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Abstract: Holistic local visual homing based on warping of panoramic images relies on some simpli-
fying assumptions about the images and the environment to make the problem more tractable. One of
these assumptions is that images are captured on flat ground without tilt. While this might be true in
some environments, it poses a problem for a wider real-world application of warping. An extension
of the warping framework is proposed where tilt-corrected images are used as inputs. The method
combines the tilt correction of panoramic images with a systematic search through hypothetical tilt
parameters, using an image distance measure produced by warping as the optimization criterion.
This method not only improves the homing performance of warping on tilted images, but also allows
for a good estimation of the tilt without requiring additional sensors or external image alignment.
Experiments on two newly collected tilted panoramic image databases confirm the improved hom-
ing performance and the viability of the proposed tilt-estimation scheme. Approximations of the
tilt-correction image transformations and multiple direct search strategies for the tilt estimation are
evaluated with respect to their runtime vs. estimation quality trade-offs to find a variant of the
proposed methods which best fulfills the requirements of practical applications.

Keywords: visual navigation; visual homing; image warping; tilt; tilt correction; tilt estimation

1. Introduction

A fundamental building block of visual robot navigation methods is the estimation of
relative camera poses from images taken at nearby locations, in the following referred to
as local visual homing. In this publication, we focus on methods using pairs of panoramic
images, e.g., obtained from an upward facing camera equipped with a fisheye lens.

Local visual homing can be coarsely divided into two main branches: feature-based
(e.g., [1,2]) and holistic methods (e.g., [3,4]). Feature-based methods detect interest points
in images, describe features in the vicinity of the interest points and build a pose estimation
pipeline on matched feature descriptors. Holistic methods use the images as a whole at
the pixel level without any previous feature extraction. One holistic local visual homing
method is MinWarping, first proposed in [3] as a reformulation and extension of 2D-
warping [5] which in turn derives from 1D-warping [6]. Given two input images, one taken
at the current position (current view) and one at a previously visited position (snapshot),
MinWarping computes a compass angle and the angle of a home vector pointing from the
current position to the snapshot position. MinWarping includes a systematic search through
these two angles and optimizes a pixelwise image distance measure. The computations
are based on geometric relationships between hypothetical camera poses and on pixelwise
matches between the images under simplifying assumptions. A direct comparison of
feature-based methods and MinWarping regarding quality, speed, and robustness can
be found in [7]. In this comparison, no method was clearly predominant considering all
evaluation criteria. MinWarping produced competitive results while being very fast.

Multiple improvements have been proposed for MinWarping to handle illumination
changes. MinWarping in combination with edge-filtered input images and a suitable
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distance function reaches good homing performance under varying illumination conditions
in indoor environments [8,9]. Additional preprocessing is able to improve the performance
in challenging outdoor environments by suppressing misleading cloud edges [10].

Another important issue for visual homing is robustness against the tilt of the camera.
MinWarping is built on the assumption of an underlying planar movement. In outdoor
environments, this is violated by a slanted or uneven ground; in indoor environments,
especially carpet borders or doorsteps lead to camera tilt. These violations of the planar-
motion assumption lead to errors in the home-direction estimates (see Figure 1), which
increase with the amount of tilt (see [11] Figure 6.4). Tilted images can be corrected by
an additional sensor, such as an inertial measurement unit, but this involves higher costs
and a further calibration effort and is not pursued here. For indoor environments, an
approach for visual tilt estimation was proposed in [12] using vertical image edges and
the vanishing point theory. In [13], a visual 3D compass was presented to compute the
rotation between two hemispherical images. This compass was based on the concept of
real spherical harmonics and an exhaustive search with a coarse-to-fine approach. The
main problem of the 3D compass was that the results were only reliable if no or only
small translations occurred between the camera positions. However, in many applications,
the translational offset between camera poses cannot be neglected. A generalization of
2D-warping to handle nonplanar movement was proposed in [11] and was called 3D-
warping. The approach of 3D-warping was related to the 3D compass and was also based
on real spherical harmonics. Nonplanar movements were divided into a translational and
a rotational part, and warped versions of the current view were computed for a set of
movement hypotheses. The best match between the snapshot and all warped current views
gave the estimated 3D movement. For nonplanar movement, 3D-warping increased the
homing accuracy compared to 2D-warping and MinWarping, especially when computed on
skyline-segmented images. However, for planar movements, 2D-warping and MinWarping
outperformed 3D-warping.

In this paper, we propose to include tilt estimation in the MinWarping framework.
We present a solution to camera-pose estimation between one upright and one tilted view;
the more general problem of two tilted views will be explored in future work. Figure 2
visualizes this simplified and the more general case as well. The main approach is to
perform a search over two tilt parameters within MinWarping. The potentially tilted
view is transformed according to a set of hypothetical tilt parameters and matched to the
upright view by using MinWarping as the objective function. A search for the best match
is performed. Different search strategies are implemented and evaluated with respect to
speed and homing performance. At the moment, the tilt angles are restricted to small
values, as they are typical in indoor settings. The proposed extension of MinWarping
improves the camera-pose estimation, but is also relevant in other applications, e.g., when
MinWarping is used for loop-closure detection [14], where invariance to the tilt is also likely
to be beneficial.

The paper is structured as follows: In Section 2, the coordinate systems and parametriza-
tion for a small out-of-plane tilt are introduced. Using these, solutions for transforming
panoramic images for tilt correction are derived based on previous work [15]. These are
combined with warping as an objective function via one of three proposed direct search
methods to optimize for the ideal tilt estimation. To test the proposed methods, two newly
collected indoor panoramic image databases are presented in Section 3, comprising images
with a systematic tilt applied to the camera. In Sections 4 and 5, the homing, tilt-correction,
and runtime performance of the proposed methods are evaluated and discussed in the con-
text of practical applicability with suggestions for further improvements or open research
questions. Finally, a conclusion is drawn in Section 6.
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Figure 1. Overview and exemplary results of the proposed tilt-correction warping methods; see the
text for a detailed explanation of the algorithm. The vector-field plots below visualize the home-
direction estimates by warping at each position over the different tilts in the database, in case of the
original warping algorithm without tilt correction (left) and of the proposed extension incorporating
a search for the tilt correction of the current view image. Warping with tilt-corrected images (right)
shows a markedly reduced spread of the direction estimates. The sample without tilt correction is
produced from the n--@lab-dd experiment. The sample with tilt correction is produced from the
pen@lab-dd experiment, showing the results of one of the heuristic search strategies, pattern search.

(a) Planar Motion (b) One Camera Tilted (c) Both Cameras Tilted

Figure 2. Progressive violations of the planar-motion assumption. The panoramic camera is visualized
by the outermost lens as it appears in an ultrawide-angle fisheye lens system. (a) depicts the planar-
motion assumption underlying the original warping method. None of the cameras is tilted and the
horizontal plane (red, dashed line) of each intersects with the optical center (black dots) of the other,
i.e., both horizontal planes are identical. (b) depicts a first violation of this planar-motion assumption
by tilting one of the cameras out of this shared horizontal plane. The optical center of this tilted camera
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still lies within the horizontal plane of the not-tilted camera, but not vice versa. This intermediate
case is the one handled by our newly proposed method, when tilt correction is applied to the view of
the camera depicted on the right side. Finally, (c) depicts the more general case of both cameras tilted
out of a shared plane connecting the optical centers. The horizontal planes now intersect outside of
both of the cameras. This more general case is left for future work and might also extend to or even
require out-of-plane translations (see [11] for the case of the generalized 3D-warping).

