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Abstract: With the rapid development of robotics and in-depth research of automatic navigation
technology, mobile robots have been applied in a variety of fields. Map construction is one of the
core research focuses of mobile robot development. In this paper, we propose an autonomous map
calibration method using visible light positioning (VLP) landmarks and Simultaneous Localization
and Mapping (SLAM). A layout map of the environment to be perceived is calibrated by a robot
tracking at least two landmarks mounted in the venue. At the same time, the robot’s position
on the occupancy grid map generated by SLAM is recorded. The two sequences of positions are
synchronized by their time stamps and the occupancy grid map is saved as a sensor map. A map
transformation method is then performed to align the orientation of the two maps and to calibrate
the scale of the layout map to agree with that of the sensor map. After the calibration, the semantic
information on the layout map remains and the accuracy is improved. Experiments are performed in
the robot operating system (ROS) to verify the proposed map calibration method. We evaluate the
performance on two layout maps: one with high accuracy and the other with rough accuracy of the
structures and scale. The results show that the navigation accuracy is improved by 24.6 cm on the
high-accuracy map and 22.6 cm on the rough-accuracy map, respectively.

Keywords: map calibration; visible light positioning (VLP); robot localization; Simultaneous Local-
ization and Mapping (SLAM); map transformation

1. Introduction

With the development of sensors, control systems, bionics and artificial intelligence,
robot technology has been investigated and applied in many areas to provide services
such as hospital inspection, hotel delivery and warehouse logistics. Using mobile robots
in indoor environments can effectively improve the intelligence and effectiveness of task
execution. By combining robot intelligence and human expertise, human–robot interac-
tion is promoted in multiple scenarios, such as medical applications [1,2] and industrial
applications [3,4]. Meanwhile, in these robot applications, navigation plays an increasingly
crucial role. As an essential element in the navigation process, high-precision positioning in
indoor environments is still a challenging task. Since the Global Navigation Satellite System
(GNSS) cannot provide satisfactory positioning services in indoor environments due to the
extreme signal attenuation and interruption caused by indoor structures, WiFi/Bluetooth
fingerprinting-based indoor positioning systems (IPSs) have raised extensive attention and
achieved encouraging results. However, positioning based on WiFi/Bluetooth can only
achieve meter-level accuracy [5].

Compared with WiFi/Bluetooth fingerprinting-based positioning, positioning with
landmarks composed of visible light positioning (VLP)-enabled lights can provide an
absolute location when using an image sensor as a receiver. Scanning of the whole area is
not required, and global 3D positioning results can be achieved as long as the 3D position
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information of the landmarks is encoded in the VLP lights. In our previous works [6,7], we
proposed a VLP system based on a single LED that could achieve centimeter-level accuracy,
with an average accuracy of 2.1 cm for a stationary robot [6] and of 3.9 cm for a 3D tilted
receiver camera [7].

Besides positioning, building an accurate map is another important element for nav-
igation because both positioning and path planning rely on the map information of the
environment [8]. One typical map representation is an occupancy grid map [9], in which
the value of each cell represents the probability of being occupied by obstacles. Currently,
Simultaneous Localization and Mapping (SLAM) technology [10] is widely used to de-
termine the position of the robot and build an occupancy grid map at the same time by
fusing available sensor information. However, SLAM has three main drawbacks. The
first is that SLAM can only determine a local position and the relative movement of the
robot in the environment [11]. Second, SLAM requires scanning and survey of the whole
scene to obtain a map. Last, the position based on the sensors in the robot, including the
odometer and inertial measurement unit (IMU) will drift and lose global accuracy with
time [12]. These drawbacks lead to challenges for mapping and navigation in large-scale
and multi-floor environments.

In addition, the occupancy grid map created by SLAM only contains three types of
information: the cell is occupied, free of obstacles or unknown to the robot, as shown in
Figure 1a. There is no semantic information on the structures. Moreover, the occupancy
grid map may not be oriented so that humans can distinguish the direction with a corre-
spondence to the real world. The noise from the sensors will also be shown on the map
and mislead the robot as well as humans. Therefore, it is noticeably difficult for humans to
understand an occupancy grid map generated by a robot and send commands to the robot
based on it.

Figure 1. Two kinds of maps: (a) a typical occupancy grid map; (b) a layout map.

Noting the drawbacks of the occupancy grid map generated by SLAM and its difficul-
ties for humans, we propose to use a layout map to promote better cooperation between
humans and robots. A human in an indoor environment will always use a layout map,
which illustrates structures and contains semantic information, to navigate a pathway from
the current position to the target position, as shown in Figure 1b. A layout map always
demonstrates the whole area and is complete and without noise. The boundaries on such
maps refer to obstacles in the area that cannot be crossed by a robot and have the same
meaning as the occupied cells in an occupancy grid map. However, the accuracy of a layout
map in terms of resolution cannot be guaranteed, which will degrade the accuracy and
reliability of navigation.

