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Abstract: Human–Robot Collaboration (HRC) is an interdisciplinary research area that has gained at-
tention within the smart manufacturing context. To address changes within manufacturing processes,
HRC seeks to combine the impressive physical capabilities of robots with the cognitive abilities of
humans to design tasks with high efficiency, repeatability, and adaptability. During the implemen-
tation of an HRC cell, a key activity is the robot programming that takes into account not only the
robot restrictions and the working space, but also human interactions. One of the most promising
techniques is the so-called Learning from Demonstration (LfD), this approach is based on a collection
of learning algorithms, inspired by how humans imitate behaviors to learn and acquire new skills. In
this way, the programming task could be simplified and provided by the shop floor operator. The aim
of this work is to present a survey of this programming technique, with emphasis on collaborative
scenarios rather than just an isolated task. The literature was classified and analyzed based on: the
main algorithms employed for Skill/Task learning, and the human level of participation during the
whole LfD process. Our analysis shows that human intervention has been poorly explored, and its
implications have not been carefully considered. Among the different methods of data acquisition,
the prevalent method is physical guidance. Regarding data modeling, techniques such as Dynamic
Movement Primitives and Semantic Learning were the preferred methods for low-level and high-level
task solving, respectively. This paper aims to provide guidance and insights for researchers looking
for an introduction to LfD programming methods in collaborative robotics context and identify
research opportunities.

Keywords: human–robot collaboration; robot learning; learning from demonstrations; skill learning

1. Introduction

Manufacturing industry has evolved; traditional manufacturing—focused on mass
production—has adopted a new production scheme based on mass customization, capable
of satisfying the needs of an ever changing market. The mass customization paradigm has
highlighted the importance of possessing enough flexibility and adaptability in manufac-
turing cells, to resolve this, the concept of Industry 4.0 was born.

Industry 4.0 is a knowledge-based and data-centered manufacturing strategy focused
on increasing flexibility and adaptability of a production process while a high level of
automation, operational productivity, and efficiency are achieved [1]. Current robotics
systems in manufacturing processes allows high precision and repeatability to facilitate
different products manufacturing while increasing the efficient use of resources, whether
material or temporary, and this provides a considerable reduction in production costs.
On the other hand, industrial robots have benefited in their autonomy levels, thanks to
the technological advances made in areas of computer science and data acquisition and
processing, particularly in the fields of Artificial Intelligence (AI), sensors, and micropro-
cessors to make them become smarter [2]. Although industrial robots offer high levels of
precision, reliability, and speed, among other advantages as their key points within the
manufacturing processes, they still lack certain necessary characteristics, such as flexibility,
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adaptability, or intelligence, to be fully compatible with the idea of smart manufacturing
introduced by this shift [3].

One enabling technology for Industry 4.0 is Human–Robot Collaboration (HRC),
an interdisciplinary research area involving advanced robotics, neurocognitive modeling,
and psychology. HRC refers to application scenarios where a robot, generally a collabora-
tive one (commonly called a Cobot), and a human occupy the same workspace and interact
to perform tasks with a common goal [4]. Within manufacturing, HRC seeks to combine the
impressive physical capabilities of robots (e.g., high efficiency and repeatability), with the
cognitive abilities of humans, (e.g., flexibility and adaptability), necessary to address the
uncertainties and variability in massive customization [5].

Still, the field of HRC presents several unsolved industrial and research challenges in
terms ofintuitiveness, safety, and ergonomic human–robot interaction [6–9], and in robot
learning and programming methods [10,11]. This has lead to scenarios where collaborative
robots are reduced to traditional uncaged manipulators, for which, as a consequence, flexi-
ble, adaptive, and truly collaborative tasks are rarely implemented or developed [12]. In an
effort to facilitate the programming of collaborative robots, Learning from Demonstration
(LfD) appeared as a solution [13]. This is a technique that mimics how humans learn a
task by watching a demonstration from another human. The use of LfD as a programming
technique simplifies the complex skill of code programming, making the use of the robot ac-
cessible, without the need for a programming expert. Thus, the manufacturing preparation
is accelerated, as the human collaborator could teach the robot any new desired skill.

The aim of this paper is to investigate the current state of the art on LfD as an advanced
programming technique for collaborative robots and to identify how to improve HRC in
order to reduce the complexity faced by the human operator in the reconfiguration of
manufacturing cells and reprogramming of robot tasks. Based on the most important
and consolidated topics in programming techniques for collaborative robots research, this
work is intended to serve as a guide for scientists looking for directions on where to focus
in the near future to bring collaborative robotics from the laboratory experimentation to
implementation on the industrial shop-floor. Thus, this paper seeks to answer the following
research questions:

RQ1: Which are the main programming algorithms applied in the recent scientific litera-
ture regarding Learning from Demonstrations for collaborative robots applicable to
possible manufacturing scenarios?

RQ2: Which is the level of collaboration/interaction between human and robot in the tasks
that researchers seek to solve with the application of Learning from Demonstration
programming algorithms?

RQ3: How do these solutions align with smart manufacturing/Industry 4.0 paradigm
in terms of intuitiveness, safety, and ergonomics during demonstration and/or
execution?

Several terms with similar meanings can be found in the literature: Programming
by/from Demonstrations, Imitation Learning, Behavioral cloning, Learning from Observa-
tion, and Mimicry. In this work, we use the term LfD to encompass all these terms relative
to the field.

In recent years, other papers that extensively review the LfD approach for robot
programming have been published, as shown in Table 1 including review and survey
papers. The work of Hussein et al. [14] emphasizes on the more prominent algorithms
applied in research on Imitation Learning, Zhu et al. [15] review how LfD is used to
solve manufacturing assembly tasks, the paper by Ravichandar et al. [16] aims to show
the advances of LfD in the robotics field, and Xie et al. [17] show a broader perspective
on how LfD is applied in path planning operations. In contrast, the uniqueness of this
review is the particular focus on how LfD directly impact the HRC in manufacturing
operations, and attempts to emphasize the active role of the human during the entire
teaching–learning process.
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Table 1. Published review papers on Robot Learning from Demonstrations.

Year Author Title Focus

2017 Hussein et al. [14] Imitation Learning: A survey of
learning methods Algorithms

2018 Zhu et al. [15]
Robot Learning from

Demonstration in Robotic
Assembly: A survey

Assembly operations

2020 Ravichandar
et al. [16]

Recent Advances in Robot
Learning from Demonstration General

2020 Xie et al. [17]
Robot learning from

demonstration for path planning:
A review

Path planning

The rest of the paper is organized as follows: Section 2 describes the research method-
ology used in this work based on a systematic literature review (SLR) methodology to
identify relevant papers for this study. In Section 3, we give a detailed theoretical back-
ground in LfD paradigm. In Section 4, the retrieved papers are analyzed and classified
in representative categories of each applied algorithm, and the human role during LfD
process. Finally, Section 5 is dedicated to discussing the findings from the content analysis
and the implications in real scenarios.

2. Materials and Methods

We applied a systematic literature review (SLR) in this study because it is based on a
systematic, method-driven, and replicable approach. There are several studies on how to
conduct a SLR [18–20].

For this work, we defined the following four consecutive steps for our study:

Step 1: Establish the research objectives of the SLR.
Step 2: Define the conceptual boundaries of the research.
Step 3: Organize the data collection by defining the inclusion/exclusion criteria.
Step 4: Report the validation procedure and efforts.

In the following, we discuss each one of these steps.

2.1. Research Objectives of the SLR

As the research questions stated in the introduction, we use the SLR approach to
identify the most used algorithms in Learning from Demonstration (LfD) programming for
collaborative robots in manufacturing industrial settings. In particular, we want to under-
stand how the results in recent research on the field can be categorized and if the solutions
introduced truly focus on solving collaborative tasks, how it connects and relates with the
new emerging technologies introduced by Industry 4.0 and Smart Manufacturing concepts,
and in which areas we need to focus in the future to successfully implement these approxi-
mations and to truly enhance Human–Robot Collaboration (HRC) in industrial settings.