2. Methods

Figure 1 provides an overview of the proposed extension of the warping algorithm by
tilt-correction methods and gives an impression of the improvement of the home-direction
estimates achieved by including a tilt correction. Given are two input panoramic images:
the snapshot (ss) and the potentially tilted current view (cv). The current view undergoes a
tilt-correcting transformation as derived in Section 2.3. This explicit transformation of the
image according to hypothetical movement parameters follows the same general idea as
the original warping method. The transformations account for a small tilt of the camera,
which leads to deviations from the planar motion assumption underlying the warping
algorithm. The movement parameters are the two tilt parameter angles δX and δY which
are introduced in Section 2.1 together with their corresponding coordinate systems.

From the snapshot image and the tilt-corrected current view, the warping algorithm
estimates the relative movement parameters α and ψ between the two image locations and
an image distance measure d. This image distance d is used in turn as an optimization
criterion (as motivated in Section 2.2) to search for the best-matching tilt correction using
one of the direct, gradient-free search strategies proposed in Section 2.4. This optimization
scheme requires multiple evaluations of the original warping method (for each transformed
current view) to estimate the tilt correction; this is indicated in Figure 1 by the looping
connection from the warping block back to the tilt correction block. This connection is where
the proposed search strategies are implemented on a search space spanned by the two tilt
parameter angles.

While the primary intention of this extension is to improve the homing performance of
the warping method in case of small out-of-plane tilts of one of the cameras (as visualized
in Figure 1 in the vector-field plots), the estimation of the tilt parameter angles is a first step
towards a full three-dimensional, relative pose estimation between two panoramic images.

2.1. Tilt-Angle Representations

For describing the tilt of a robot with respect to the horizontal reference plane, i.e., flat
ground, two representations are proposed: axis-angle and roll-pitch representations. In
both cases, the tilt is assumed to be a small rotation out of the horizontal plane without
affecting the view direction of the robot. The initial (not-tilted) coordinate system (X, Y, Z)
is mounted on the robot such that the X- and Y-axis span the horizontal plane, where the
X-axis is pointing in the forward direction of the robot and the Y-axis is pointing to the left.
The Z-axis is pointing upwards. A second coordinate system (X′, Y′, Z′) is then obtained
by tilting the first one out of the horizontal plane. To be fully specified, the tilting out of
a 2D plane requires two parameters as this is a 2-degree-of-freedom (DoF) subset of the
general 3-DoF problem of describing arbitrary 3D orientations, which would also include
changes in the view direction of the robot. In case of the roll-pitch representation, these
two parameters are given by consecutive rotations about the two coordinate axes X and Y
spanning the reference plane. This can be expressed by multiplying the corresponding 3D
basic rotation matrices:

RX(δX)RY(δY) =

1 0 0
0 cδX −sδX
0 sδX cδX

 cδY 0 sδY
0 1 0
−sδY 0 cδY

 (1)

Here and in the following, s∗ is short for sin(∗), and c∗ is short for cos(∗). The two
parameters (δX , δY) are the tilt angles about their corresponding axis, together controlling
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the direction and total amount of tilt. An axis-angle representation can be constructed by
specifying only a single rotation by an angle ϕ about a tilt axis ω which remains fixed. Here,
this tilt axis can be specified by only one parameter ΘR which places it within the reference
plane relative to the X-axis:

ΘR = ∠(ω, X) where ω = RZ(ΘR)X (2)

Thus, the parameters ΘR and ϕ of the axis-angle representation independently control the
direction ΘR of the tilt axis ω and the total amount of tilt ϕ. The layout of the coordinate
systems and the effect of the tilt according to both representations is depicted in Figure 3.

X

Y

Z

X′

Y′

Z′

ω

ΘR

ϕ

ϕ

(a) Axis-Angle Representation

X

Y

Z

X′

Y′

Z′

Z∗

δX

δY

ϕ

(b) Roll-Pitch Representation
Figure 3. Depiction of a coordinate system tilted according to the two proposed representations. The
axis-angle representation (a) describes the tilt as a single rotation by a small angle ϕ about the tilt axis
ω, which lies within the reference plane of the nontilted coordinate system and is described relative
to the X-axis by an angle ΘR. This angle does not correspond to a real rotation of the robot as it just
specifies the axis of rotation. Furthermore, the angle ΘR typically is not small, i.e., it can range from
0° to 360° as the robot may tilt in any direction. The roll-pitch representation (b) describes the tilt as
two consecutive small rotations δX and δY about the X- and Y-axis which span the reference plane of
the nontilted coordinate system. As two rotations generally do not commute, the order of these two
matters: the X-axis rotation by δX is always carried out first, i.e., the Y-axis rotation δY is about the
already tilted axis Y′. The green, dotted coordinate system with the Z∗ axis indicates this intermediate
step where only the X-axis rotation is performed. In both representations, the total amount of tilt is
given by the angle between the nontilted and tilted Z-axis, which is pointing upwards: ϕ = ∠(Z, Z′)

As both representations are useful for different parts of the tilt-correction process
described in the following, conversions between the two parameter sets are derived under
the assumption of a small tilt, i.e., δX, δY, and ϕ are all close to 0. This approximation is
required since the equivalence of roll-pitch and axis-angle representations can only exactly
be established—according to Euler’s rotation theorem [16]—if three angles are used for both
representations.

The first set of conversions determines the tilt direction ΘR and the amount of tilt ϕ of
the axis-angle representation from the rotations about the X- and Y-axis of the roll-pitch
representation:

ΘR = atan2(δY, δX) (3)
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ϕ = arccos(cos(δX) cos(δY)) (4)

Equation (4) can also be interpreted as measuring the magnitude of the tilt of the roll-pitch
representation, which is useful, for example, when analyzing results with respect to the
amount of tilt irrespective of the direction in which the robot is tilted.

The other set of conversions computes the opposite direction, i.e., determines the tilt
angle per axis δX and δY from the tilt direction and the total amount of tilt given by the
axis-angle representation:

δX = ϕ cos(ΘR) (5)

δY = ϕ sin(ΘR) (6)

This can be thought of as projecting the shared amount of tilt ϕ to its X- and Y-axis
components. Both conversion directions are derived in the Appendix A.1.

2.2. Outline of the Tilt-Correction Warping Algorithm

To give an outline of the tilt-correction extension of warping (that means MinWarping
according to [3]), we ignore the inner details and interpret warping as a function map-
ping two images—the snapshot ss (goal location) and the current view cv—to the warp
parameters α, ψ, and the corresponding image distance d:

(α, ψ, d) = warping(ss, cv) (7)

The image distance d gives a measure of how well the two images match after applying the
transformation by α and ψ. It is assumed that the smaller the distance d warping yields,
the better the ss-cv image pair matches. This means it is easier to warp one image into the
other for a smaller image distance d. Furthermore, it is assumed that a smaller d coincides
with better matching estimates of the movement parameters α and ψ.

This interpretation of the image distance d allows warping itself to be used as a
distance measure/criterion for other optimization algorithms: given a transformation for
tilt correction of an image tiltδ(cv) with some parametrization of the tilt δ, it is now possible
to use the interpretation of warping as a quality measure for image matching to optimize
this δ with respect to the distance measure d. This is done by running warping multiple
times while applying a systematic tilt distortion to one image and selecting the result with
the minimal distance measure d:

δ̂ = argmin
δ

{d : (α, ψ, d) = warping(ss, tiltδ(cv))} (8)

The best set of warp parameters (α̂, ψ̂, d̂) is then obtained by warping using the tilt transfor-
mation with the best set of tilt parameters δ̂ found by the optimization procedure:(

α̂, ψ̂, d̂
)
= warping

(
ss, tiltδ̂(cv)

)
(9)

The complexity of this sketched algorithm is in O(n) where n is the number of warping
invocations necessary to find the optimum. This number depends on the strategy used to
realize the argmin operation as well as the resolution of the tilt-parameter space.