Therefore, in this paper, we propose to calibrate the layout map of a scene using
the occupancy grid map generated by SLAM to improve navigation performance. In the
mapping process, an image sensor is mounted on the robot and we use VLP landmarks
to acquire the robot’s position on the layout map. At the same time, SLAM is performed
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on the robot, and its position on the occupancy grid map is determined by the sensors.
After at least two landmarks are tracked by the image sensor on the robot, the occupancy
grid map generated by SLAM is saved as a sensor map. Then, the orientations of the
two maps are aligned based on the pixel coordinates of the tracked landmarks on the
maps. Moreover, the scale of the layout map is calibrated by computing the pixel distance
between the key points. To keep the consistency of the map image after scaling, the
eight-neighborhood averaging method and bi-linear interpolation method are applied. It
is noteworthy that the map calibration method based on landmarks is scalable to scenes
mounted with multiple landmarks by computing the average of the rotation angle and scale
of every two key points. Finally, to verify the effectiveness of the proposed map alignment
methods, we develop the algorithm on the robot operating system (ROS) and perform real-
time experiments. In the mapping experiment, we calibrate the layout map with different
numbers of VLP landmarks to evaluate the map alignment performance. We further
perform robot autonomous navigation on the calibrated map to evaluate the navigation
results after map calibration. A navigation experiment with semantic information is also
performed to visualize how semantic information can help humans to send instructions
to robots.

More explicitly, the main contributions of this paper include: 1. VLP is utilized as
a landmark to achieve robot positioning on the layout map; 2. homogeneous transform
matrices are applied to align the layout map with SLAM produced occupancy grid map;
3. the proposed map calibration method is evaluated by robot autonomous navigation with
semantic information.

The paper is organized as follows. Related work is introduced in Section 2. Section 3
explains the mapping system and map transformation process. In Section 4, we present
the details of the proposed VLP landmarks and SLAM-assisted automatic map calibration
method. Experimental results are provided and analyzed in Section 5. Finally, Section 6
concludes this paper.

2. Related Work
2.1. Robot Positioning and Navigation

Robot autonomous navigation is a crucial component when developing robot intelli-
gence in various scenarios, such as transportation, medical science and agriculture. The
application of a transport robot aims to improve work efficiency by saving human labor
resources and meanwhile guarantee strong safety in industrial automation and produc-
tion [13]. An operational strategy for the task allocation and path planning of multiple
transport robots is proposed in [14], which can minimize the task time. In the medical
industry [15], a navigation robot can also minimize person-to-person contact, taking an
essential role in the clinical management during the COVID-19 pandemic [16]. A complete
pipeline of robotic assistance in drug delivery is proposed in [17], using the navigation
robot to realize efficient interaction with patients and doctors and monitor drug intake.
Robot autonomous navigation is a challenge in agriculture caused by the semi-structured
environment and uneven ground [18]. To achieve safe navigation on a steep slope, a
path planning method aware of the robot’s center of mess is proposed in [19], taking into
account the specific limitations of the environment including the limited steering angles
and a preference for forward motion.

When achieving robot autonomous navigation, positioning technology plays an es-
sential role. In a robot positioning system, there are two types of sensors [20]. One is
onboard sensors, which adhere to the robot body, such as the odometer and IMU. These
sensors measure the robot’s linear and angular velocities and accelerations with a high
updating rate, and predict its position and orientation by previous measurement. An indoor
positioning system based on wheel odometry is proposed in [21] by fusing the readings
from an encoder, gyroscope, and magnetometer using a self-tuning Kalman filter coupled
with a gross error recognizer. In [22], two IMUs are used to estimate the position, and the
positioning performance is improved by the implementation of the relative relationship.
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The average positioning accuracy is lower than 20 cm over short periods of time. How-
ever, since the onboard sensors are subject to time-dependant integral error that increases
over time [23], the accumulated error is still inescapable, leading to the degradation of
positioning accuracy.

The other type is external sensors, which are separated from the robot body, such
as image sensors and light detection and ranging (LiDAR). These sensors are capable of
measuring an absolute position with the aid of a fixed global reference in the environment.
In [24], a radio-frequency identification (RFID) reader is mounted on the robot to track
its position in the scene where RFID tags are placed at each intersection of structured
environment ways. A Bayesian filter-based robot positioning system with RFID tag collect-
ing is proposed in [25], and the average positioning accuracy is about 50 cm. In [26], the
robot is equipped with an array of microphone, and the positioning is achieved using the
time difference of arrival (TDOA). An unscented Kalman filter-based position estimation
method is proposed in [27], where a tachometer is mounted on the robot. To increase the
positioning accuracy, more sensors, such as IMUs, are needed. In [28], a bio-mimetic radar
sensor-based positioning system is proposed, and it can locate a robot with an average
accuracy of 35 cm. A moving camera localization method is proposed for scenes with
repetitive patterns by adaptively selecting distinctive features or feature combinations [29].
Compared with these works, VLP can achieve much better, centimeter-level, positioning
accuracy. In our previous work [30], the proposed robot localization method using VLP
technology based on two LED lights and a commercial image sensor achieves an average
accuracy within 2 cm . We further improve the proposed VLP system by using a single LED
light and fusing the VLP estimation with an IMU [6]. The stationary positioning accuracy
is about 2.1 cm.