2.2. Conceptual Boundaries

This research aims to analyze collaborative robotics. Thus, the setting of the conceptual
boundaries was based on the terms “collaborative robotics” and its derivations combined
with terms describing its application in an industrial environment (e.g., “industrial”, “pro-
duction”, “manufacturing”, or “assembly”) while, considering the terms “Learning from
Demonstrations” (LfD) or “Programming by Demonstrations” (PbD) and all the possible
synonyms (“behavioral cloning”, “imitation learning”, “kinesthetic teaching”). Addition-
ally, to completely understand how collaborative robots in an industrial context relate to the
core technologies of Industry 4.0, we added the terms “digital twin” and “cyber-physical
systems” to the main search.
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2.3. Inclusion and Exclusion Criteria

In addition to the conceptual boundaries, several search criteria in terms of database,
search terms and publication period need to be defined. Web of Science (WoS) and Scopus
were selected as electronic databases for the keyword search, which we identified as two
of the most complete and relevant databases for publications in the Engineering and
Manufacturing area. Most of the source results obtained using Scopus can be smoothly
complemented with the search on Web of Science, therefore, we decided to use both
databases to conduct the SLR. For the applied search approach and the inclusion and
exclusion criteria in the search query, we decided to divide this task in multiple steps
for the evaluation and construction of the search query, as proposed in [21]. In the first
step, we identified the literature of the collaborative robotics field using the following
search terms while searching for title, abstract and keyword in Scopus and for topic in
WoS: “collaborative robotics”, “collaborative robot”, “cobot”, “human-robot collaboration”,
“human robot”, “human-robot”; all the terms were linked with the “OR” operand. In this
first step, all kinds of subject areas and documents were included, but only works in the
English language were selected. In a second step, the focus was on collaborative robots as
solutions to the industrial sector. Therefore, in this second step, the following terms were
added through a boolean “AND” function: “industry”, “industrial”, “manufacturing”,
and “production”; all the terms were linked with the “OR” operand. Finally, in the third
step, we completed the search query by constraining the publishing year of the academic
literature, thus, we selected works from 2016 to 2022 as time span for this research and and
also limited the source type to “Journal” and “Article”, “Review” and “Article in Press” as
document type to consider only high-quality literature.

2.4. Validation of the Search Results

The screening was conducted in two phases by three independent researchers. In the
first phase (1° round of screening), only the title and abstract were read. In the second phase
(2° round of screening), the whole paper was examined. Each researcher classified each
paper in two categories: high relevance and low relevance. Where the three independent
researchers came to the same conclusion, i.e., zero differences in the classification, the papers
were directly included into the analysis. Papers where differences in the classification
occurred were discussed in order to achieve 100% agreement between the three researchers.
Additionally, the final decision was supported by a text mining software in order to provide
more reliability to the results; the benefits of using these kinds of tools are extensively
described in [22,23]. After the screening phases, a total of 43 papers were included in
this survey.

3. Theoretical Background

This section is dedicated to the description of common terms used in the research
area. As it is a rapidly grown field, several authors use different words to express similar
concepts. In this section, we unify and describe the concepts, for a better understanding of
this paper. The concepts expressed here will be used later in Section 4 for the analysis.

3.1. Learning from Demonstration

Robot Learning from Demonstration (LfD) is a technique for robot programming,
based on a collection of learning algorithms, inspired by how humans imitate behaviors
to learn and acquire new skills. The motivation behind this technique is to offer the end-
user the capability to adapt and customize a robotic system to their needs, without prior
programming knowledge or skills. The robot learns the desired behaviors through a
natural demonstration of the target skill performed by the end-user. The main idea is
that the robot can reproduce the learned skill accurately and efficiently to solve a task.
Furthermore, the robot should be able to use the learned skill in situations not taught in the
demonstrations. LfD takes aspects of neuroscience to try to imitate the way humans learn
after watching a demonstration from another human.
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Based on the extensive works of Argall et al. [13], Billard et al. [24], and Chernova
et al. [25], in Figure 1, we show the general outline of the LfD process. It consists of five main
stages in the design of applications based on LfD programming: Demonstrator Selection,
Data Acquisition, Data Modeling, Skill/Task Execution, and Learning Refinement. The first
stage refers to the selection of the demonstrator. Ideally, the demonstrator should be a
skilled teacher, however, the characteristics of the demonstrator are not always considered.
Second is the Data Acquisition, also called the demonstrations stage, where a demonstrator
teaches the skill or task, and the cobot records such demonstration using its available
sensors. Third, Data Modeling is the creation and application of algorithms used for
learning the demonstrated skill or task. Fourth, Skill/Task Execution stage is where the
knowledge obtained by the robot is evaluated. Finally, the fifth stage, Refinement of the
Learning, is the stage that completes the LfD loop. Whether online or not, its purpose is to
gradually improve the learned robot skill towards a better generalization.

Figure 1. The five stages of the Learning from Demonstration programming paradigm.

3.1.1. Demonstrator Selection Stage

The correct selection of the demonstrator has great repercussions for the LfD system
design. Usually, a human is selected to be the demonstrator, but this is not necessarily the
only option. Theoretically, another intelligent system could be selected as a demonstrator;
however, this has not been attempted in the literature. The characteristics that should be
considered are level of expertise, physical and cognitive capabilities, and the number of
demonstrators. In most cases, the demonstrator is considered an expert teacher; however,
suboptimal demonstrations lead to suboptimal robot (learner) performance. Physical
and cognitive capabilities play a significant role in the selection of the ideal interface for
demonstrations. An adequate compromise between the correspondence problem and
performance should be established.

3.1.2. Data Acquisition Stage

Data acquisition refers to the way skills or tasks are captured during the demonstration
process. The objective is to extract the critical information from the task and provide the
robot with the ability to adapt the learned skill to different situations. This stage responds
to the question of what to learn/teach? The interface used to teach is key during this
process (also connects the demonstrator with the learning system) because each learning
method employed during this stage has advantages and disadvantages associated with
the correspondence problem. Careful attention must be given to the sensory and physical
systems of the demonstrator, the learner, and the space where the demonstration is taking
place, e.g., the perception of the task space from a camera mounted on the robot end-effector
will differ greatly from the perception of the demonstrator’s eyes. In the same context,
even with all the similarities that exist, the movements of a human arm will not have
the exact same correspondence in a robot arm configuration space. In short, to solve the
correspondence problem, it is necessary to provide a map between the desired trajectories
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and the joint/configuration space of the learner. There are two types of mapping methods:
Direct-mapping-based methods and Indirect-mapping-based methods.

In the Direct-mapping-based methods, the robot is manipulated directly by the demon-
strator to record the desired learning trajectories. The advantage of these methods is that
the correspondence mapping function can be omitted because all demonstration steps are
performed in the robot configuration space. Nevertheless, difficulty in obtaining smooth
and effective trajectories is increased due to the complexity faced by the demonstrator in
manipulating the body of the robot, especially in robotic systems with high degrees of
freedom [24,26].

In the Indirect-mapping-based methods, the demonstrator teaches the desired tra-
jectories in its own configuration space and later converts the information to the robot
configuration space [24]. The most important advantages of this method are intuitiveness
for the demonstrator and smoother trajectories generation but finding a matching corre-
spondence function could be difficult [25]. For example, techniques such as dimensionality
reduction [27,28], or novel data acquisition methods, such as the ones described in the next
Section 4, could mitigate this problem.

In the Data Acquisition stage, we can identify four acquisition methods graphically
depicted in Figure 2 and fully described bellow:

• Acquisition by physical guidance: In this kind of acquisition method, the demonstra-
tion is performed on the configuration space of the robot by manually positioning
along the desired trajectories to learn. Here, interfaces such as Kinaesthetic teaching,
teleoperation, and haptics are commonly used. In Figure 2, an example of Kinaes-
thetic teaching is provided, one disadvantage of this method is the lack of preci-
sion in the recording due to the difficulties experienced by the user to reach some
positions manually.

• Acquisition by observable guidance: In this context, the demonstrator performs the
demonstration in its own configuration space and then uses Indirect-mapping-based
techniques to relate the trajectories to the robot configuration space. Interfaces such as
inertial sensors, vision sensors, and motion capture systems are commonly used [29].
Figure 2 also shows an example of this method using a motion capture system—one
disadvantage is the impossibility of recording contact forces during the trajectories.