2.3. Tilt Correction in Panoramic Images

In the proposed extension of the warping method, a panoramic image obtained from
a potentially tilted camera is tilted back according to hypothetical tilt-correction angles. For
this, it is necessary to describe how an image is affected by tilt. Following [15], a relation
between the angular pixel coordinates (Θ, δ) and the 3D coordinate system (X, Y, Z) is
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established by projecting the panoramic image onto (parts of) the unit sphere. This relation
is illustrated in Figure 4.

Θ

δ

Figure 4. Angular coordinates of pixels in the panoramic image: modified spherical coordinates
where the vertical angle δ is measured from the horizon (red line) which lies somewhere inside the
vertical range of the image. The horizontal angle Θ runs from left to right in the reading direction.

The conversion between Cartesian and these modified spherical coordinates for the
original and tilted coordinate system (X′, Y′, Z′) is then expressed in the following way:x

y
z

 =

cΘcδ

sΘcδ

sδ

,

x′

y′

z′

 =

cΘ′cδ′

sΘ′cδ′

sδ′

 (10)

Tilt correction is applied to the image by copying the source pixel at (Θ′, δ′) to the desti-
nation pixel at (Θ, δ). A relation between angular coordinates and pixel indices (i, j) is
established via the horizontal resolution hr and vertical resolution vr of the panoramic
image. These parameters (in rad/pixel) are stored as image support data.

(i, j) = (Θ/hr, δ/vr) (11)

The pixel indices i and j are generally real-valued and require rounding or interpolation to
be mapped to integer-valued pixel indices.

The original and the tilted Cartesian coordinates are related according to the tilt
described in the axis-angle representation by applying the rotation of the tilt angle ϕ about
the X-axis: x′

y′

z′

 =

1 0 0
0 cϕ −sϕ

0 sϕ cϕ

x
y
z

 (12)

This assumes the coordinate system to already be aligned with the tilt axis, which can be
realized most conveniently by introducing an offset in the horizontal angle Θ corresponding
to ΘR. Before computing the source coordinates (Θ′, δ′), the destination horizontal angle
Θ is shifted by −ΘR to align the subsequent computations with the X-axis. Note the
backwards direction as ΘR is measured in a mathematically positive direction but the
horizontal angle Θ in reading direction, i.e., mathematically negative:

Θ← Θ−ΘR (13)

Afterwards, to not introduce an actual image rotation, the source horizontal angle Θ′ is
shifted back by ΘR in the opposite direction:

Θ′ ← Θ′ + ΘR (14)

The tilt direction ΘR can be neglected in the following, deriving the special case for a tilt
aligned with the X-axis, which can be achieved in the general case by the offsetting as just
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described. By inserting Equation (12) into (10), the following exact solution in terms of
angular pixel coordinates can be obtained [15]:

Θ′ = atan2
(
cϕcΘcδ + sϕsδ, cΘcδ

)
(15)

δ′ = arcsin
(
−sϕsΘcδ + cϕsδ

)
(16)

To accelerate computations, an approximate solution is derived by eliminating multiplica-
tions and trigonometrical functions from Equations (15) and (16). Again this is done by
following [15] assuming a small tilt angle ϕ and small vertical angle δ (note, however, that
Θ is not small as it covers the whole 0° to 360° range):

Θ′ ≈ Θ + sϕcΘδ (17)

δ′ ≈ δ− sϕsΘ (18)

In addition to the exact and approximate solutions, the so-called vertical solution is derived
by further approximating from Equation (17), assuming the effect of the tilt on the horizontal
coordinate to be negligible. Thus, this method for tilt correction operates only within
vertical image columns which are just shifted vertically:

Θ′ ≈ Θ (19)

This simplification reduces the computational effort from two computations per image
pixel, i.e., Θ′ and δ′ for each Θ–δ pair, to only one computation per image column, i.e., only
δ′ for each Θ.

All three tilt-correction solutions (exact, approximate, and vertical) can finally be
combined with either nearest-neighbor or bilinear interpolation schemes involving the
4 nearest neighbors when mapping from real-valued angular or pixel coordinates (see
Equation (11)) to integer-valued pixel indices. In total, this gives six methods for tilt cor-
rection in panoramic images. When transferring a pixel from source (Θ′, δ′) to destination
(Θ, δ), it can happen that the source pixel (for the nearest-neighbor interpolation) or any
of the source pixels (in case of a bilinear interpolation) is located outside of the original
image: In case the source is only located horizontally outside of the image (Θ′, to the left or
right), the cyclic property of 360° panoramic images is used to access the corresponding
pixel from the other side by taking horizontal pixel indices modulo the width of the image.
If the source pixel is (additionally) located vertically (δ′, to the top or bottom) outside of
the image, there is no way to use or substitute a meaningful value from the original image
and accessing such a pixel would practically result in an out of bounds access. Therefore,
this is handled by a special case by inserting a predefined, unique, and reserved value
to indicate invalid regions of the image, which is handled appropriately by all following
image operations [10]. This value is called the mask value. It is typically set to the maximum
of the range of possible pixel values, i.e., 255 (white) in case of 8-bit-per-pixel images. These
regions with invalid pixels can appear at the upper (only in case of the approximate and
vertical solution) or lower border of the image. An example of these invalid regions is
shown in Figure 5.
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Figure 5. Example of a tilt-corrected panoramic image showing white invalid regions introduced
at the bottom to prevent out of bounds accesses. This sample image is produced using the exact
tilt-correction solution with a nearest-neighbor interpolation.

2.4. Search Strategies

Using the roll-pitch representation of the tilt, a uniform search space with equal range
and scaling for both parameter axes (in contrast to the axis-angle representation) can be
constructed:

δ = (δX , δY) ∈ Range = [δmin, δmax]
2 (20)

The two parameters, δmin and δmax, were chosen to be small and symmetric (in their
absolute values) about the zero tilt configuration in order to model the tilt as a small
perturbation out of the plane as described before. In the most general case, the search range
can be limited by forcing all candidate solutions outside to evaluate to a value bigger than
any solution inside of the range. This is done by introducing a penalty or constraint term
fc(δ) added to the objective function value:

d← d + fc(δ), where fc(δ) =

{
0 if δ ∈ Range
∞ if δ /∈ Range

(21)

To solve the optimization scheme sketched in Equation (8) using the uniform and limited
search space, three direct search methods, i.e., methods only comparing function values of
the objective without requiring it to be differentiable, are proposed in the following.

2.4.1. Exhaustive Search

The exhaustive search strategy constructs a discretized search grid Gδ from the limited
but continuous search range specified in Equation (20) by sampling points with a fixed step
size ∆ along both axes:

Gδ = [δmin, δmax; ∆]2 = {δmin + i∆ : i ∈ N0 ∧ δmin + i∆ ≤ δmax}2 (22)

This does not require the introduction of the limiting penalty term (21), as the search grid is
already a limited search space by construction. As this gives a finite and enumerable set
of candidate solutions, an approximation of the optimal tilt correction can then be found
among these grid points by systematically running an exhaustive search of warping over
all tilt configurations in the search grid:

δ̂ ≈ argmin
δ∈Gδ

{d : (α, ψ, d) = warping(ss, tiltδ(cv))} (23)

An example of such a uniform search grid is depicted in Figure 6.
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∆

Figure 6. Exhaustive search: depiction of the uniform search grid (red dots) of spacing ∆. The dots
mark the tilt configurations which are systematically probed to find the one minimizing the warping
objective. The depicted grid has a total of 225 points, i.e., 15 tilt configurations per axis. The black
lines mark the center axes of the search space, crossing at the (0, 0) tilt configuration.