2.2. Map Merging and Map Alignment Method

To create a complete map of an environment, especially a large venue, a map merging
method is widely used to integrate the occupancy grid maps generated at different locations
of the environment to be perceived. A map merging method based on pose graphs is
presented in [31], which requires consecutive pose information of the robot to remove
the distortion of the generated maps. However, due to the accumulated error from robot
sensors, it is difficult to continuously obtain high-accuracy positioning results without
landmark-based error correction, especially in a large venue. In [32], a pair-wise map
merging method is proposed to integrate the local maps built by different robots into a
single global map. However, it requires high overlapping percentage between two maps,
otherwise it will lead to unreliable map integration performance. Multi-robot cooperative
mapping by introducing augmented variables to paralyze the computation is proposed
in [33], while in [34], a robust map merging algorithm with multi-robot SLAM (MRSLAM)
is proposed, but it also requires a large amount of overlap between the two maps generated
by two robots to extract and match the features in the two maps. In [35], the existing
methods on merging redundant line segments are evaluated by experiments. A distributed
method for constructing an occupancy grid map using a swarm of robots with global
localization capabilities and limited inter-robot communication is proposed in [36] and
physical experiments are performed. Instead of a diffusive random walk of the robots,
Lévy walks and larger individual memory are applied to the robots. The drawback of all
these map merging methods, however, based on a single robot or multiple robots, is that
they rely on scanning the whole environment to obtain complete map information, which
is time-consuming and certainly leads to a high cost.

During recent years, a significant amount of work has been performed on map align-
ment of different types of maps. In [37], a map alignment method for a floor map and an
occupancy grid map generated by SLAM using a similarity transformation is proposed. The
process is not time-consuming, but it has poor performance on maps with noise, different
scales or types of maps. An improved SLAM using the Bayesian prior extracted from a
blueprint is presented in [38]. It improves the performance of the SLAM algorithm, but in
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order to determine the correspondence of two kinds of maps, the semantic information on
the layout map has to be eliminated. Therefore, it is still difficult for humans to understand
the generated map, and the method cannot actually facilitate the collaboration between
humans and robots. Scanning of the whole scene using SLAM is also required. A nonlinear
optimization method for nonrigid alignment of maps is proposed in [39], but it has a high
computation cost due to the nonlinear optimization. A fast map matching algorithm based
on area segmentation is presented in [40]. However, it also requires scanning the whole area
and is sensitive to the occupancy grid maps with distortion induced by the accumulated
error from robot sensors.

Therefore, calibrating and aligning maps of different types and maps with distortions
or noise is still a challenging task. In this paper, we propose to calibrate a layout map
with a sensor map generated by SLAM. The proposed method works for maps in different
orientations or scales. We use high-accuracy VLP landmarks to obtain the position of the
robot on the layout map and align it with its position on the sensor map. At least two
landmarks are placed in the environment to be perceived, and therefore scanning the whole
venue is not required. With a calibrated layout map, a human can send instructions to the
robot with the semantic information shown on the map and the robot can navigate to the
target point with the aid of the occupancy information on the map, by which the efficiency
thus is improved. As this paper focuses on achieving real-time robot navigation on a
calibrated map with less computing resources, deep learning, such as hybrid hierarchical
classification algorithm [41] is not considered.

3. Mapping System

In this section, the system design of the proposed map calibration technology, includ-
ing the occupancy grid mapping system, map transformation method and the proposed
diagram, will be presented.

3.1. Occupancy Grid Mapping System

An occupancy grid map, which consists of an array of cells representing the occupancy
information of an environment, was first introduced in [42] and is usually generated from
SLAM. The binary random variable in each cell represents the probability of the presence of
an obstacle at that location of the perceived environment. If the variable is closer to 0, there
is a higher certainty that the cell is not occupied and is free of obstacles. If the variable is 0.5,
there are two possible cases. One is that the cell is unknown to the robot, neither occupied
nor free. The other is that the same number of measurements for occupied and free has
been obtained [43]. The probability in each cell is relatively independent. An occupancy
map is updated by the detection results from robot sensors. In this paper, we use a 2D
occupancy map generated by Gmapping method [44] to describe a slice of the 3D perceived
environment. When we save the occupancy grid map as an image file, the probability in
each cell p will convert to a gray scale value in each pixel g:

g = −254p + 254. (1)

Therefore, if the probability of an obstacle in the cell is close to 0, the gray scale value
in that pixel will be close to 254, indicated in white. Otherwise, the color of the pixel will
reach black.

3.2. Map Transformation

To achieve map calibration, map transformation, including rotation, translation and
scaling, will be performed on the original map image. For a gray scale map image G of the
size h× w, each pixel contains the gray scale value of that pixel. As the gray scale values
represent three different occupancy meanings to the robot, we divide the values in matrix
G to three units, occupied, unknown and free of obstacles, with two thresholds given by
to and t f , as shown in Figure 2. Thus, if the gray scale value is lower than to, the pixel is
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occupied. If the gray scale value of the pixel is higher than t f , the pixel is free of obstacles.
Otherwise, the pixel is unknown for the robot.

Figure 2. Occupancy-coordinate transformation for a gray scale map image.