• Acquisition by reactive guidance: Different from previous methods, the robot is al-
lowed to perform the task during the demonstration stage by exploring the effects of a
predefined set of actions it is allowed to perform in a particular state. Whereas, the
demonstrator, from time to time, suggests which actions suit better for a particular
state or even directly selects the desired action that the robot should take. Thus,
the data from the demonstration are shaped according to the feedback that the demon-
strator provides during the acquisition process, avoiding the correspondence problem,
by recording the demonstration data directly to the robot configuration space [25].
Methods such as reinforcement learning (RL) and active learning (AL) are widely
used [30]. Figure 2 shows how the demonstrator provides suggestion to the robot
using a Natural Language interface.

• Acquisition by multimodal guidance: This method uses any combination of the previ-
ous methods to better adjust the data recorded through the demonstration, and allows
a more natural interaction between robot and demonstrator; this is illustrated in
Figure 2. For example, Wang et al. [31] used a combination of observable guidance (a
3D vision system) and physical guidance (force/torque sensory system) to teach an
assembly task. Detrimental to this method is the increased complexity for data fusion
from multiple input sources.
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Figure 2. The four Data Acquisition methods available during the LfD process: Physical guidance
through Kinaesthetic teaching, Observable guidance using a motion capture system to record the
trajectories, Reactive guidance where the hints necessary to solve the task are provided to the robot
through Natural Language Processing (NLP), and Multimodal guidance where Kinaesthetic teaching
and NLP are used simultaneously for Data Acquisition.

3.1.3. Data Modeling Stage

Data Modeling allows the robot to use the information obtained through demon-
strations to learn a set of rules (policy) to map the demonstrated actions to the states
seen, and ultimately tries to infer which set of actions can be applied to states unobserved
during the demonstrations. Depending on the complexity of the demonstrated task, cur-
rent learning methods can be categorized into low-Level skill learning and high-Level
task learning.

Low-Level Motions

Low-Level skills are the primitive motions that a robot is capable of performing,
e.g., pushing, placing, grasping, etc. The combination of skills allows the robot to complete
a more complex task, e.g., pick and place. In the context of the LfD problem, it is crucial to
define the appropriate state-space representation for the desired skill. While for the robot
the simplest state to record and reproduce is its joints positions of the entire kinematic chain
over time, there are cases in which several different state spaces are needed to promote
learning the general form of a skill [25].

For instance, in push/pull skill learning, instead of representing the trajectory of the
moving target object in the robot joint space, a representation of the same trajectory in
the task frame (Cartesian position of the end-effector with respect to the target object)
will be more useful in terms of generalization. Moreover, augmenting the state-space
representation to include internal and external contact forces in the desired skill learning
allows the representations to be generic, to represent any kind of motion.

In low-Level skill learning, there are two dominant learning strategies.

• One-shot or deterministic learning approaches are generally modeled as non-linear
deterministic systems where the goal is to reach a particular target by the end of the
skill. A commonly used approach in the literature is Dynamic Movement Primitives
(DMP) introduced by Ijspeert [32] in order to represent an observer behavior in an
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attractor landscape. Learning then consists of instantiating the parameters modulating
these motion patterns. Learning a DMP typically requires just a single skill demon-
stration, this has advantages in the LfD problem in terms of simplicity, but it makes
the system more vulnerable to noisy demonstrations as the resulting controller will
closely resemble the seed demonstration.

• Multi-shot or probabilistic learning is based on statistical learning methods. Whereas,
the demonstration data is modeled with probability density functions, and the learning
process is accomplished by exploiting various non-linear regression techniques from
machine learning. In this method, multiple demonstrations are needed during the
learning process, this property makes them more robust to noisy demonstrations,
but more complex to implement due to the number of demonstrations needed. Most
of the probabilistic algorithms in LfD are based on the general approach of modeling
an action with Hidden Markov Models (HMMs) [33,34]. More recently, works have
used HMMs method for skill learning, combined with Gaussian Mixture Models
(GMM) [35] and Gaussian Mixture Regression (GMR) [36,37].

High-Level Tasks

High-level task learning generally is composed of a set of primitive motions (low-
level skills) combined to perform a more complex behavior. In this case, the state-space
representation consists of a set of features that describe the relevant states of the robot
environment and, instead of trajectories, the demonstrations provided are sequences of
primitive motions. Learning complex tasks is the goal of LfD, and there are three different
ways in which is possible to group the learning process of a task, these are policy learning,
reward learning, and semantics learning.

• Policy learning consists of identifying and reproducing the demonstrator policy by
generalizing over a set of demonstrations. The demonstration data usually are a
sequence of state–action pairs within the task constraints. Here, the learning system
can learn a direct mapping that outputs actions given states or learn a task plan
mapping the sequence of actions that lead from an initial state to a goal state [26];

• Reward learning is similar to policy learning but, instead of using a set of actions to
represent a task, the task is modeled in terms of its goals or objective, often referred to
as a reward function. Techniques such as Inverse Reinforcement Learning (IRL) [38]
enable the learning system to derive explicit reward functions from demonstration
data in this method;

• Semantic learning consists of extracting the correct parameters that compose a task
through the interpretation of semantic information present in the demonstrations.
These semantics can be classified into task features, object affordances, and task
frames [25,26,29].

3.1.4. Skill or Task Execution

In this stage, the evaluation of the learning takes place. Notice that the final goal
of LfD is the ability to solve different complex tasks with all the skills encoded (learned)
during the demonstrations phase. Ideally, the knowledge acquired should be enough to
adapt the functionality of the robot to different dynamic environments with little to none
human intervention. Moreover, the learned skills should be able to generalize through
similar tasks autonomously.

3.1.5. Refinement Learning

In LfD, normally the acquisition stage and the modeling stage are independent during
the learning process, this means that if there is a desire to change some parameters of the
learned task, it will be necessary to record new demonstrations in order to learn a new
model, which is an offline process. However, in the LfD process, it is equally important
the way the demonstrator performs the demonstration of the desired behavior as how
the robot (learner) is capable of efficiently demonstrating and communicating the actual
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level of knowledge acquired to the end-userduring task execution [25,39]. Moreover, with
some modeling techniques, many demonstrations are needed to obtain a statistically valid
inference during the modeling process, it is unrealistic to expect that a single demonstrator
provides a large set of them, one would like the robot to have some initial knowledge to
immediately perform the desired task, and ideally, the demonstrations provided would be
used only to help the robot to gradually improve its performance [24].

This concept is commonly known as Incremental Learning (IL), which involves tech-
niques that allow the demonstrator to teach new data while preserving previously demon-
strated data [40]; in the LfD context, this could be performed in an online manner [41–43].
In the literature, there exist different approaches, the most common ones are based on
Active Learning (AL), aimed at domains in which a large quantity of data is available,
but labeling is expensive and enables a learner to query the demonstrator and obtain labels
for unlabeled training examples [30,38,39]; and Reinforcement Learning (RL), used to refine
an existing policy without human involvement by learning directly from environmental
reward and exploration [44–46].

4. Analysis

In this section, the selected papers obtained from our methodology are analyzed in or-
der to answer to the research questions stated in Section 1. In the previous section, Learning
from Demonstrations (LfD) was introduced as a five-stage process. This was performed in
order to better present and analyze the contents of each paper according with two scenarios:
the Human participation during the LfD process (Data Acquisition, Demonstrator Selection
and Refinement Learning stages), and the Main LfD algorithms for Skill/Task learning (Data
Modeling and Skill/Task execution stages) for collaborative robot applications. Next,
the analysis of these scenarios is presented.

4.1. Human Participation in the LfD Process

In the LfD process, the human plays the inherently important role as a demonstrator
(teacher), to provide the sequence of actions that a robot should execute during operation.
However, sometimes, the fact that the human also acts as an evaluator during the execution
of the learned behavior is overlooked. As an evaluator, the human can provide with
feedback to the robot (student) during the execution of the learned movements to refine
and subsequently improve them over time. Accordingly, in this scenario, the papers which
emphasize the human role not only as a demonstrator, but also as evaluator, or both
were added.