It is straightforward to improve the quality of this approximation by increasing the
resolution of the search grid. However, this comes at a runtime cost: the number of
candidate solutions which need to be exhaustively probed, i.e., the size of the search
grid Gδ, is quadratic in the number of points along each axis and thus scales inversely
proportional to the square of the step size, i.e., the resolution of the search grid:

n = ‖Gδ‖ =
⌊

δmax − δmin

∆
+ 1
⌋2
∈ O

(
1

∆2

)
(24)

Thus, halving the step size (doubling the resolution) increases the number of candidate
solutions (warping runs to be done, and thereby the runtime) by a factor of four. Therefore,
the exhaustive search provides a single parameter ∆ for controlling the trade-off between
estimation quality and runtime.

2.4.2. Pattern Search

The heuristic pattern search strategy [17,18] tries to reduce the number of function
evaluations by considering only a small subset P of points of the search space. This is
achieved by surrounding an initial guess of the optimum at the center c = (cX , cY) with a
cross-shaped pattern of candidate solutions. This pattern has a total of five points—two
along each axis of the search space plus the center point—and is used to iteratively construct
improved guesses by finding the optimum among these candidate solutions. At each step
of the iterative procedure (for a depiction of the control flow see Figure 7), the pattern is
characterized by two parameters: the center point c tracking the current optimum and
the width w describing the distance between the center and the outer points. These are
then adapted according to one of two update rules depending on the location of the new
optimum c′ among the five pattern points: the pattern can either move to the new optimum
if it is one of the outer points or it can shrink in place if the new optimum is the old center.

The shrinking of the pattern is controlled by a coefficient 0 < s < 1 which controls the
rate at which the width of the pattern decreases. As this parameter is smaller than 1, the
pattern only ever gets smaller. Typically it is set to 0.5, meaning the pattern halves at each
shrinking step. Some pattern followed by the two update rules is depicted in Figure 8.

While no assumptions about continuity or differentiability of the objective are made,
for the pattern search (as well as the Nelder–Mead search introduced below) to converge
fast to the correct solution, it needs to yield at least a favorable landscape with a unique
global minimum surrounded by a valley of decreasing function values. Furthermore, the
landscape should not be too “bumpy”, i.e., contain no or only few local minima in which
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the search pattern may get trapped. To prevent the pattern from diverging, i.e., running
away out of a reasonable search range, here it is indeed necessary to introduce the limiting
penalty term (21). This forces a shrink step (or a move to some suboptimal but within-range
solution) once the new optimum would be outside of the range of valid tilt configurations.

Start

Pattern
{(cX ± w, cY), (cX , cY ± w), (cX , cY)}

Minimize
c′ = argmin

x∈P
{d(x)}

Move
c← c′

Shrink
w← s · w

Converged?

Stop

5∗

c′ 6= c c′ = c

Yes

No

Figure 7. Flowchart of the pattern search algorithm. A red number at the corner of a box indicates
the number of evaluations of the warping objective necessary at that step. However, by remembering
already evaluated points (not all change at each update step), this number can in practice be reduced
to 3 or 4 evaluations per iteration (to indicate this, the number is marked by a red star). Arrows
annotated with inequalities indicate mutually exclusive branches and should be read like decision
boxes, which are not drawn to keep the figure more compact.

Finally, as already hinted at in Figure 7, a convergence criterion must be given to stop
the iterative procedure once a sufficiently good solution is found; this can be stated most
naturally by comparing the width of the pattern w to some predefined threshold value τ
beyond which the pattern is considered small enough to stop:

w < τ =⇒ P converged (25)

To make the performance of the pattern search relatable to the exhaustive search, this
threshold was chosen to be the same as the step size of the grid, meaning the pattern search
stopped at solutions of similar resolution: τ = ∆. The initial center and initial width of
the pattern were already given by the underlying search space as shown in Figure 8, the
convergence threshold τ was chosen just as described to match the desired resolution of
the search space ∆, and the shrink coefficient s was set without further exploration to the
reasonable default of 0.5.
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Initial Pattern

ct=0
wt=0

τ

Shrink

ct=1
wt=1

τ

Move

ct=2
wt=2

τ

Figure 8. Pattern search: depiction of a sequence of the shrink and move operation starting from an
initial pattern covering the whole search space (black dots). The spacing between the dots indicates
the threshold resolution of the search pattern τ to test for convergence. The black lines mark the
center axes of the search space, crossing at the (0, 0) tilt configuration.

2.4.3. Nelder–Mead Search

Similar to the pattern search, the Nelder–Mead search strategy according to [19] is
a heuristic and iterative procedure trying to reduce the number of function evaluations
to minimize the objective. This method is also known as the simplex method, as it uses a
simplex S—a polytope of n + 1 points in n dimensions, i.e., a triangle in the two dimensions
used here—as the search pattern. At each step of the iterative procedure (for a depiction
of the control flow see Figure 9), a replacement of the worst candidate among the vertices
of the simplex is sought by constructing new candidates relative to these three points.
The simplex can either reflect, expand, or contract along the line connecting the worst
candidate to the so-called centroid between the two best candidates or shrink towards the
best candidate if this yields no improvement. These four operations are each controlled by
their corresponding coefficients: the reflection α, expansion γ, contraction ρ, and shrink
coefficient σ. These parameters were all selected without further exploration to the best
choice of parameters according to [19]: α = 1, γ = 2, ρ = 0.5, and σ = 0.5. An example
simplex and the four update rules are shown in Figure 10. As for the pattern search, it
is necessary to prevent the procedure from diverging by introducing the limiting penalty
term (21). Here, this effectively constrains the applicability of the reflection or expansion
step, i.e., forces a contraction, when these would result in a vertex outside of the range of
valid tilt configurations.
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Start

Sort
x1, x2, x3

s.t. d(x1) ≤ d(x2) ≤ d(x3)

Centroid
x0 = x1+x2

2

Reflect
xr = x0 + α(x0 − x3)

x1, x2, xr
Expand

xe = x0 + γ(xr − x0)

x1, x2, xe x1, x2, xr
Contract

xc = x0 + ρ(x3 − x0)

x1, x2, xc
Shrink

x2/3 = x2/3 + σ(x2/3 − x1)

Converged?

Stop

11

1

2

d
(
x1
)
≤ d(xr ) < d

(
x2
)

d(xr ) ≤ d
(
x1
)

d
(
x2
)
≤ d(xr )d(xe ) < d(xr ) d(xr ) ≤ d(xe )

d(xc ) < d
(
x3
)

d
(
x3
)
≤ d(xc )

12 2 2 4

Yes

No

Figure 9. Flowchart of the Nelder–Mead search algorithm. A red number at the corner of a box
indicates the number of evaluations of the warping objective necessary at that step. Right before
merging all paths, red numbers indicate the total number of evaluations along each path. Arrows
annotated with inequalities indicate mutually exclusive branches and should be read like decision
boxes, which are not drawn to keep the figure more compact.

The initial simplex is constructed as shown in Figure 11 by placing one vertex at a
corner of the search space and the other two at the center of the opposing edges. However,
in contrast to the pattern search, it is not possible to construct a simplex of three points
fully covering a square search space. While this naive initialization is sufficient for a first
comparison of the search strategies, it is probably worthy of future investigations.
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Reflect and Expand

x1

x2

x3

xr

xe

x0

∆

Contract

x1

x2

x3

xc

x0

∆

Shrink

x1

x2

x3

x′2

x′3

∆

Figure 10. Nelder–Mead (simplex) search: depiction of the four update operations on the search
simplex superimposed on the uniform search grid (black dots). Starting from the ordered set of
vertices [x1, x2, x3], an improvement is sought by reflecting xr, expanding xe, or contracting xc along
the line connecting the worst candidate x3 to the centroid x0 between the best candidates. If no such
improvement is found, the simplex shrinks towards the best candidate x1. The black lines mark the
center axes of the search space, crossing at the (0, 0) tilt configuration.