To present the map transformation method in an intuitive way, we represent the map
image as three matrices, Mo, Mu and M f , containing the pixel coordinates of the gray scale
values in the three units mentioned above. The three matrices are of the size 3× No, 3× Nu
and 3× N f , respectively, where No is the number of pixels that are occupied, Nu is the
number of pixels that are unknown to the robot, and N f is the number of pixels that are
free of obstacles, and No + Nu + N f = hw. The first rows in the three matrices represent
the u-coordinate of the pixels, and the second rows represent the v-coordinate of the pixels
in the pixel coordinate system. As we use homogeneous coordinates [45] to represent the
pixels, all the values in the last rows are assigned ‘1’. The order in which we place the
pixel coordinates of the gray scale values in matrix G in the occupancy-coordinate matrices
is based on checking the gray scale values in G row by row and then placing their pixel
coordinates into the corresponding matrix.

Map transformation can be directly performed by matrix multiplication on the occupancy-
coordinate matrices Mo, Mu and M f . For example, if the map is supposed to rotate
clockwise with angle ϕ at the center (wc, hc, 1), enlarge by k times, and then translate
(wt, ht), we should firstly translate the origin of the coordinate system to the map center
(wc, hc, 1), and the first translation matrix Tc is given by

Tc =

 1 0 −wc
0 1 −hc
0 0 1

. (2)

Subsequently, we should rotate the map clockwise with angle ϕ, and the rotation
matrix R is given by

R =

 cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

. (3)

The next step is to enlarge the image, where the scaling matrix S can be described as

S =

 k 0 0
0 k 0
0 0 1

. (4)
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Finally, we will translate the origin of the coordinate system back and further translate
(wt, ht), and the translation matrix T is given by

T =

 1 0 k ∗ wc + wt
0 1 k ∗ hc + ht
0 0 1

. (5)

Therefore, the transformed occupancy-coordinate matrices Mot , Mut and M ft can be
obtained by

Mot = TSRTc Mo, (6a)

Mut = TSRTc Mu, (6b)

M ft = TSRTc M f . (6c)

It is noteworthy that, after we scale up an image, each pixel of the original map image
is moved in a certain direction based on the scaling constant k. However, if the scaling factor
is larger than 1, there may exist unassigned pixel values in the resultant map image, which
are regarded as holes. Furthermore, if the scaling factor is smaller than 1, there will be
multiple assigned pixels. Therefore, we will add an interpolation and eight-neighbourhood
averaging method after scaling transformation to appropriately assign the gray scale values
to these pixels. The details are described in Section 4.3.

3.3. Overview of the Proposed Map Calibration System

The diagram of the proposed map calibration system using VLP landmarks and SLAM
is given in Figure 3. The system setup contains a layout map of the environment to be
perceived, a robot, and multiple VLP lights with different IDs installed in the experimental
area. The VLP landmarks are mounted on the ceiling and controlled by visible light
communication (VLC)-enabled light emitting diode (LED) drivers to transmit optical
signals [46]. The LEDs are modulated by the on-off keying scheme and encoded with
unique IDs, which contain the LEDs’ world coordinates stored in a uniform resource
identifier (URI) database. The robot used in the mapping system is equipped with multiple
sensors, including an IMU, odometer and LiDAR. A camera is also mounted on the robot to
face toward the ceiling and works in rolling shutter mode to capture the signals broadcast
by the VLP-based LEDs, decode and extract the position information [30].

Figure 3. The proposed VLP landmarks and SLAM-assisted automatic map calibration for robotic
navigation: (1) system setup; (2) mapping process; (3) calibration process.
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To start the mapping process, the robot is set under a VLP landmark and uses the
camera to capture the LED image and decode the position of the starting point. Then,
we apply SLAM to the robot and control it to move to different landmarks and record
its positions, as acquired from SLAM and VLP landmarks, respectively. The time stamp
is simultaneously marked with the position. After the robot has tracked at least two
landmarks in the area, the mapping process can be stopped and the occupancy grid map
generated by SLAM is saved. Therefore, we obtain one sensor map with the robot’s
positions from SLAM and one layout map with the robot’s positions from VLP landmarks.
Subsequently, we propose to use the obtained sensor map and the robot’s positions on two
maps to calibrate the layout map. Firstly, we transform the recorded world coordinates of
the robot to pixel coordinates on the two different maps. Then, we calibrate the layout map
by aligning the robot’s positions on it and the occupancy map.

4. Map Calibration Method

In this section, we will describe the details of the proposed VLP landmarks and
SLAM-assisted map calibration method. As we mentioned, a layout map contains semantic
information, which is readable for humans to give instruction to robots. However, the
scale of a layout map may not be accurate, leading to an inaccurate resolution of the map
in terms of meters per pixel. In a large scene which is to be perceived, it is difficult and
complex to obtain the resolution through measurement. Compared with a layout map, the
sensor map generated from SLAM has a much more accurate resolution, but more noise
points. Therefore, we propose to calibrate the scale of the layout map, which will help
robots to achieve better navigation performance.

4.1. Positioning on Two Different Maps

Figure 4 illustrates the proposed mapping process. At least two VLP landmarks are
required to be mounted on the ceiling of the environment which is to be perceived. The
exact position of the mounting location in the environment is encoded in the VLP light
and is broadcast to the robot by OOK modulation. The positions of the VLP lights are also
marked on the layout map. We use a robot equipped with a camera, odometer, IMU and
LiDAR. The camera is set to face the ceiling and is used to obtain the robot’s position by
VLP. When the camera detects a VLP landmark, it will decode the position information
encoded in the rolling shutter patterns, and then translate it to its own position. The
translation from the world coordinates of the landmark to the world coordinates of the
robot is calculated by the location of the landmark on the camera plane and the orientation
of the robot determined by the odometer on the robot. Then, the world coordinates of the
robot are further translated to the pixel coordinates on the layout map as the landmarks are
labeled on the layout map.