Classifying the contribution of the demonstrator is important to understand the impact
of the teacher role during the learning process and to identify possible weaknesses in the
method as well as research gaps that are commonly overlooked during the LfD process.
In most papers, little information is provided of the characteristics of the demonstrator
during the teaching process. For the purpose of giving better insights through our classi-
fication scheme, when the information about the demonstrator is scarce or not explicitly
indicated by the authors, the demonstrator is labeled as not specified, otherwise, the label
of non-expert was used, when the demonstrations were performed by first-time or novice
users for validation purposes, or multiple expertise level, when the demonstrations were
performed by several users with different prior knowledge of how to program robots, is
assigned according to the validation procedures described in each paper.

One problem with allowing the robot to only learn from demonstrations is the biased
idea of considering that the human is always correct. If the process of teaching is deficient,
the learning will also be deficient (sub-optimal). For this reason, it is important to allow
the robot to interact directly with the environment—known as Reinforcement Learning
methods—to gain some insight into how behaviors (movements) not seen during the
demonstrations affect the completion of the task and to develop knowledge on how the
task could be improved over time automatically.
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Data Acquisition Methods

For the analysis, the Data Acquisition methods were grouped in four different scenar-
ios: Physical, Observable, Reactive, and Multimodal guidance as it is shown in Table 2,
to better understand how recent literature deals with the correspondence problem during
the demonstration phase.

Table 2. Classification of the acquisition methods found in literature.

Classification Method Used in

Physical guidance
Kinaesthetic Teaching [27,47–65]

Teleoperation & Haptics [66]
Shadowing [67]

Observable guidance Vision system [28,68–75]
IMU [76]

Reactive guidance NLP [46]
GUI [77]

Multimodal guidance Mixture of methods [31,78–85]

It was found that, to solve the correspondence problem in LfD, the majority of papers
use direct mapping methods such as Kinaesthetic teaching as the principal technique for
Data Acquisition. However, these kinds of methods are not always a straightforward to use
because of the difficulties involved in directly moving a manipulator with multiple degrees
of freedom with precision and safety [26]. Some authors have focused their efforts on
developing new data acquisition systems for demonstrations, to improve their performance
and usability.

In Table 3, we present state-of-the-art acquisition methods developed in recent years
focused on simplifying the demonstration process for the teacher based on methods differ-
ent than those clustered as Physical guidance. Zhang et al. [73] proposed a pen-like device
which is tracked with computer vision to simplify the process of teaching a trajectory to a
robot, the system uses RGB data to track the position of the teaching device, which is used
to generate the path that the robot must follow. While the idea of tracking markers to teach
a desired movement is not new, the work focuses on using the minimum required compo-
nents to work, reducing complexity and costs. The precision of the system was validated
on a UR5 collaborative robot from Universal Robots comparing their method with direct
manipulation with promising results. Lee et al. [82] present a novel teleoperation control
system based on a vision system and Digital Twin (DT) technology. The system captures
the desired pose to be taught in a 2D image and then uses a human DT to transfer it to a
collaborative robot DT. The relevant aspect of this work is how it solves the correspondence
problem using Bezier curve-based similarity to obtain the rotation axis and rotation angle
of each robot arm joint based on the arm pose of the human model.

Table 3. Novel acquisition methods found in recent literature.

Year Author Classification Method Robot

2020 Zhang et al. [73] Observable Marker tracking UR5
2021 Soares et al. [81] Multimodal Augmented Reality UR5/ABB IRB2600
2021 Rodriguez et al. [76] Observable IMU Kuka KR 16
2022 Lee et al. [82] Multimodal Vision System & Digital Twin ABB YuMi

Soares et al. [81] implemented a VR system where the user can teach a desired trajectory
in its own configuration space through hand movements. The hand positions are recorded
from an Inertial Measurement Unit (IMU) embedded in a Microsoft HoloLens 2, while
the operator can visualize the desired trajectory through the head-mounted system of the
device. This allows an operator without programming experience to program a robot by
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demonstration, still more work needs to be completed towards increasing the precision of
the trajectories being taught according to the authors. Another work where an IMU-based
device was developed to teach trajectories to a robot was presented in [76], where the
authors reported that the advantages are the low cost and the portability of the system due
to its size, which allows its use in unstructured environments; also, the device is capable of
detecting static states in human movements accurately filtering small movements inherent
to a human arm through a novel fusion algorithm based on an Adaptive Kalman Filter.

4.2. Main LfD Algorithms for Skill/Task Learning

Data Modeling is the stage where the robot uses the demonstrated data as a base to
learn a specific skill or how to solve a certain task. For the sake of clarity, in this work,
we consider a skill as a primitive movement that allows the robot to move freely in the
environment, while a task is defined as a mixture of these primitive movements used
to solve specific industrial problems. Therefore, this learning process is classified into
low-level motion (skills) and high-level problem solving (tasks). Hybrid methods are
considered to be the combination of skill and tasks learning, which are used to provide
a more general solution to certain problems. For this survey, the articles using hybrid
methods were identified and emphasized in Tables 4–6 with a star symbol (?).

Table 4. Works focused on developing robot skills using deterministic approaches.

Year Author Modeling Method Encoding of Skill Learned

2017 ? Liang et al. [62] DMP Motion Pick & Place
2018 Peternel et al. [78] DMP Motion and Force Visual servoing
2018 Ghalamzan et al. [57] DMP and GMM-GMR Motion Obstacle avoidance
2019 ? Schlette et al. [54] DMP Motion and Force Obstacle avoidance
2021 Iturrate et al. [60] DMP Motion and Force Gluing
2021 Wang et al. [67] DMP Motion and Force Sweeping
2022 Wu et al. [69] DMP-GP Motion and Force Hand over
2022 ? Liang et al. [65] Keyframe-based Motion Various*

? Articles using a Hybrid (Low-level and High-level) learning method.

Table 5. Works focused in developing robot skills using probabilistic methods.

Year Author Modelling Method Encoding of Skill Learned

2016 Koskinopolou et al. [27] GLPVM and PCA Motion Picking and Pushing
2016 Rozo et al. [58] ADHSMM Motion Hand over
2016 Rozo et al. [59] TP-GMM Motion and Force Lifting
2016 Tang et al. [85] GMM-GMR Motion and Force Peg-in-hole
2017 Castelli et al. [72] GMM-GMR Motion Visual servoing

2018 Raiola et al. [56] GMM-GMR Motion and Force Virtual guidance pick and
place

2018 ? Huang et al. [71] GMM-GMR Motion Sewing
2019 Qu et al. [28] PCA and GMM-GMR Motion Dual arm coordination
2019 ? Kyrarini et al. [55] GMM-GMR Motion Object manipulation
2019 Zeng et al. [80] HSMM-GMR Motion and Force Pushing
2020 DeConinck et al. [52] CNN Motion Grasping
2020 ? Koert et al. [83] ProMP Motion Hand over
2021 Al-Yacoub et al. [79] WRF Motion and Force Grasping
2021 Wang et al. [61] GMM-GMR Motion Pick & Place
2021 ? Hu et al. [50] GMM-GMR Motion Pick and place
2021 Fu et al. [64] MTProMP/MTiProMP Motion Multi-tasking
2021 Zaatari et al. [74] TPGMM-TPGMR Motion Various*
2021 Zaatari et al. [75] TPGMM-TPGMR Motion Various*
2021 Wang et al. [51] GMM-GMR Motion Pick
2022 ? Qian et al. [84] EIProMP Motion Hand over
2022 Zhang et al. [49] GMM-GMR Motion Grasping
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Table 5. Cont.

Year Author Modeling Method Encoding of Skill Learned

2022 Hu et al. [48] TPGMM-TPGMR Motion and Force Grasping
2022 Lai et al. [47] pHRIP Motion and Force Target Reaching

? Articles using a Hybrid (Low-level and High-level) learning method.

Table 6. Works focused on learning task completion.