Finally, to stop the iterative procedure once a sufficiently good solution is found, a
convergence criterion must be given. Originally, ref. [19] proposed to use some predefined
threshold τ compared to the sample standard deviation of the objective function values
d(xi) at the vertices, which in the case of the three-vertex simplex looks as follows:

std(d) =

√
∑3

i=1
(
d(xi)− d̄

)2

3
< τ =⇒ S converged (26)

However, as there is no prior knowledge on the range and distribution of the function
values d produced by warping, besides the assumption that they are decreasing for better
matching image pairs,this criterion yields no meaningful interpretation and is hard to
adjust; the absolute value and variation of the distance estimate depends on aspects of the
image pair and the configuration of the warping algorithm and does not allow to control
the resolution in tilt-parameter space. Thus, a simpler and more interpretable criterion
based on the size w of the simplex in search space is proposed, resembling that of the
pattern search:

w < τ =⇒ S converged (27)
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This size of the simplex is estimated by the length of the longer side of an axis-aligned
rectangular bounding box, which can be quickly computed by (elementwise) minimum
and maximum operations on the set of vertices:

w =
∥∥∥ max

elementwise
(x1, x2, x3)− min

elementwise
(x1, x2, x3)

∥∥∥
max

(28)

The elementwise minimum operation (and the maximum analogously) over the three
two-dimensional vertex coordinates is defined in the following way:

min
elementwise

((
x11
x12

)
,
(

x21
x22

)
,
(

x31
x32

))
=

(
min(x11, x21, x31)
min(x12, x22, x32)

)
The procedure of constructing this bounding box is depicted in Figure 11.

Initial Simplex

∆

Bounding Box

w

∆

Figure 11. Nelder–Mead (simplex) search. The left figure shows the initialization of the simplex
covering most parts of the search space by placing the vertices at two edges and a corner of the search
space. The right figure shows the axis-aligned bounding box used to estimate the size of the simplex
by the length w of the longer side of the box.

While other notions of the size of the simplex might be conceivable, e.g., computing
the area or volume of the search space covered by the simplex, this bounding-box approach
is the easiest to interpret (it also yields an upper bound on the area), as the width of the
bounding box can be directly related to the width of the search pattern or the step size of
the search grid. This allows us to adjust the threshold parameter to a comparable resolution,
τ = 2∆, as the pattern measures a center-to-edge distance while the bounding box measures
an edge-to-edge distance (twice the center-to-edge distance).

3. Image Databases

The proposed methods were evaluated by conducting experiments on two newly
collected real-world tilted panoramic image databases. These databases were collected
by placing the tiltable panoramic camera (iDS UI-3241LE-M-GL with a 220° Lensagon
BF16M220DC fisheye lens by Lensation) on all intersection points of a regular Cartesian
grid on the horizontal ground plane. The LAB database was collected in a laboratory room
of the Computer Engineering Group at Bielefeld University. The layout of this room and
the location of the 3.0 m× 3.0 m grid with a total of 16 positions at a spacing of 1.0 m is
shown in Figure 12. The laboratory environment comprised a tidy workspace of desks
and office chairs directly adjacent to the database grid and a more cluttered area filled
with various items of lab equipment on the opposite side of the room. The LIV database
was collected in a living room with a high ceiling on a more elongated 1.2 m× 3.0 m grid
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of 18 positions at a spacing of 0.6 m. This environment comprised mostly large pieces of
furniture such as tables, cupboards, and sofas as shown in Figure 13.

0 X

Y

Figure 12. Layout of the laboratory room where the LAB database was collected. The database
covered an area of 3.0 m× 3.0 m in steps of 1.0 m. The grid of image locations is marked in red. The
whole room had a size of 8.0 m× 5.5 m. The areas comprising furniture such as cupboards, desks, or
chairs are marked by hatched regions, and gray boxes and circles mark the position and rough shape
of small items such as card boxes and fans. The door of the room is marked by the black bar at the
bottom wall. The cross-hatched area on the left half of the room comprised a variety of laboratory
equipment, including robots, cables, and tools. The dark gray area along the top wall of the room
marks the window facade, which was partially covered by curtains.

0 X

Y

Figure 13. Layout of the living room where the LIV database was collected. The database covers an
area of 1.2 m× 3.0 m in steps of 0.6 m. The grid of image locations is marked in red. The whole room
had a size of 8.0 m× 4.0 m and each of the furniture items was at least partially visible at one of the
locations. The areas comprising furniture such as cupboards, tables, chairs, or sofas are marked by
hatched regions, and gray boxes and circles mark the position and rough shape of decor items. The
three doors of the room are marked by the black bars. The dark gray area along the right wall of the
room marks the window facade, which was partially covered by shutters and curtains.

Variants under varying conditions of illumination—one during the day and one dur-
ing the night—were collected for both databases. During these two data collection sessions,
the illumination was kept as constant as possible, and an exposure control mechanism
was used to keep the average brightness of the images constant as well. Additionally, to
make the databases reusable for future high-dynamic-range (HDR) experiments, under-
and overexposed variants of each image were collected using an exposure time which was
derived from the controlled average brightness by a constant factor: ×0.2 for the under-
exposed and ×2.0 for the overexposed image. Thus, there were in total three differently
illuminated images at each position in the night variant. In the daylight variant, three
differently illuminated images were saved for each combination of position and tilt. A set
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of sample images of these variants from the LAB and LIV database is shown in Figure 14
and Figure 15, respectively.

Underexposed Average Brightness 128 Overexposed
Figure 14. Sample images from the LAB database. All images were collected at position (1, 2) of
the database grid in the (0, 0), i.e., no-tilt, configuration. The images of the top row were collected
during the day with bright light shining through the windows and artificial lighting turned off. The
images of the bottom row were collected during the night at the same pose. At night there was no
light shining through the windows and the artificial lighting was turned on. There were no changes
to the environment between the two variants besides the illumination conditions.

Underexposed Average Brightness 128 Overexposed
Figure 15. Sample images from the LIV database. All images were collected at position (1, 3) of the
database grid in the (0, 0), i.e., no-tilt, configuration. The images of the top row were collected during
the day with bright light shining through the windows and artificial lighting turned off. The images
of the bottom row were collected during the night at the same pose. At night there was no light
shining through the windows and the artificial lighting was turned on. There were no changes to the
environment between the two variants besides the illumination conditions.

3.1. Pan–Tilt Unit

The day variant of both databases comprised images captured with a systematic tilt
applied to the camera at each grid location. This was done by mounting the camera on top
of a pan–tilt unit (PTU) (PTU-C46 by Directed Perception, Inc., Burlingame, California/
FLIR Systems) allowing for rotations about two orthogonal axes, i.e., the PAN- and the
TILT-axis. In its standard configuration, the PTU was setup in a way corresponding to
the axis-angle representation of the tilt: rotated about the PAN-axis to select the direction
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ΘR of the tilt axis ω and then rotated by ϕ around the TILT-axis. Using the conversion
derived earlier in Equations (3) and (4), it was also possible to control the PTU with angles
given in the roll-pitch representation. However, in contrast to the roll-pitch and axis-angle
representations, which were formulated to avoid any relation between the tilt direction and
the view direction of the robot, the PTU actually changed the view direction when applying
tilt. This was due to the PAN-axis not only selecting the direction of the TILT-axis but also
rotating the camera about its optical axis. This caused a coupling of the view direction
of the robot to the tilt which was always present when using the PTU in its standard
configuration.