In the mapping process, the robot starts under one of the landmarks to obtain the
first key point for map calibration. Then, it is controlled to perceive the environment
and conduct SLAM with its odometer, IMU and LiDAR sensors. The world coordinates
obtained from the robot sensors are recorded at the same time. After the robot has tracked
at least two VLP landmarks, which means that we obtain at least two pairs of coordinates of
the key points from the two different positioning methods, we can save the occupancy grid
map created by SLAM as a sensor map, set the resolution of the map in terms of meters per
pixel, and then translate the recorded world coordinates of the robot to pixel coordinates
on the sensor map with the resolution.
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Figure 4. Mapping process with VLP landmarks and SLAM technology.

4.2. Calibration of the Orientation

A layout map is readable for humans and is always presented in an orientation in
which humans can understand the semantic information. However, the sensor map created
by the robot may not always be in the same orientation as the layout map used by a human.
Therefore, we propose to correct the orientation of the sensor map.

Firstly, we convert the layout map to a gray scale image Gl . Since in a typical layout
map, furniture and structures are drawn with black or dark squares. Thus, the gray scale
values in the converted layout map have the same meaning as the gray scale values in
the sensor map, where if the pixel is in black and its gray scale value is close to 0, the
probability of an obstacle at that point is close to 1. Then, for the saved sensor map Gs, we
firstly find the occupancy-coordinate representation given by Mso , Msu and Ms f . Then, in
the mapping process, we assume that the robot has detected two landmarks and labeled
them on the two maps according to the translated pixel coordinates given by (ul1,vl1,1) and
(ul2,vl2,1) on the layout map and (us1,vs1,1) and (us2,vs2,1) on the sensor map, as shown in
Figure 5. Then, we draw a line between the two key points and find the angle between the
line and the negative u-axis in the pixel coordinate system.
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Figure 5. Key points on the two maps: (a) layout map, (b) sensor map.

To rotate the sensor map clockwise with the angle of αl − αs, where αl is the angle on
the layout map and αs is the angle on the sensor map, we firstly translate the origin of the
coordinate system to the map center (ws

2 , hs
2 , 1), which is the rotation center, as shown in

Figure 6a. The origin translation matrix Ts1 is given by

Ts1 =

 1 0 −ws
2

0 1 − hs
2

0 0 1

, (7)

where ws and hs are the width and height of the sensor map image Gs. Subsequently, we
substitute the rotation angle αl − αs into the rotation matrix defined in (3) as

Rs =

 cos(αl − αs) − sin(αl − αs) 0
sin(αl − αs) cos(αl − αs) 0

0 0 1

. (8)

Then, we translate the origin of the coordinate system back, and the translation matrix
Ts2 is given by

Ts2 =

 1 0 ws
2

0 1 hs
2

0 0 1

. (9)

By multiplying the translation matrices and rotation matrix, the occupancy-coordinate
representation matrices of the sensor map are given by

Msot = Ts2RsTs1Mso , (10a)

Msut = Ts2RsTs1Msu , (10b)

Ms f t = Ts2RsTs1Ms f , (10c)

where Msot , Msut and Ms f t are the occupancy-coordinate matrices after rotation. Then, we
assign the corresponding gray scale values to the pixels in sensor map image Gs and obtain
the rotated sensor map image Gst.



Robotics 2022, 11, 84 11 of 22

Figure 6. Orientation calibration for the sensor map: (a) translate the rotation center; (b) rotate and
crop; (c) fill in the corners.

After rotation, the rotated sensor map image Gst may not be in the original size of the
sensor map image given by ws × hs. Therefore, we find the maximal u-coordinate of the
pixels indicating the cells are free of obstacles or occupied by an obstacle, which is given by

poum = max[Msot (1, i)], i ∈ [1, No] ∩Z, (11a)

p fum = max[Ms f t (1, j)], j ∈ [1, N f ] ∩Z, (11b)

where Z is the integer set, No is the width of matrix Msot and N f is the width of matrix
Ms f t . Similarly, we determine the maximal v-coordinate of the pixels indicating the cells
are free of obstacles or occupied by an obstacle, which is given by

povm = max[Msot (2, i)], i ∈ [1, No] ∩Z, (12a)

p fvm = max[Ms f t (2, j)], j ∈ [1, N f ] ∩Z. (12b)

Then, we find the maximum in the u-coordinates and v-coordinates, respectively,
given by

wsm = max[ws, poum , p fum ], (13a)

hsm = max[hs, povm , p fvm ], (13b)

where (wsm, hsm) is the size to which we will crop the rotated sensor map.
Then, we trim the map image by the width of wsm and the height of hsm, as shown

in Figure 6b and delete those columns in Msot , Msut and Ms f t . Furthermore, we fill in
the corners with the grayvalues indicating that the pixel is unknown, namely, the half
probability of an obstacle, as shown in Figure 6c, and add the pixel coordinates of the
elements in the corners to matrix Msut . The obtained occupancy-coordinate matrices of the
sensor map after cropping and filling are given by Msom , Msum and Ms f m .