Year Author Modeling Task

2017 Haage et al. [68] Semantic Learning Assembly
2017 ? Liang et al. [62] Policy Learning Assembly
2018 ? Huang et al. [71] Semantic Learning Assembly
2018 Schou et al. [66] Semantic Learning Various
2019 Winter et al. [46] Policy Learning Assembly
2019 Steinmetz et al. [53] Semantic Learning Various
2019 Wang et al. [31] Reward Learning Assembly
2019 Ramirez-Amaro et al. [63] Semantic Learning Sorting
2019 ? Schlette et al. [54] Policy Learning Assembly
2020 ? Koert et al. [83] Semantic Learning Assembly
2020 Racca et al. [77] Semantic Learning Hand-over
2022 Sun et al. [70] Semantic Learning Assembly
2019 ? Kyrarini et al. [55] Policy Learning Assembly
2022 ? Hu et al. [48] Policy Learning Assembly
2022 ? Liang et al. [65] Policy Learning Assembly
2022 ? Qian et al. [84] Semantic Learning Assembly

? Articles using a Hybrid (Low-level and High-level) learning method.

4.2.1. Skill Learning

As mentioned in Section 3, the learning of low-level motions consists of teaching the
robot individual movements, which include trajectories and interaction forces, from the
demonstration. The most common learning methods are classified in deterministic and
probabilistic approaches. Dynamic Movement Primitives (DMPs) is a nonlinear method
used to generate multidimensional trajectories by the use of non-linear differential equa-
tions [86]. In Table 4, the literature based on deterministic methods for skill learning is
presented. Here, it is possible to notice that DMPs is the predominant deterministic method
used in the current literature. The method is considered to be deterministic because it only
requires a single demonstration to encode the initial and goal states of a trajectory.

Simultaneous control of force and position for teaching and execution is physically
impossible. To tackle this problem, Iturrate et al. [60] proposed an adaptive controller
architecture that can learn continuous kinematic and dynamic task constraint from a single
demonstration. The task kinematics were encoded as DMPs, while the dynamics of the
task were preserved by encoding the output of the normal estimator during demonstration
as Radial Basis Functions (RBFs) synchronized with the DMPs. The demonstration is
performed by the user using Kinaesthetic teaching enhanced with a variable-gain admit-
tance control where the damping is continuously adapted based on a velocity–force rule in
order to match the user’s intention and deduce the physical effort needed during teaching.
The idea is to solve the gluing of electronic components to a PCB; their approach was
evaluated on a 3D-printed replica of a PCB with the attached components.

Similarly, Wang et al. [67] proposed a scheme where motion trajectories and contact
force profiles are modeled simultaneously using DMPs to provide a comprehensive repre-
sentation of human motor skills while the system complexity was kept low through the
implementation of a momentum-based force observer, which allows the reproduction of the
motion and force profiles without involving an additional force sensor. The demonstrations
are performed using shadowing, which is a type of kineasthetic teaching in which instead
of directly moving the robot, the actions to be taught are performed in an exact replica of
the same robot in a master–slave control fashion. This was performed to avoid affecting
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the performance of the force observer. The learned skill consists of cleaning a table through
a push action of small parts of the table similar to a sweeping movement.

Peternel et al. [78] also combined DMPs with a hybrid force/impedance controller
to govern the robot motion and force behavior but in a human–robot co-manipulation
environment. This method enables the robot to adapt and modulate the delivered physical
assistance as a function of human fatigue. The robot begins as a follower and imitates the
human leader to facilitate the cooperative task execution while gradually learning the task
parameters from the human. When the robot detects human fatigue, it takes control of the
physically demanding aspects of the task while the human keeps control of the cognitively
complex aspects. Additionally, the human fatigue is measured with electromyography
(EMG) and modeled through a novel approach developed by the authors which was
inspired by the dynamical response of an RC circuit. The proposed framework was tested
on two collaborative skills, wood sawing, and surface polishing.

In contrast, Ghalamzan et al. [57] propose a combination of deterministic and proba-
bilistic techniques—DMP and GMM/GMR—to dynamically adapt the robot to environ-
ments with moving obstacles. In this work, they use the single-shot approach (DMP)
to learn the desired motion trajectories in a pick-and-place task, this allows the robot to
learn the task model and its constraints, assuming that the initial and the final location
of the object to be manipulated are invariant with respect to time. Then, to include the
constraints imposed by the environment, they apply multi-shot learning (GMM/GMR) to
learn how to avoid static obstacles without deviating from the initial and final goals from
the task using multiple demonstrations and obstacles positions. Finally, by generalizing the
utility function developed for the task in a static environment, they can approach dynamic
environments by using a Model Predictive Control (MPC) strategy. The object and obstacle
detection is performed through computer vision, while the demonstrations of the desired
task are taught using Kineasthetic teaching.

Liang et al. [62] propose a framework that allows non-expert users to program robots
using symbolic planning representations by teaching low-level skills. The framework
uses DMPs to teach these atomic actions through demonstrations because DMPs generate
trajectories based on the initial and final state of the demonstrated trajectory, this allows
to generalize a demonstrated trajectory under the assumption that the learned trajectory
is independent of the trajectory performed by the user. The framework also uses a visual
perception system to recognize object and certain environment properties to learn high-level
conditions to encode symbolic action models. Schlette et al. [54] also exploit the capabilities
of the DMPs that allow the reduction of the recorded trajectories to a few parameters that
can be modulated to adapt to new situations during execution arising as a result of time
independence and encoding of forces and torques in the desired trajectories. Both works
were developed in semi-structured environments and the main goal of teaching low-level
skills is to use them to solve more complex tasks. In [62], an automated planner generates
an action sequence to achieve the task goal, one of its main contributions is a retroactive
loop that allows the user to refine the learned skills in case of ambiguities. The usability
and simplicity of the framework were tested with the help of multiple users with favorable
results. In [54], a development was presented in a robotic assembly cell during the World
Robot Challenge 2018 (WRC 2018) where operations such as pick and place, handling and
screwing were evaluated.

In DMP formalism, a single model can be used to generate multiple trajectories using
its spatial scaling property, but there are several drawbacks to this property in the original
formulation [87]. For example, if the scaling term is zero, or near to zero, the non-linear
term cannot be learned or the trajectory generated could be very different from the original
trajectory. Moreover, the non-linear forcing term usually is written in terms of Gaussian
basis functions with different weights and the learning of the DMP model consists in
determining each one of these weights. An issue, mentioned in Wu et al. [69], within the
parameters that constitute each of these basis functions is the need to be manually adjusted.
The researchers propose the formulation of the non-linear forcing term in DMPs as a
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Gaussian Process (GP) to automatically optimize the hyper-parameters applying a sparse
GP regression, and the spatial scaling is determined by a rotation matrix to solve the
problem when the initial and the final positions are identical in some directions. This
new formulation is used to teach a handover prediction skill to a robot where the main
issue is that the handover location is unknown before the movement starts. Despite this,
the formulation presented is capable of making online corrections based on human feedback
using a gradient-type update law.

The main advantage of deterministic methods applied to LfD such as DMPs is that a
trajectory can be learned from a single demonstration. Thus, the acquisition problem can be
simplified, but in face of suboptimal or erroneous demonstrations or in cases where more
than one teacher is required, this also means a great disadvantage because the reproduction
step will lead to undesired behaviors; additionally, DMPs approaches model variables
separately ignoring possible correlation between multiple variables, in terms of robot LfD
this represents a drawback in systems where the relationship between motion and force is
crucial. Probabilistic methods offer a solution to this kind of scenarios by incorporating
variance and other stochastic metrics to the demonstrations in exchange of requiring
multiple demonstrations during the learning process. Table 5 enlists the works found in
recent literature based probabilistic methods for skill learning.

A solution based on Movement Primitives is the Probabilistic Movement Primitives
(ProMP) framework introduced in [88] and extended in [89]. The framework couples the
joints of a robot using the covariance between trajectories of several degrees of freedom
and regulates the movement by controlling the target velocities and positions in terms of
a probability distribution. This method has been the precursor to other techniques such
as Interaction ProMP, fully described in [90], which models the correlation between move-
ments of two different agents from joint demonstrated trajectories. Koert et al. in [83,91]
proposed a framework to increasingly build a library of robot skills demonstrated by a
human teacher called Mixture of Interaction ProMPs, which is an extension to Interaction
ProMPs that allows to learn several different interaction patterns by applying Gaussian
Mixture Models (GMM) to unlabeled demonstrations; it implements online learning of
cooperative tasks by allowing to continuously integrate new training data by the means of
new demonstrations. The demonstrations are recorded by Kineasthetic teaching for the
robot and motion capture for the human trajectories, the framework was evaluated with
the help of ten human subjects.

