reduces. Table 2 summarizes the qualitative
relationship between the manipulability measures of MPE and the power required to run
the hydraulic robot. The signs shown in this table indicate the increasing (↑) and decreasing
(↓) relationship between the measures and energy.

Table 2. A qualitative summary of measures defined by MPE and consumed power.

Measure Increased Power Consumption

Yoshikawa’s measure, ΣY,PE ↑
Condition number, ΣC,PE ↓

Isotropy index, ΣI,PE ↑
Eccentricity measure, ΣE,PE ↓
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2.4. Simulation Setup

The 3-DOF hydraulic robot was modelled and simulated to see whether the ellipsoids
had any correlation with the power consumed. Figure 5 depicts the manipulator with
coordinate frames assigned to the links. Using the Denavit–Hartenberg notation, the for-
ward kinematics is calculated by multiplying the transformation matrices. The generalized
coordinate frames are attached to the robot, which starts from the base frame, {xoyozo}, and
ends at the end effector, {xeyeze}. The transformation matrix, which correlates the position
of the end effector to the base frame, is given by Maddahi et al. [21]:

T =


c23c1 −s1 s23c1 c1(l1 + l2c2 + l3c23)
c23s1 c1 s23s1 s1(l1 + l2c2 + l3c23)
−s23 0 c23 −l2s2 − l3s23

0 0 0 1

 (21)
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In (21), l1, l2 and l3 are the lengths of robot links, which are shown in Figure 5. ci
and si denote cos(θi) and sin(θi), and cij and sij represent cos

(
θi + θj

)
and sin

(
θi + θj

)
,

respectively.
To evaluate the manipulability of the robot and to calculate the manipulability mea-

sures, the Jacobian matrix is used and is expressed as in (22).

Je =

 −s1(l1 + l2c2 + l3c23) −c1(l2s2 + l3s23) −c1l3s23
c1(l1 + l2c2 + l3c23) −s1(l2s2 + l3s23) −s1l3s23

0 −l2c2 − l3c23 −l3c23

 (22)

The specification of the analyzed part of the robot is listed in Table 3. The dimensions
are adopted from CAD drawings. The required parameters for each actuator and the
hydraulic system are shown in Table 4. All actuators have the same parameters with the
exclusion of different strokes [22].

Table 3. Link parameters of the simulated 3-DOF robotic arm.

Link Length (m) Mass (kg) Range Variable

1 0.133 7.3 55◦ θ1
2 0.549 22.5 90◦ θ2
3 0.342 15.7 130◦ θ3
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Table 4. Hydraulic actuator parameters.

Parameter Value

Pump pressure, Ps 7.2 MPa
Tank Pressure, Pe 0 MPa

Piston area (blind side) 3.167 × 10−3 m2

Piston area (rode side) 2.6603 × 10−3 m2

Hydraulic fluid density, ρ 847.16 kg/m3

Stoke of cylinder 1, xs,1 0.26416 m
Stroke of cylinder 2, xs,2 0.15875 m
Stroke of cylinder 3, xs,3 0.1016 m

The linkage geometry of the manipulator gives the linear velocity of hydraulic actua-
tors (

.
xi) as functions of joint variables (

.
qi) as follows:

.
x1 =

−a1a2
.
q1 sin

(
q1 + 81

◦)√
a1

2 + a22 + 2a1a2 cos(81◦ + q1)

.
x2 =

−b1b2
.
q2 sin

(
q2 + 112

◦)√
b1

2 + b22 + 2b1b2 cos(112◦ − q2)

.
x3 =

−c1c2
.
q3 sin

(
q3 − 2

◦)√
c1

2 + c22 + 2c1c2 cos(q3 − 2◦ )
(23)

where a1 = 253.5 mm, a2 = 103.4 mm, b1 = 174.0 mm, b2 = 538.7 mm, c1 = 375.9 mm and
c2 = 165.1 mm. The constant values in angles are offsets in the joint angles.

3. Results
3.1. Simulation Results

This simulation aimed to measure the power consumed by the hydraulic actuators
to run the robot, to calculate the manipulability measures and validate the relationship
between the required power and manipulability measures. A program was developed
in C++ to emulate the characteristics of this robotic manipulator. The end effector of the
robot was programmed to move along a circular path. The actual trajectory of the robot’s
end effector is illustrated in Figure 6. The angular displacement of each joint is shown in
Figure 7.
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Figure 6. Positional components of the end effector in the simulated task.
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Figure 7. Angular displacement components of the end effector in the simulated task.

Figure 8 depicts the force produced in each actuator and corresponding pressures on
both sides of the piston using the mathematical formulation given in Maddahi et al. [22].
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Figure 8. Variations of force in each actuator and corresponding pressures.

By using forces and linear velocities, the power consumed in each actuator is calculated.
The angular velocity of each joint is read by the encoders. By using (23), the linear velocity
of each actuator is obtained. The variation of pressure is depicted in Figure 9. The total
power is the summation of W1, W2, and W3.
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Figure 9. Variation of power in each actuator and corresponding force and linear velocity.

Figure 10 depicts the values of manipulability measures for the developed force
ellipsoid, MFE, the manipulability velocity ellipsoid, MVE, and the manipulability energy
ellipsoid, MPE. The measures include Yoshikawa’s measure (ΣY,), condition number (ΣC),
isotropy index (ΣI) and eccentricity measure (ΣE). As illustrated, the relationship between
the energy measures and velocity or force measures can, respectively, be found.

The relationship between the total mechanical power required to run the robot and
the manipulability measures is illustrated in Figure 11. The experimental results confirm
the analytical conclusions, which are presented in Table 1.