To avoid this problem, the PTU was mounted in a flipped configuration, flipping
the PAN-axis horizontally by rotating 90° about the TILT-axis. In this configuration, the
PAN- and TILT-axis spanned the horizontal plane and could be directly associated with
the roll-pitch representation of the tilt. As the camera was still mounted upright with its
optical axis aligned to a third axis orthogonal to the rotating axes, this configuration had
no relation between the tilt and the view direction. Thus, the view direction was fully
determined by the static orientation of the camera mount. This view direction needed to
be taken into account during the image preprocessing as well as during the evaluation of
the results, as it corresponded to one of the homing parameters estimated by warping. A
schematic of both PTU configurations is shown in Figure 16 and a photo of the modified
PTU is shown in Figure 17. The operating range of the PTU was ±159° on the PAN- and
−47° to + 31° on the TILT-axis, which was more than sufficient for the small amounts
of tilt considered in this work. In both configurations, tilting the camera led to a small
change in the camera position, i.e., a small offset in all three spatial dimensions. However,
considering the small amounts of tilt, this change in position was small enough with respect
to the database grid resolution to be neglected in the experiments—in the worst case, this
yielded a displacement of only about 3 cm compared to the 100 cm or 60 cm resolution of
the grid. The change in position depended on the tilt and the offset of the camera mount
above the plane spanned by the moving PAN- and TILT-axis: in the standard configuration,
the camera was mounted about 8.15 cm and in the flipped configuration about 17 cm above
the intersection of the PAN- and TILT-axis. Including the immovable parts of the setup,
these offsets corresponded to images collected about 18.15 cm or 36 cm, respectively, above
the ground.

PAN-axis

TILT-axis

Standard/Axis-Angle

PAN-axis

TILT-axis

Flipped/Roll-Pitch
Figure 16. Two configurations of the pan–tilt unit (PTU). The standard configuration (left) is the one
giving the PTU its name with the two servo modules mounted on top of each other. This configuration
matched the axis-angle representation of tilt where the PAN-axis rotation selected the tilt axis and the
TILT-axis rotation the amount of tilt. However, with the camera mounted rigidly on top of the setup,
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this caused a change of view direction due to the panning as well and thus coupled the view direction
to the tilt. To get a configuration which decoupled the view direction from the tilt, the PTU was flipped
on its side (right) by mounting it at a 90° angle about the TILT-axis while keeping the camera mount
upright. This way, the PAN- and TILT-axis spanned the horizontal plane and could be associated
with the X- and Y-axis of the roll-pitch representation. See Figure 3 for a depiction of the two tilt
representations.

X
Y

Z

δX
δY

Figure 17. PTU in flipped/roll-pitch configuration. Photo of the modified PTU and camera mount for
decoupling the view direction from the tilt. See Figure 16 for a schematic view of this configuration.
The coordinate system associating the X- and Y-axis of the roll-pitch representation with the PAN-
and TILT-axis, respectively, is drawn in red. The origin is placed at the intersection of the PAN- and
TILT-axis. The camera mount is centered above (along the Z-axis) the origin.

LAB Tilt Range For collecting the LAB database, the PTU was used in its standard
configuration with the tilt parameters converted to the axis-angle representation from a
uniform grid in the roll-pitch representation. This grid of tilt parameters covered a range of
±5° of tilt per X- and Y-axis in steps of 1°:

δX , δY ∈ [−5°,+5°; ∆ = 1°] (29)

In total, there were 121 different tilt configurations per position in the day variant of the
LAB database. In terms of magnitude (see Equation (4)), this comprised up to ϕ ≈ 7° of
tilt. From using the PTU in its standard configuration and mounting the camera facing
backwards relative to the forward facing X-axis (i.e., at 180°) and requiring a 180° PAN
range to select all tilt directions, the view direction δR systematically varied between 180°
and 360°, depending on the PAN-axis directions, which themselves depended on the two
tilt parameters δX and δY.

LIV Tilt Range For collecting the LIV database, the PTU was used in the flipped
configuration, with the tilt parameters in the roll-pitch representation taken from the
uniform grid without conversion. The LIV database comprised a slightly larger range of
tilt of ±8° per X- and Y-axis in steps of about 1.15°:

δX , δY ∈ [−8°,+8°; ∆ = 1.15°] (30)

In total, there were 225 different tilt configurations per position in the day variant of the LIV
database. In terms of magnitude, this comprised up to ϕ ≈ 11.3° of tilt. With the PTU used
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in the flipped configuration, the view direction δR was constant and fully determined by
the camera mount, which was oriented at δR = −90° relative to the forward facing X-axis.

3.2. Image Processing

The image processing generally followed the scheme described by [3,5]. The path
of a sample image from the LAB database through the preprocessing stages is shown in
Figure 18. Starting from the original image (step 1) with a size of 1280× 1024, histogram
equalization was applied to increase the contrast (step 2). The equalization was imple-
mented such that only the ring-shaped region of valid pixels indicated by the mask shown
in Figure 19 was considered. The equalized image was then low-pass-filtered to avoid
aliasing artifacts due to the subsampling of the images while applying transformations to
panoramic images (step 3). For all experiments, a third-order Butterworth low-pass filter
with relative cutoff frequency of 0.2 was used.

1 2

3
4

5

6

Figure 18. Path of a sample image from the day variant of the LAB database at position (1, 2) without
tilt through the image processing pipeline: (1) original image from the database; (2) improved
contrast after histogram equalization; (3) low-pass-filtered using a 3rd-order Butterworth filter with
relative cutoff frequency of 0.2; (4) unrolled panoramic representation; (5) simulated rotation of 60°
by horizontal left shift with wrap-around; (6) cropping of upper 35° to remove the distorted ceiling
and potentially invalid regions at the top.

From this preprocessed image, the panoramic representation (step 4) was unrolled
such that the horizontal dimension corresponded to the azimuthal angle of a pixel and
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the vertical dimension to its elevation angle. This unrolling was done by a mapping
projecting the image onto the unit sphere, which was sampled with an equidistant spacing.
To construct the projection onto the unit sphere, a camera model was required, which was
obtained from a set of images showing a checkerboard calibration pattern as shown in
Figure 19. These calibration images were processed into a set of camera parameters using
the OCamCalib Toolbox [20]. During the unrolling process, all images were brought into
the same orientation—facing forward aligned with the X-axis of the database grid—by
accounting for the view direction δR due to the camera mount and PTU configuration
mentioned earlier. The panoramic representation comprised all of the available field of
view of the camera, meaning it ranges from −20° below the horizon to +90° above the
horizon. The resulting image had a size of 384× 117 pixels at a vertical resolution within
an image column of approximately 0.016 rad/pixel and the horizon level at 95.72 pixels
counting from the top. The sampling of the unit sphere used a bilinear interpolation.

Calibration Mask
Figure 19. Camera calibration and mask image. The calibration image is one example of several
images collected showing a checkerboard pattern [21]. These calibration images were used to obtain
the camera parameters necessary for “unrolling” the image into a panoramic representation [20,22].
The mask image was used for exposure control and preprocessing to ignore those regions of the
image which were not exposed at all or contain no meaningful information, such as the typically
overly bright ceiling. The ring-shaped region extended from about 20° on the inner side to about 110°
on the outer side, or in terms of elevation and depression, up to 70° above and 20° below the horizon.

All preprocessing steps described until now (steps 1–4 in Figure 18) were applied
only once for each database (for each image) and thus were not included in the time
measurements of the experiments. The final two preprocessing steps (described below)
were applied once per image pair (step 5, rotation) or even multiple times per image during
the tilt correction search, every time the image was warped (step 6, cropping).