Fu et al. [64] also combine ProMP and Interactive ProMP with GMM, but the focus
is to solve the problem of multi-tasking in robots that solves multiple tasks (MTProMP),
and multi-tasking in human–robot collaboration (MTiProMP). The proposed solution was
tested on a Baxter robot in passing a set of via-points with MTProMP, but only one joint
was considered. The same conditions are applied for testing the collaborative task, but in
this case, a change in hand position represents the change in the behavioral intention of
the user. Qian et al. [84] extend the formulation behind Interactive ProMP to additionally
incorporate immediate environment information, not only the observations of the human
actor, but information about obstacles and other environmental changes are considered to
proactively assist a human in collaborative tasks. The method was named Environment-
adaptive Interactive ProMP (EIProMP) and the key to the model resides in assuming a
regression relation between environmental parameters, such as the height and/or width of
an obstacle, and a set of weight vectors obtained from the demonstration trajectories. This
allows to encode an environment related weight vector to successfully add the environment
parameters to the Interactive ProMP formulation. The taught skill was a handover skill
for assisting in a push-button assembly task. Another probabilistic method based on DMP
is the physical Human–Robot Interaction Primitives (pHRIP) proposed by Lai et al. [47].
The method of pHRIP extends the Interaction Primitives (IP) introduced by Ben Amor
et al. [92] by integrating physical interaction forces. In the original IP formulation, a
probabilistic approach and modeling of a distribution p(θ) over the parameters of the
DMPs is used to predict future behaviors of the agent given a partial observed trajectory
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and to correlate its movements to those of an observed agent. In pHRIP, the parameter
distribution p(θ) integrates the observed interaction forces in coupled human–robot dyads
and by obtaining the predictive distribution of the DMP parameter set using the partial
observations of the phase-aligned interactions, the robot is capable of matching its response
to the user’s intent. A planar and Cartesian target reaching task was used to validate the
efficacy of the proposed method with different users and the results show that with a small
number of observations, the pHRIP can accurately infer the user intent and also adapt the
robot to novel situations.

Similarly, in [58], a handover skill was evaluated through an approach for collaborative
robots to learn reactive and proactive behaviors from human demonstrations to solve a
collaborative task. The approach is based on an Adaptive Duration Hidden Semi-Markov
Model (ADHSMM) to allow the robot to react to different human dynamics, improving
the collaboration with different users. In this approach, the duration of each state allows
the robot to take the lead of a task when it is appropriate—namely, according to the
task dynamics previously experienced in the demonstrations—which can be exploited to
communicate its intention to the user.

Another work where a Hidden Semi-Markov Model (HSMM) is further used can be
found in [80] where a joint force controlled primitive is learned from multiple sensors to
solve a pushing motion (over a stapler and soap dispenser). The approach is based on
multi-modal information obtained from Kinaesthetic teaching, EMG signals measured from
human, and a force sensor mounted between the flange and the end-effector of the robot.
HSMM is used to model the demonstration data, to improve the robustness of the system
against perturbations, and to model the distribution between position and stiffness. Finally,
Gaussian Mixture Regression (GMR), which is a non-parametric regression approach used
on functional data to help us in the modeling and prediction of a random variable [36], is
applied to generate the control variables for an impedance controller.

One of the most popular probabilistic methods applied to LfD of skill learning is the
combination of GMM with GMR which extends the HMMs for action modeling, it was
introduced by Calinon et al. [93] and further extended in their later work [94]. The method
was applied in multiple works to learn some assembly-related skills [49,51,55].

In literature, other techniques can be found focused on probabilistic methods, as
demonstrated by Koskinopolou, et al. [27], where the data acquisition of the demonstrated
task was performed through markers on human body tracked with computer vision and
an RGB-D camera, mapped the demonstrated data to the robot configuration space using
Gaussian Process Latent Variable Model (GPLVM), which is a non-linear generalization
of Principal Component Analysis (PCA), and it provided a probabilistic compact transfor-
mation of a given high-dimensional dataset to a low-dimensional one. Another approach
based on Principal Component Analysis (PCA) can be found in Qu et al. [28] for control of
coordination in redundant dual-arm robots. PCA as a dimensionality reduction technique
is used for removing uncorrelated data from human-arm demonstrations, then GMM
are applied in order to extract human-like coordination characteristics by the Gaussian
components, which are later generalized and reproduced through GMR. To finally obtain a
human-like coordination motion equation for a dual-arm robot. The system was tested on
carrying and a pouring task, the results show that more natural and smooth motions can
be achieved in dual-arm robots through this method.

To address non-sequential HRC applications, Al-Yacoub et al. [79] proposed to im-
plement Weighted Random Forests (WRF) as a regression strategy to encode spatial data
(such as force) in haptic applications, because this type of regression is robust against
overfitting, allowing better generalization in varying conditions (e.g., different users and
obstacles). In conventional Random Forest (RF) method, many decisions trees create an
uncorrelated forest of trees where the final prediction is more accurate due to the contribu-
tion of each individual tree. The idea of weighting each tree based on their performance
is to improve the overall performance of the algorithm on unseen test data, the solution
proposed is a stochastic weighting approach where the trees are weighted according to
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their Root Mean Square Error (RMSE). The algorithm was tested on a co-manipulation
skill for moving heavy objects between two points and a co-assembly task that involves a
peg-in-hole assembly with demonstrations that involve human–human collaboration and
human–robot collaboration scenarios comparing the RF approach to the proposed WRF
method. The results showed that WRF improves performance over RF models because of
the lower interaction forces and shorter execution times, also, the demonstrations based
on human–human collaboration results in more human-like behavior and in less input
force required.

De Coninck et al. [52] developed a LfD system using Convolutional Neural Networks
(CNNs) for robot grasping. The approach was called GraspNet architecture and it outputs
an energy heat map which labels how well a region on the image frame works as the
best grasp location and estimates the rotation angle of the desired object, using a single
camera mounted on the wrist of the manipulator. Yet, some assumptions made during the
experiments should be removed in the future for the sake of a better generalization.

4.2.2. Task Learning

On the other hand, high-level tasks are composed of multiple individual actions (low-
level motions) to solve more complex task. We clustered the modeling techniques found
in the analyzed papers based on the three classifications presented in Section 3, which
are Policy, Reward, and Semantic Learning. The objective of these modeling techniques
is to learn a sequence of steps (actions) to follow given a particular state to solve the
task (Policy Learning), learn what are the goals of a particular task and solve them based
on this information (Reward Learning), or extract the most prominent characteristics of
the task to solve it even if the environment or certain conditions change in the future
(Semantic Learning).

In Table 6, we present the papers focused only on high-level tasks and the techniques
used for solving them. In the context of Semantic Learning, in Haage et al. [68] the semantic
representation of an assembly task is achieved through 2D and 3D visual information
extraction form the demonstrations, and the semantic analysis of manipulation actions
is performed using a graph-based approach. Finally, the task generation and execution
is supported by a semantic robotic framework called Knowledge Integration Framework
(KIF) to increase robustness and semantic compatibility. Schou et al. [66] developed a
software tool called Skill-Based System (SBS) for sequencing and parameterization of skills
and tasks. Based on a predefined skill library which can be extended if needed, the operator
can program a task selecting the sequence of skills desired and then kinaesthetically teach
the parameters of the skill. This approach makes the robotic programming more intuitive
and simple for non-expert users in industrial scenarios. Similarly, Steinmetz et al. [53] use a
Planning Domain Definition Language (PDDL) to parameterize user-defined skills in order
to simplify the robot programming task to the user, while in Ramirez-Amaro et al. [63],
to learn the correlation between the robot movements and the environment information,
a decision tree classifier is used to interpret the demonstrated activities, the obtained
semantic representations are robust and invariant to different demonstration styles of the
same activity. In Sun et al. [70], the semantic extraction is performed through a dual-
input Convolutional Neural Network (CNN) that incorporates not only the camera context
(objects), but also the task context to collaboratively solve an assembly task.