By increasing the isotropy index of PE, the required power of the pump increases
as shown in the circled area A in Figure 11. Comparing Figures 9 and 10, we find the
energy directly changes by altering the Yoshikawa’s measure and isotropy index and
has an adverse relationship with the condition number and eccentricity measure. By
comparing |J| and |KL|, we conclude that in addition to less energy consumption, which
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results in minimizing the torque/force of actuators, changing the manipulability can avoid
singularity configurations.
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Figure 10. The MFE, MVE and MPE manipulability measures.
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3.2. Cross-Correlation Analysis

Cross-correlation analysis was used to investigate the degree to which MPE signals
are correlated with the power consumption of the manipulator. Cross-correlation com-
pares data of an MPE signal with a time-shifted (lagged) version of the power signal. To
investigate whether a signal is stationary or non-stationary, values of four measures were
computed, as shown in Table 5.
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Table 5. Measures used to investigate whether a signal (e.g., values of PE) is stationary or non-
stationary.

Measure Equation Description

Mean value (first moment) σ1,PE = 1
N

N
∑

i=1
PEi

N is the number
of samples of the signal PE.

Variance (second moment) σ2,PE = 1
N

N
∑

i=1
(PEi − σ1,PE)

2

Kurtosis (third moment) 1
σ3,PE = 1

N
∑N

i=1(PEi−σ1,PE)
3

(
√

σ2,PE)
3 √

σ2,PE represents the standard
deviation of PE.Skewness (fourth moment) 2

σ4,PE = 1
N

∑N
i=1(PEi−σ1,PE)

4

(
√

σ2,PE)
4 − 3

1 Kurtosis is the measure of the peakedness of the probability distribution of a real-valued random variable [23].
2 Skewness is the measure of the asymmetry of the probability distribution of a real-valued random variable [24].

The cross-correlation coefficient of the MPE signal (PE) and the power consumption
signal (PC) for a given window of data is defined as in (24).

ccτ,PE,PC =
1
N

∑N
i=1(PEi − σ1,PE)(PCi+τ − σ1,PC)√

σ2, PE
√

σ2, PC
(24)

In (24), N is the size of the data set or window size of the time series PE and PC, and
i refers to the ith element from two data sets. σ1,PE and σ1,PC are the mean values of PE
and PC within the defined window. τ is an integer value for a time series analysis that
determines how far apart the data points which are being compared are from each other
(also known as the lag). As observed, the numerator of (24) is equivalent to the covariance
of PE and PC with a delay τ, while the denominator is the product of the standard deviation
of PE and PC. In this study, all signals were recorded with 2 ms sampling time or at a
sampling frequency of 500 Hz.

Both PE and PC signals were examined to investigate whether they were stationary.
Results show no upward or downward slope or jump in level in any of the four moments
(σ1 to σ4). The observed trends were steep, exponential or approximately linear; therefore,
the signals PE and PC were strongly stationary. It was found that the values of both pairs
had a cross-correlation coefficient value of close to 1 (mean of 0.882), indicating that the
two signals were similar.

4. Discussion

Manipulability measures and ellipsoids are useful tools to investigate the properties
of robot end effectors such as velocity, acceleration and force. They are normally employed
as indicators to quantitatively assess the robot’s performance. One of the factors which
can be considered to evaluate efficiency is the amount of power required to run the robot.
In this study, the manipulability power ellipsoid, PE, was defined and correlated to the
kinematic parameters of hydraulic manipulators.

To find the relationship between the MPE and consumed power, the coordination
systems attached to the manipulator and the Jacobian matrix were first introduced. The
manipulability of the robot was defined. We introduced the manipulability velocity, force
and energy ellipsoids.

It was demonstrated that the increments of isotropy measure of MPE result in de-
creasing the consumed power. The concept was validated using a set of simulation studies
performed on the main actuators of a 3-DOF robotic manipulator. We propose that the
technique to correlate the power measurement to the robot kinematics is practical and
provides useful insights for energy consumption. However, more mathematical modelling
and validations are required before this correlation can be used as a tool to improve the
energy efficiency in applications of hydraulic manipulators.
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Quantification of straightforward energy consumption is an important step towards
employing energy-efficient robotic systems in a sustainable manufacturing facility. An
energy consumption model is normally case-dependent and complex to generate, while
requiring continuous updates, as affecting parameters are changing, yet a key to analyze
and improve the energy efficiency of robotic systems. Through a proof-of-concept study,
we proposed that by implementing the proposed technique in this article, the energy
consumption of fluid-driven robotic systems may simply be predicted by understanding
and quantifying the characteristics of kinematics measures of the robotic arm, such as
manipulability measures.

The proposed algorithm still needs further validations using robotic manipulators
with different mechanisms. Therefore, future work will focus on validating the results of the
simulation study presented in this paper, using the experimental platform that consists of a
set of hydraulic actuators. We are currently conducting a comparative study to investigate
the correlation among the MPE, its measures and other existing indices. We are working
with machine learning techniques to design an optimal trajectory for a given task while
minimizing power consumption.

In the future, this work can be used to find the optimal trajectory for a given task
that is based on minimizing the power consumption. This can be done by combining the
method and measures provided in this paper with an optimization method, such as genetic
algorithms or artificial intelligence, and using the proposed manipulability power ellipsoid
(MPE) as the cost function. Studies on the implementation of the same concept for other
types of robotic systems, such as electric-driven robotcs, will be conducted in the future, as
it is believed that the algorithms could be optimized and polished in order to be used for
all types of robotoic manipulators.
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