As all panoramic images had the same orientation after the preprocessing, warping
would always find an estimate of the view direction at ψ̂ = 0, which was exactly contained
in the discrete search space over α and ψ as described in more detail by [5]. To avoid this
and get a more realistic homing performance, both the snapshot and current view were
rotated by random azimuth angles δss

R and δcv
R similar to [3]. This rotation corresponded to a

horizontal shift with a wrap-around in the panoramic representation; while the images were
unrolled in the reading direction, a positive rotation corresponded to a left shift against the
reading direction. This randomization of the view directions was done for each snapshot–
current view pair and kept the same for all methods evaluated on the image pair. As the
tilt corresponding to each image was described in roll-pitch representation relative to the
fixed coordinate system aligned with the database grid, the rotation of the image required
the tilt parameters to be adapted into this rotated coordinate system to remain valid for the
tilt correction or as ground truth for matching the tilt estimates: under the assumption of a
small tilt, i.e., still keeping the tilted plane close to being parallel to the ground plane, the
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introduction of an additional rotation of δR about the Z-axis approximately corresponded
to a rotation of the two roll-pitch parameters within the X–Y plane:(

δ∗X
δ∗Y

)
=

[
cos δR sin δR
− sin δR cos δR

](
δX
δY

)
(31)

A detailed derivation of the exact adaptation of the tilt parameters under rotation and these
approximations is given in the Appendix A.2.

Some image transformations, in particular the tilt correction, yielded invalid regions
at the top and bottom border of panoramic images. As the scale-plane stack computations
of the given warping implementation only handled these regions at the bottom border, the
upper part needed to be removed. To have comparable images throughout all experiments,
a constant cropping of 35° from the top was applied to all images, i.e., tilt-corrected and not
tilt-corrected, just before being passed to warping. This chosen amount of cropping was
more than sufficient to remove the biggest invalid regions to be expected at the most extreme
tilt correction of ϕ ≈ 11.3°. Furthermore, this cropping may be beneficial to the homing
performance of warping as most images showed only distorted ceiling without much
detail in the cropped region. At the vertical resolution of the panoramic representation of
approximately 0.016 rad/pixel, this cropping corresponded to approximately 37.25 pixels,
resulting in a final size of the panoramic image of 384× 80 pixels and a horizon level
at 58.47 pixels counting from the top. By using the fact that the images were stored in
row-major order, the image cropping was implemented efficiently by making a view into
the memory of the original image at the cropping offset. Thus, even though the cropping
needed to be applied multiple times throughout the search for an optimal tilt correction,
this added no significant runtime overhead.

4. Results

From each of the two databases LAB and LIV, three datasets of snapshot/current view
image pairs were generated. These datasets represented situations of varying difficulty for
the tested methods. The DxD datasets took both snapshot and current view from the day
variant of the database, meaning the illumination conditions did not vary by much. As the
proposed tilt-correction scheme handled only one image being tilted, the snapshot images
were constrained to those (one per position) with no tilt applied to the camera. The NxD
datasets yielded so-called cross-database tests with snapshots taken from the night variant
and current views from the day variant, resulting in substantial illumination differences
between snapshot and current view images. These datasets allowed us to test the methods
for tolerance against changes in illumination which are known to affect the performance of
visual navigation methods in general [8,9]. Finally, the NxN dataset was generated from only
the night variant of the databases representing the most simple case with no illumination
changes and no tilt applied to any of the images. This last dataset served more as a reference
for testing tilt-correction methods when no tilt was actually present. Experiments were
conducted over all image pairs from these datasets testing all method combinations of
components proposed in Section 2, i.e., all combinations of search strategy, tilt correction,
and interpolation methods.

4.1. Nomenclature and Parameters

From the three tilt-correction solutions and the two interpolation schemes proposed
in Section 2.3, six tilt correction methods were implemented. The identifiers used to
distinguish the tested methods were composed from the initial letters of the methods and
are listed in Table 1.

These tilt-correction methods were then combined with warping and one of the
three search strategies proposed in Section 2.4. The resulting methods are referred to by
prepending the identifier of the search strategy to that of the tilt correction. In addition to
the three search strategies, two baseline strategies were added to the method pool. The
true tilt strategy used the known ground truth tilt parameters as recorded in the database.
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This corresponded to cases where an additional sensor, such as an inertial measurement
unit, was combined with warping to provide the tilt parameter estimates. Furthermore,
this allowed us to investigate how the different tilt-correction methods affected the homing
performance without interference of a particular search strategy. Finally, the none tilt
strategy used the warping algorithm as it was, without any form of tilt correction. All 25
method combinations are listed in Table 2. When referring to the results on a particular
dataset later on, an identifier of the dataset—comprising the database and the variants
used—is appended to the method identifier: e.g., ten@lab-nd refers to the true tilt strategy
using an exact tilt correction with a nearest-neighbor interpolation evaluated on the NxD
cross-database test of the LAB database. All methods combined with warping [23,24]
used the same configuration and parameters as listed in Tables 3–5. As these parameters
never changed, they are not indicated by the method identifiers. As the first phase of
warping, the distance image or the scale-plane stack computation, a modified version
of the NSAD distance measure [9,23] was used, adapted to properly handle the invalid
regions introduced by the tilt-correction methods [10]. Finally, Table 6 states the range and
resolution parameters used to constrain the tilt search strategies.

Table 1. Identifiers of the six tilt-correction methods. The identifiers are composed of the initial letters
of the methods, naming the tilt correction solution first, followed by the interpolation scheme.

Nearest Neighbor Bilinear

Exact en el
Approximate an al

Vertical vn vl

Table 2. Identifiers of the tilt-correction warping schemes. The identifier of the tilt (search) strategy is
prepended to that of the tilt-correction method (see Table 1). The Nelder–Mead search uses s for the
simplex method. The true tilt strategy applied a single ground-truth tilt correction as recorded in the
databases, before running warping once. The none tilt strategy was a baseline test running warping
without any tilt correction. This baseline was the same for both interpolation schemes as there was
nothing to interpolate. In total, there were 25 combinations.

Nearest-Neighbor Interpolation

Exact Approximate Vertical None

True ten tan tvn -
Exhaustive een ean evn -

Pattern pen pan pvn -
Nelder–Mead sen san svn -

None - - - n--

Bilinear Interpolation

Exact Approximate Vertical None

True tel tal tvl -
Exhaustive eel eal evl -

Pattern pel pal pvl -
Nelder–Mead sel sal svl -

None - - - n--
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Table 3. Configuration of the image distance and scale-plane stack computation. A scale-plane
stack of 9 distance images was computed with a scale factor up to 2.0 using a modified NSAD
column distance measure, adapted to handle the invalid regions due to the tilt-correcting image
transformations.

Distance Measure Num. Scale Planes Max. Scale Factor

NSAD with invalid region
handling 9 2.0

Table 4. Number of steps, search range, and resolution of the warp parameter search space used by
MinWarping.

Search Steps Search Range Resolution

nα = 128 0° . . . 357.1875° ∆α = 2.1825°
nψ = 128 0° . . . 357.1875° ∆ψ = 2.1825°

Table 5. Configuration of the MinWarping searcher. MinWarping was configured to perform a double
search, i.e., a second run with exchanged snapshot/current view, with compass acceleration.

Searcher Compass
Acceleration Partial- Double- Fine-Search

MinWarping Yes, Sum No Yes No

Table 6. Range and resolution parameters used by the tilt search strategies. All three strategies were
set up to cover the same symmetric search range of up to 0.14 rad of tilt per axis in the roll-pitch
representation. This range comprised the maximum tilt of both databases (i.e., the range of the LIV
database) and was used for experiments on both. The grid and pattern search resolution also matched
the step size between tilt configurations of the LIV database, and the simplex threshold was derived
from these as τ = 2∆, as described earlier.