An example of Policy Learning can be found in Winter et al. [46], their proposed
method is called Interactive Reinforcement Learning and Potential-Based Reward Shaping
(IRL-PBRS), used to solve an assembly task. The method is based on Hierarchical Rein-
forcement Learning, but the main objective is that the human transfers their knowledge in
the form of advice to speed up the RL learning agent. The idea is that the robot should find
a valid assembly plan based on the information provided by the human through Natural
Language Processing (NLP). The method is capable of learning quickly to keep up with the
user-given advice and to adapt to changes in the given demonstrations. On the other hand,
Wang et al. [29] solve a customizable assembly with a method called Maximum Entropy
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Inverse Reinforcement Learning (MaxEnt-IRL). The idea behind this method is to calculate
a reward function (Reward Learning) by learning from the user demonstrations to generate
an optimal assembly policy according to the human instructions.

It is worth mentioning that most of the solutions described in this section are based on
learning motion trajectories, but the interaction forces of the skill or task are often omitted.
This leads to poor or underperforming skill or task reproduction, as demonstrated in [80],
where not only the robot forces are modeled, but also the human muscle activation; the re-
sults show that the robot is able to better generalize and smoothly reproduce the skill when
the interaction forces seen during the demonstrations are modeled. Similar achievements
are presented in [67,85] for pushing-like skills such as sweeping and peg-in-hole assemblies,
the robot execution was proven to be better compared to only following the motion trajec-
tory. Another example can be found in [60], where the force modeling consideration not
only produces better execution, but also helps during the demonstration phase to provide a
better user experience during Kineasthetic teaching. Skill/task interaction force modeling
is far more important in collaborative interactions between human and robots. This is
because it allows a more ergonomic and simple co-manipulation [56,78], as well as safe and
human-like interactions between human and robot [47,59,79].

5. Discussion and Conclusions

The literature analyzed above shows the improvements made towards LfD in col-
laborative robotics which can be applied to some industrial tasks, however, there are
issues that are worth mentioning. This section summarizes the open problems found
in teaching collaborative robots and how to work alongside its human partner to solve
collaborative tasks.

Most of the reviewed literature used testing scenarios where only a handful of demon-
strators can teach to the robot the desired behaviour; additionally, the majority of the
reviewed works assume an expert demonstrator during the demonstration stage to sim-
plify the whole LfD process. While this could be true in terms of task knowledge, this
assumption is far from reality and, thus, not directly applicable to real scenarios. In real
scenarios, even if an operator has full knowledge of the task to solve, there is always a gap
in experience between multiple operators working on the same task. This difference in
experience directly affects the quality and time spent during the demonstrations. How the
learning algorithms can cope with this kind of variability in user experience is yet to be
understood. For example, applying Incremental learning to LfD solutions could allow to
teach an Skill/Task, regardless of the operator experience, and refine it later according to
the requirements of the implementation [43,46,77].

Moreover, even if the demonstrator is an expert in solving the problem, this does
not ensure flawless demonstrations during the LfD process. There are factors related to
the intuitiveness, ergonomics, and safety of the Human–Robot interaction that hinder the
demonstrator’s capability to teach the desired behavior to the robot during demonstra-
tions. For example, a vast majority of works still rely on using Kinaesthetic teaching for
the demonstrations. While this kind of technique reduces drastically the ill-posed corre-
spondence problem, from an ergonomics and intuitiveness perspective, this method also
imposes physical and mental constraints to the demonstrator. Carfi et al. [95] demonstrated
the difficulties that an operator has while trying to open or close a gripper and position
a robotic arm at the same time in a pick-and-place operation. A comparison between
human–robot demonstration and human–human demonstration shows that it is easier and
less stressful to teach a learner who has an active role during demonstrations.

Other solutions worth exploring are those that integrate new emerging technologies
such as Augmented Reality (AR) [96], Virtual Reality (VR) [97], or Digital Twins (DT) [98],
to list some. These technologies increase the safety of the testing environments [99,100],
and decrease the ergonomic load perceived by the user, to encourage more natural human–
robot interactions [101–103]. Particularly, the use of DT in industrial applications show
promising results in increased safety and interaction [104–106], but also in reduced im-
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plementation time and costs [107]. Nevertheless, more studies focused on human–robot
interactions with different demonstrators participation and studies incorporating the afor-
mentioned technologies in the LfD process are needed.

The idea of learning and generalizing trajectories capable of avoiding obstacles is
essential. It is undeniable that research should consider the effect of forces acting on these
trajectories. The challenge relies on communicating the direction and magnitude of the nec-
essary force during the task/skill execution. Additionally, there are difficulties in sensing
the dynamics of external elements, for both robot and human. How is the demonstrator
able to teach the necessary force for a task to be completed. How can the robot receive this
information correctly? In Kineasthetic teaching, for example, the forces measured by the
robot will not be task forces only, but also those applied by the human demonstrator. As cor-
rectly pointed out in [60], these two sets of forces will not always be aligned; thus, using
them to learn task constraints will result in an alignment error in the constraint frame. De-
coupling the human force from the force perceived by the robot is one possibility proposed
in [60,67,80] for partial answering of the above questions. For example, in [67], a shadowing
guidance technique is used during the demonstration to completely isolate the task inter-
action forces captured from the sensor on a Baxter robot during demonstrations. Iturrate
et al. [60] decouple the forces through their admittance controller, and Zeng et al. [80]
measure the human stiffness separately with an EMG sensor. Still, more similar research is
needed on ways to learn trajectories and the interaction applied forces to a skill or task for
future adoption and implementation of LfD in the manufacturing industry.

Different definitions of cooperative and collaborative tasks can be found in the liter-
ature [11,108]. The ultimate goal of using LfD on collaborative robots is the capability of
combining the natural abilities of the end user with the power, speed, and repeatability of
the robots. In this context, research should focus on defining and solving scenarios where
human and robot are capable of interacting for the sake of solving the complexities of the
task at hand. How to perform these demonstrations is also a challenge, for example, how
many demonstrators should be considered in the design when teaching a joint task? Which
interfaces are optimal for teaching a joint task? What is better for performance—learning
individually the skills and later using them in the joint task or learning the necessary
joint skills from the beginning? There is a need for more experiments to help answer
these questions.

Ideally, the robot will learn how to perform the desired task at hand after been taught
once; but in real applications, this is extremely complicated, so each LfD process should
consider how an user could modify the learned skills or their application to certain tasks
depending on how the dynamics of the task at hand change. Take, for example, an assembly
task where some specific requirements dictate that the piece should be welded, but in other
cases, the use of screws is the principal requirement. How can the end user easily increase
the skill library of the robot to expand the tasks that it can solve through time without
the need of being taught again? At which point should the human intervene, and should
the learning algorithm of the robot be intelligent enough to adapt or develop a new skill
necessary for completing its work?

Throughout this work, topics referring to learning from anyone, learning forces,
refinement of the learning at design, and truly collaborative tasks were tackled and sum-
marized. The purpose of this work is to provide a review of techniques and possible future
research topics.
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2. Dotoli, M.; Fay, A.; Miśkowicz, M.; Seatzu, C. An overview of current technologies and emerging trends in factory automation.

Int. J. Prod. Res. 2019, 57, 5047–5067. [CrossRef]
3. Mittal, S.; Khan, M.A.; Romero, D.; Wuest, T. Smart manufacturing: Characteristics, technologies and enabling factors. Proc. Inst.

Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1342–1361. [CrossRef]
4. Bauer, A.; Wollherr, D.; Buss, M. Human–robot collaboration: A survey. Int. J. Humanoid Robot. 2008, 5, 47–66. [CrossRef]
5. Evjemo, L.D.; Gjerstad, T.; Grøtli, E.I.; Sziebig, G. Trends in smart manufacturing: Role of humans and industrial robots in smart

factories. Curr. Robot. Rep. 2020, 1, 35–41. [CrossRef]
6. Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and

applications. Mechatronics 2018, 55, 248–266. [CrossRef]
7. Bi, Z.M.; Luo, M.; Miao, Z.; Zhang, B.; Zhang, W.J.; Wang, L. Safety assurance mechanisms of collaborative robotic systems in

manufacturing. Robot. Comput.-Integr. Manuf. 2021, 67, 102022. [CrossRef]
8. Maurice, P.; Padois, V.; Measson, Y.; Bidaud, P. Human-oriented design of collaborative robots. Int. J. Ind. Ergon. 2016, 57, 88–102.