It is noteworthy that the map rotation process we describe above is based on two key
points, namely, two VLP landmarks, but it is scalable to a perceived environment that is
mounted with multiple landmarks by computing the average rotation angle of every two
key points on the map and substituting the average angle into (8).

4.3. Calibration of the Scale

After we align the orientation of the two maps, the next step is to align their scales.
As the resolution of the sensor map obtained from SLAM is more accurate than that of a
manually drawn map, we propose to calibrate the scale of the layout map with the sensor
map. Firstly, we determine the occupancy-coordinate representation of the layout map



Robotics 2022, 11, 84 12 of 22

matrix given by Mlo , Mlu and Ml f , which indicate the pixels are occupied, unknown or
free of obstacles, respectively. Then, we find the pixel distance between the two key points
on the layout map, given by dul in the u-axis and dvl in the v-axis, as shown in Figure 7a,
where wl is the width and hl is the height of the layout map. Similarly, we obtain the pixel
distance between the two key points on the sensor map, given by dus in the u-axis and dvs

in the v-axis, as shown in Figure 7b. It is noteworthy that, according to (10a), the pixel
coordinates of the two key points on the sensor map have also been transformed after the
rotation as  usm1

vsm1
1

 = Ts2RsTs1

 us1
vs1
1

, (14a)

 usm2
vsm2

1

 = Ts2RsTs1

 us2
vs2
1

, (14b)

where (usm1, vsm1,1) and (usm2, vsm2,1) are the pixel coordinates of the key points on the
sensor map after rotation.

Figure 7. Vertical and horizontal distances between the two key points: (a) on the layout map; (b) on
the sensor map.

Next, we modify the scale of the layout map, and the scaling matrix Sl is given by

Sl =


dul
dus

0 0

0
dvl
dvs

0
0 0 1

. (15)

Then, we multiply matrix Sl with the occupancy-coordinate representation matrices
of the layout map as

Mlor = Sl Mlo , (16a)

Mlur = Sl Mlu , (16b)

Ml f r = Sl Ml f , (16c)

where Mlor , Mlur and Ml f r are the occupancy-coordinate layout map matrices after scaling.
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Since the scaling factor
dul
dus

may not be an integer, the obtained pixel coordinates in the
layout map matrices Mlor , Mlur and Ml f r may result in non-integers. Therefore, we firstly
round all the values in Mlor , as given by

Mlor (i, j) = bMlor (i, j) +
1
2
c, ∀Mlor (i, j) /∈ N, (17)

where b·c is the floor function, i = 1, 2, j ∈ [1, Nlo ] ∩Z, Nlo is the width of matrix Mlor and
N denotes the natural number set. Similarly, we round the values in Mlur and Ml f r .

In addition, if the scaling factor is smaller than 1, after multiplying the scaling matrix,
there will be multiple columns in Mlor composed of the same pixel coordinates. Then, for
each occupancy-coordinate matrix, we treat each column as a single entity and extract the
unique columns with no repetitions. The extracted columns constitute three new matrices
given by Mloe , Mlue and Ml f e . Furthermore, one pair of pixel coordinates may occur in
different occupancy-coordinate matrices, indicating different gray scale values in the layout
map image. To keep the consistency of the gray scale values in the map image, we propose
to use the eight-neighborhood averaging method to determine the gray scale value of a
pixel that has multiple correspondences. For example, if pixel coordinates (un, vn,1) occur
in both of the first two columns of matrix Mloe and Mlue , we check the eight neighborhood
pixels (un + i, vn + j,1), where i, j = 1, 0, −1, find the average of the gray scale values that
these pixel coordinates refer to, and assign the average value to pixel (un, vn,1) given by
gunvn . Then, coordinates (un, vn,1) are reallocated to the occupancy-coordinate matrix by
comparing gunvn with the threshold t f and to, and are removed from previous matrices
Mloe and Mlue .

Moreover, if the scaling factor is larger than 1, there will exist unassigned pixels in the
map image after scaling, which are regarded as holes. To maintain a consistent trend across
the pixels, we propose to use a bilinear interpolation method to appropriately assign the
gray scale values to these pixels by at least four well-assigned pixels. For example, the gray
scale value of pixel (uk, vk, 1) is unassigned, but the gray scale values at the pixels (u1, v1,1),
(u1, v2,1), (u2, v1,1) and (u2, v2,1) are known. We first perform the linear interpolation in
the u-coordinates as

gukv1 = u2−uk
u2−u1

gu1v1 +
uk−u1
u2−u1

gu2v1 ,
gukv2 = u2−uk

u2−u1
gu1v2 +

uk−u1
u2−u1

gu2v2 ,
(18)

where gu1v1 , gu1v2 , gu2v1 and gu2v2 are the gray scale values of pixel (u1, v1,1), (u1, v2,1), (u2,
v1,1) and (u2, v2,1), respectively. Then, we proceed by interpolating in the v-coordinates
and substituting the results of gukv1 and gukv2 from (18) as

gukvk = v2−vk
v2−v1

gukv1 +
vk−v1
v2−v1

gukv2

= 1
(u2−u1)(v2−v1)

[
u2−uk uk−u1

][ gu1v1 gu1v2
gu2v1 gu2v2

][
u2−uk
uk−u1

]
.

(19)

Using (19), each unassigned pixel can be determined by at least four pixels allo-
cated with definite gray scale values. Thereby, after multiplying a scaling matrix, a
complete map image can be obtained by a rounding operation, eliminating duplication,
eight-neighborhood averaging and bilinear interpolation.

Furthermore, similarly to the calibration method for the map orientation described
in Section 4.2, the calibration for scale is also scalable to the a perceived environment that
contains multiple VLP landmarks, as long as we find the average of the scaling factor of
every two key points on the map and substitute the average into (15).

5. Experimental Results

In this section, experiments are conducted to evaluate the performance of the proposed
map calibration method. We will describe the experiment setup, evaluate map alignment
performances and analyze the navigation results on the maps that are calibrated by the
proposed method.
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5.1. Experiment Setup

The experiment is performed in our lab (Integrated Circuit Design Center, 3/F, CYT
Building, HKUST). Two maps with different levels of accuracy are prepared: one is a
building blueprint with a high accuracy and the other is a floor map with a rough accuracy,
as shown in Figure 8a,b. We set three VLP lights as landmarks at different locations in the
perceived environment, as illustrated in Figure 8c. They are modulated with different IDs,
which are encoded with different positioning information stored in the database. Figure 8d
illustrates the TurtleBot3 Burger robot, the ROS standard platform robot we use for the VLP
receiver and SLAM process. The robot is equipped with a Raspberry Pi 3 Model B, running
Ubuntu 16.04 with ROS. Sensors are mounted on the robot for the SLAM process and VLP
decoding. These include an IMU, odometer, 360◦ LiDAR and an industrial camera facing
toward the ceiling. We use a laptop running Ubuntu 18.04 with ROS to remote control
the robot and record the data from the robot in the mapping process. The experimental
parameters and the camera options are summarized in Table 1.

Figure 8. Experimental setup: (a) a building blueprint; (b) a floor map; (c) three VLP landmarks; (d) a
TurtleBot3 Burger robot.

Table 1. Experimental Parameters.

LED Height 2.7 m

LED Diameter 0.175 m

LED Power 18 w

Camera Resolution 2048 × 1536

5.2. Mapping Process and Alignment Results

In the mapping experiment, we set the robot under VLP light No. 1 as the starting
point and control it to move to VLP light No. 2 and then No. 3. At the same time, the robot
performs SLAM using the Gmapping [44] package in ROS. Thus, the robot’s location on the
SLAM map and position as estimated by the VLP system are recorded synchronously, and
the SLAM map is visualized in RViz software on the laptop, as shown in Figure 9. After the
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robot has tracked all three VLP lights, the occupancy grid map is saved. Then, we perform
the proposed map calibration method to calibrate the orientation and scale of the saved
sensor map and the building blueprint. To intuitively evaluate the performance of the map
calibration results, we align the two maps, specifically, translating the key points to the
same pixels on the map. Then, we overlap the pixels which are occupied to compare the
structures shown on different maps of the same experimental area.

Figure 9. Mapping process visualized in RViz.

By multiplying the scaling matrix as (15) and rounding the values, the pixel coordi-

nates of the key points on the layout map after scaling can be computed as (b dul
dus

ul1 +
1
2c,

b dvl
dvs

vl1 +
1
2c) and (b dul

dus
ul2 +

1
2c, b

dvl
dvs

vl2 +
1
2c). Then, we translate the pixels on the sensor

map so that the key points on the two maps are located at the same pixel coordinates. The
translation matrix is given by

Ts3 =


1 0

b
dul
dus

ul1+
1
2 c−usm1+b

dul
dus

ul2+
1
2 c−usm2

2

0 1
b

dvl
dvs

vl1+
1
2 c−usm1+b

dvl
dvs

vl2+
1
2 c−vsm2

2
0 0 1

. (20)

Multiplying the translation matrix in (20), the translated matrices are given by

Msot = Ts3Msom . (21)

Then, we find all the pixels on the layout map, whose coordinates are given in Msot , and
allocate these pixels with the gray scale values of the same pixels on the sensor map.

We first calibrate the building blueprint as shown in Figure 8a, with two key points
given by VLP lights No.1 and No.3. The alignment result is shown in Figure 10a, and
we check the pixel distance between the left bottom corners of cubicle B13 on the two
maps given by 34 pixels. By multiplying the resolution of the map in terms of meters per
pixel, the distance is 0.85 m in the world coordinate system. To improve the alignment
performance, we further add one key point given by VLP light No.2 by determining the
rotation angle and scaling factor with the average of every two key points. The alignment



Robotics 2022, 11, 84 16 of 22

result based on three key points is illustrated in Figure 10b, and the distance between the
left bottom corners of cubicle B13 is given by 11 pixels in the pixel coordinate system and
0.275 m in the world coordinate system. Therefore, increasing one key point in the mapping
process will improve the map alignment performance. In the next section, to achieve better
navigation performance, we use the layout maps calibrated with three key points.