[CrossRef]
9. Gualtieri, L.; Rauch, E.; Vidoni, R. Emerging research fields in safety and ergonomics in industrial collaborative robotics:

A systematic literature review. Robot. Comput.-Integr. Manuf. 2021, 67, 101998. [CrossRef]
10. Hentout, A.; Aouache, M.; Maoudj, A.; Akli, I. Human–robot interaction in industrial collaborative robotics: A literature review

of the decade 2008–2017. Adv. Robot. 2019, 33, 764–799. [CrossRef]
11. Zaatari, S.E.; Marei, M.; Li, W.; Usman, Z. Cobot programming for collaborative industrial tasks: An overview. Robot. Auton. Syst.

2019, 116, 162–180. [CrossRef]
12. Michaelis, J.E.; Siebert-Evenstone, A.; Shaffer, D.W.; Mutlu, B. Collaborative or Simply Uncaged? Understanding Human-Cobot

Interactions in Automation. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI,
USA, 25–30 April 2020; pp. 1–12. [CrossRef]

13. Argall, B.D.; Chernova, S.; Veloso, M.; Browning, B. A survey of robot learning from demonstration. Robot. Auton. Syst. 2009,
57, 469–483. [CrossRef]

14. Hussein, A.; Gaber, M.M.; Elyan, E.; Jayne, C. Imitation learning: A survey of learning methods. ACM Comput. Surv. 2017,
50, 1–35. [CrossRef]

15. Zhu, Z.; Hu, H. Robot Learning from Demonstration in Robotic Assembly: A Survey. Robot 2018, 7, 17. [CrossRef]
16. Ravichandar, H.; Polydoros, A.S.; Chernova, S.; Billard, A. Recent Advances in Robot Learning from Demonstration. Annu. Rev.

Control. Robot. Auton. Syst. 2020, 3, 297–330. [CrossRef]
17. Xie, Z.W.; Zhang, Q.; Jiang, Z.N.; Liu, H. Robot learning from demonstration for path planning: A review. Sci. China Technol. Sci.

2020, 63, 1325–1334. [CrossRef]
18. Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University: Keele, UK, 2004.
19. Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software

engineering—A systematic literature review. Inf. Softw. Technol. 2008, 51, 7–15. [CrossRef]
20. Xiao, Y.; Watson, M. Guidance on conducting a systematic literature review. J. Plan. Educ. Res. 2019, 39, 93–112. [CrossRef]
21. Scells, H.; Zuccon, G. Generating better queries for systematic reviews. In Proceedings of the 41st International ACM SIGIR

Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 475–484. [CrossRef]
22. Ananiadou, S.; Rea, B.; Okazaki, N.; Procter, R.; Thomas, J. Supporting systematic reviews using text mining. Soc. Sci. Comput.

Rev. 2009, 27, 509–523. [CrossRef]
23. Tsafnat, G.; Glasziou, P.; Choong, M.K.; Dunn, A.; Galgani, F.; Coiera, E. Systematic review automation technologies. Syst. Rev.

2014, 3, 74. [CrossRef]
24. Billard, A.G.; Calinon, S.; Dillmann, R. Learning from Humans. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg,

Germany, 2016; pp. 1995–2014. [CrossRef]
25. Chernova, S.; Thomaz, A.L. Robot learning from human teachers. Synth. Lect. Artif. Intell. Mach. Learn. 2014, 28, 1–121.

[CrossRef]
26. Zhou, Z.; Xiong, R.; Wang, Y.; Zhang, J. Advanced Robot Programming: A Review. Curr. Robot. Rep. 2020, 1, 251–528. [CrossRef]
27. Koskinopoulou, M.; Piperakis, S.; Trahanias, P. Learning from demonstration facilitates human-robot collaborative task execu-

tion. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Christchurch,
New Zealand, 7–10 March 2016; pp. 59–66. [CrossRef]

28. Qu, J.; Zhang, F.; Wang, Y.; Fu, Y. Human-like coordination motion learning for a redundant dual-arm robot. Robot. Comput.-Integr.
Manuf. 2019, 57, 379–390. [CrossRef]

29. Wang, W.; Chen, Y.; Li, R.; Jia, Y. Learning and comfort in human-robot interaction: A review. Appl. Sci. 2019, 9, 5152. [CrossRef]
30. Lopes, M.; Melo, F.; Montesano, L. Active Learning for Reward Estimation in Inverse Reinforcement Learning; Springer:

Berlin/Heidelberg, Germany, 2009; Volume 5782, pp. 31–46. [CrossRef]
31. Wang, W.; Li, R.; Chen, Y.; Diekel, Z.M.; Jia, Y. Facilitating Human-Robot Collaborative Tasks by Teaching-Learning-Collaboration

from Human Demonstrations. IEEE Trans. Autom. Sci. Eng. 2019, 16, 640–653. [CrossRef]

http://doi.org/10.1016/j.jestch.2019.01.006
http://dx.doi.org/10.1080/00207543.2018.1510558
http://dx.doi.org/10.1177/0954405417736547
http://dx.doi.org/10.1142/S0219843608001303
http://dx.doi.org/10.1007/s43154-020-00006-5
http://dx.doi.org/10.1016/j.mechatronics.2018.02.009
http://dx.doi.org/10.1016/j.rcim.2020.102022
http://dx.doi.org/10.1016/j.ergon.2016.11.011
http://dx.doi.org/10.1016/j.rcim.2020.101998
http://dx.doi.org/10.1080/01691864.2019.1636714
http://dx.doi.org/10.1016/j.robot.2019.03.003
http://dx.doi.org/10.1145/3313831.3376547
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1145/3054912
http://dx.doi.org/10.3390/robotics7020017
http://dx.doi.org/10.1146/annurev-control-100819-063206
http://dx.doi.org/10.1007/s11431-020-1648-4
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1177/0739456X17723971
http://dx.doi.org/10.1145/3209978.3210020
http://dx.doi.org/10.1177/0894439309332293
http://dx.doi.org/10.1186/2046-4053-3-74
http://dx.doi.org/10.1007/978-3-319-32552-1_74
http://dx.doi.org/10.2200/S00568ED1V01Y201402AIM028/SUPPL_FILE/CHERNOVA_CH1.PDF
http://dx.doi.org/10.1007/s43154-020-00023-4
http://dx.doi.org/10.1109/HRI.2016.7451734
http://dx.doi.org/10.1016/j.rcim.2018.12.017
http://dx.doi.org/10.3390/app9235152
http://dx.doi.org/10.1007/978-3-642-04174-7_3
http://dx.doi.org/10.1109/TASE.2018.2840345


Robotics 2022, 11, 126 21 of 23

32. Ijspeert, A.J.; Nakanishi, J.; Schaal, S. Learning rhythmic movements by demonstration using nonlinear oscillators. IEEE Int. Conf.
Intell. Robot. Syst. 2002, 1, 958–963. [CrossRef]

33. Rabiner, L.R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc. IEEE 1989, 77, 257–286.
[CrossRef]

34. Fink, G.A. Markov Models for Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2014. [CrossRef]
35. Parsons, O.E. A Gaussian Mixture Model Approach to Classifying Response Types; Springer: Cham, Switzerland, 2020; pp. 3–22.

[CrossRef]
36. Ghahramani, Z.; Jordan, M. Supervised learning from incomplete data via an EM approach. In Proceedings of the Advances in

Neural Information Processing Systems, Denver, CO, USA, 30 November–3 December 1993; Cowan, J., Tesauro, G., Alspector, J.,
Eds.; Morgan-Kaufmann: Burlington, MA, USA, 1993; Volume 6.

37. Fabisch, A. gmr: Gaussian Mixture Regression. J. Open Source Softw. 2021, 6, 3054. [CrossRef]
38. Odom, P.; Natarajan, S. Active Advice Seeking for Inverse Reinforcement Learning. In Proceedings of the 2016 International

Conference on Autonomous Agents & Multiagent Systems, Singapore, 9–13 May 2016; pp. 503–511.
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