Figure 10. Map alignment result of the building blueprint and sensor map: (a) based on two key
points; (b) based on three key points.

5.3. Navigation on Calibrated Map

To further evaluate the performance of the proposed map calibration method, we use
a navigation system based on an adaptive Monte Carlo localization (AMCL) [47] package,
Dijkstra’s algorithm [48] package and dynamic window approach (DWA) [49] package in
ROS to achieve autonomous navigation of the robot on the calibrated maps. We set the
navigation goal of the robot to be next to cubicle B06, as shown in Figure 11. The distance
between the starting point and the target point is 14.14 m. During the navigation, the
position of the robot is determined by the AMCL method. The global plan is achieved by
Dijkstra’s algorithm, and the local plan is designed by the DWA planner. As shown in
Figure 12, the blue dots encapsulated in the outlines in pink are the obstacles detected by
the LiDAR on the robot. The red line is the DWA local planner, and the green line, which
connects to the navigation goal, represented by a red arrow, is the global plan based on
Dijkstra’s algorithm. On each map, we repeat the navigation five times and the navigation
results on the different maps are illustrated in Figure 11 and summarized in Table 2. The
table lists the distance between the actual point reached in the real world and the target
destination sent to the robot. Compared with the navigation results on the sensor map,
those on the calibrated building blueprint and the calibrated floor map are much closer
to the set destination. The average navigation accuracy is improved by 24.6 cm on the
building blueprint and 22.6 cm on the floor map, respectively. Furthermore, with the
proposed calibration method, the robot on the floor map, which has lower accuracy in scale
and structure location than the building blueprint, can achieve a navigation performance
nearly as good as that on the building blueprint, which verifies the effectiveness of the
proposed map calibration method.
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Figure 11. Navigation goal and navigation results on the sensor map, floor map and building
blueprint.

Figure 12. Navigation process with LiDAR detection results, DWA local plan and Dijkstra’s global
plan.

Table 2. Navigation Results.

Points Sensor Map Building Blueprint Floor Map
(cm) (cm) (cm)

1© 65 45 49

2© 67 46 50

3© 83 57 59

4© 88 60 59

5© 90 62 63

Average 78.6 54 56

5.4. Navigation with Semantic Information

As we mentioned in Section 1, a layout map contains semantic information which
is accessible to humans and allows them to send instructions to robots. After calibrating
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the layout map, we can not only send the navigation target to the robot by selecting one
point on the map, but also navigate the robot with pre-compiled semantic information
on the layout map. For the floor map illustrated in Figure 8b, we compile three positions
with semantic information, as shown in Figure 13, where D49 refers to Johnny’s cubicle,
D50 refers to Frederick’s cubicle and B01 refers to the last line of the test bench. Figure 14
illustrates the navigation experiment with semantic information. When the program starts,
the semantic information of the map is shown in the terminal, as shown in Figure 14a.
Then, we send a navigation goal by tapping the target identifier number of the semantic
information, and a red arrow indicating the aimed point is marked on the floor map, as
shown in Figure 14b. Figure 14c illustrates the condition that the robot has arrived at
the target point and the semantic information is illustrated again in the terminal. We can
repeat the navigation process by tapping another identifier number of the navigation goal,
as shown in Figure 14d. Using this process, the semantic information on the floor map
helps humans to set tasks for the robots in a more straightforward and user-friendly way
compared with a sensor map, which has no semantic information.

Figure 13. Compiled semantic information on the floor map.

(a)

Figure 14. Cont.
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(b)

(c)

(d)

Figure 14. Navigation process with semantic information on the floor map: (a) send the indication of
the semantic information at the starting point; (b) robot navigates to the target point; (c) robot has
reached the target point and is waiting for the next navigation goal; (d) robot navigates to the second
target point.
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6. Conclusions and Future Work

In this paper, we propose a VLP landmark and SLAM-assisted automatic map cali-
bration method for robot navigation. VLP landmarks with different IDs are mounted in
the environment to be perceived, and a layout map of the environment is prepared to be
calibrated. By tracking the landmarks and conducting SLAM at the same time, the robot’s
position as obtained from the VLP method and the position as obtained from SLAM are
recorded synchronously with the time stamp. By aligning the recorded coordinates on
the layout map and the sensor map saved from SLAM, the orientation and the scale of
the layout map is calibrated. Experiments are performed to evaluate the proposed map
calibration system in terms of the map alignment performance and navigation performance.
We calibrate two layout maps: a building blueprint of high accuracy and a floor map of
rough accuracy. The experiment results show that the robot can achieve a better navigation
performance on the calibrated layout maps compared with that on the sensor map, and can
achieve the navigation performance on the calibrated floor map almost the same as that on
the calibrated building blueprint.

In this paper, VLP landmarks are used in map calibration for robot navigation. In
the future work, a VLP landmark-aided SLAM system can be developed by inducing VLP
landmark to SLAM system to correct the distortion of the occupancy grid map caused
by the odometer, as the absolute positioning result from VLP lights can help increase
localization accuracy. Furthermore, if we already have an accurate layout map, the gray
scale values on the layout map can provide the prior information for LiDAR detection and
correct the distortion caused by the odometer as well.
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