Search Range Grid ∆ Pattern τ Simplex τ

δmin = −0.14 rad, δmax = +0.14 rad 0.02 rad 0.02 rad 0.04 rad

4.2. Image Differences

For comparing the effect of the tilt-correction solutions on panoramic images, a pair-
wise difference measure was used to compare images transformed by two different solu-
tions on the same input image. This was done by computing a normalized sum of absolute
pixelwise differences:

diff(I1, I2) =
1

WH

H−1

∑
i=0

W−1

∑
j=0
|I1[i, j]− I2[i, j]|, (32)

where I1 and I2 are transformed from the same input image by different tilt-correction
solutions or using different interpolation methods. W and H are the width and height of
the panoramic image. Using this difference measure, a distance matrix of the pairwise
comparisons of all tilt-correction solutions combined with the two interpolation methods
(nearest neighbor and bilinear) was plotted. These comparison matrices were produced
for each database by averaging over all images and are shown in Figure 20. Note that
this image difference experiment omitted the last two preprocessing steps of rotating and
cropping the image, as these were only required for the homing experiments. These average
image differences clearly set the strongest, vertical approximation apart from the other two,
which were more similar to each other than to the vertical. This was not surprising as the
vertical approximation removed one degree of freedom, the horizontal direction.
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Figure 20. Plot of the average pixelwise image differences between all tilt-correction solutions. The
LAB and LIV database are reported separately as the ranges of tilt and thus the expected deviations
were different (LIV comprised more tilt). The results were averaged by taking the mean per method
over all images contained in the database. For the tilt correction, the ground-truth tilt parameters as
recorded in the database were used. The image difference measure is a symmetric distance measure,
therefore the plotted matrices are symmetric about the main diagonal as well. With a stronger
approximation, the effect of the different interpolation methods becomes smaller. The exact e* and
approximate solutions a* are more similar to each other than to the vertical approximation v*.

The choice of interpolation method was only subordinate to the choice of approxima-
tion and the solutions were more similar to their interpolation variant than to the next level
of approximation. This was also expected as the interpolation methods did not change
anything about how the tilt correction operated but only improved on the image quality by
smoothing out the lines and edges in the image. Figure 21 shows an example of an image
tilt-corrected from one of the most extreme tilt configurations of the LAB database; the exact
and approximate solutions were capable of straightening out most of the distortions due to
tilt. With approximations, the deviations from straight lines became more noticeable farther
away from the horizon, in particular at the top, where the small opening angle assumption
was clearly violated. Without the horizontal component, the vertical approximation was
not capable of straightening out curved vertical lines, and thus, noticeable distortions
remained even close to the horizon, making this strongest approximation clearly inferior
to the other two. This hinted at the fact that a single transforming degree of freedom, i.e.,
vertical shift, was not sufficient to do proper tilt corrections.

Original Tilted Image
Figure 21. Cont.
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en
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vn
Figure 21. Sample image from the LAB database at position (0, 0) in the most extreme (5°,−5°) tilt
configuration. The original tilted image is shown at the top. Below is the image after tilt correction
based on the ground truth using the three approximation levels with a nearest-neighbor interpolation.
Invalid regions appear at the bottom of the exact solution and at the top and bottom of the approximate
solutions. The jagged edges are an artifact of the nearest-neighbor interpolation. While the exact and
approximate solutions clearly straighten out most of the edges, the vertical approximation still seems
to be more similar to the original, tilted image than to the other tilt-corrected images, in particular in
regions farther away from the horizon. The effects become most obvious when looking at the door,
which should be perfectly straight and upright after tilt correction. Note that this image difference
experiment omits the last two preprocessing steps of rotating and cropping the image, and thus
invalid regions can be seen at the top of the approximate and vertical solution.

4.3. Homing Performance

The homing performance was evaluated by comparing the angular error εβ between
the true home vector h and the home vector ĥ estimated by warping:

εβ = arccos
(

ĥTh
)
∈ [0, π] (33)
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These home vectors were unit-length vectors with direction β̂ and β, respectively, relative
to the world coordinate system, i.e., the database grid. The estimated home direction was
computed from the parameters α̂ and ψ̂ estimated by warping [3]:

β̂ = ψ̂− δcv
R − α̂ + π (34)

The view direction angle δcv
R was subtracted to convert from robot coordinates back to world

coordinates to make the estimate comparable to the true home direction. This accounted for
the randomized view direction which was introduced during preprocessing. The true home
direction was derived as the angle between the positive X-axis and the vector pointing
from the current view (Xcv, Ycv) to the snapshot (Xss, Yss) location on the database grid:

β = atan2(Yss −Ycv, Xss − Xcv) (35)

Plotting all home directions per snapshot as arrows placed at the corresponding current
view positions yielded a qualitative visualization of the homing performance. Each home
vector was computed as the two-dimensional unit vector with polar angles β̂ or β, respec-
tively:

h =

(
cos β
sin β

)
(36)

These vector field plots allowed us to observe the spread of the home direction estimates
around the true home direction.

Figure 22 visualizes the effect of the different tilt-correction solutions on the home-
direction estimates compared for the true tilt strategy. Furthermore, plotting the results
of the no-tilt strategy clearly demonstrated how severely the homing performance of
warping was affected by the tilt. While the differences between no-tilt correction and any
tilt correction were vast, there was not much difference to observe when comparing the
three tilt-correction solutions. Only in case of the vertical approximation could a slightly
increased spread of the home vectors about the true home direction be observed. However,
these differences were almost negligible compared to the no-tilt-correction baseline.

Figures 23 and 24 visualize the effect of the different search strategies on the home
direction estimates when paired with the exact tilt correction and nearest-neighbor interpo-
lation; almost all estimated home vectors aligned with the ground truth, and the exhaustive
search strategy was even capable of fixing the “bad spot” in the top right corner (3, 3) of
the LAB database. As this was not the case for the true-tilt strategy, the exhaustive search
must have found some image distortion not related to the ground-truth tilt but somehow
improving the homing performance of warping. Another explanation for this might be
wrong ground-truth data recorded for this position, although this was rather unlikely as
the heuristic search strategies behaved similarly to the true-tilt strategy. Using the heuristic
search strategies resulted in a markedly larger spread of the home direction estimates and,
in particular for the LIV database, in more complete failures, i.e., home direction estimates
not even roughly pointing in the right direction. The increased spread, which was still
better than for the no-tilt correction, could probably be attributed to slight deviations of the
tilt-correction estimate from the true tilt configuration. The complete failures were probably
due to the heuristic strategies converging to a totally wrong minimum which potentially
caused even worse distortions to the image than those due to the original tilt.

Finally, Table 7 summarizes the quantitative results of all methods on all datasets in
terms of the angular error of the home direction εβ. The results were averaged using the
median as this represents the better measure for the skewed error distribution which is
exemplarily plotted for one of the experiments in Figure 25.
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n--@lab-dd ten@lab-dd

tan@lab-dd tvn@lab-dd
Figure 22. Home vector field plots comparing the tilt-correction solutions with a nearest-neighbor
interpolation on the true tilt strategy. One sample snapshot location from the LAB DxD dataset is
shown. The red arrows show the true home direction per position, the black arrows show the
estimates obtained by the applied method—as there were 121 images per position in the dataset,
there are also 121 home-direction estimates per position even though they might overlap in these
plots. For this test, the snapshot position (1, 2) near the middle of the grid was chosen and hence the
arrows should ideally point there. The location (3, 3) in the top right corner is a known “bad spot” of
the LAB environment, near to multiple furniture items.

As already seen in the home-vector-field plots, there was not much difference between
the approximations of the tilt correction when comparing within the groups of search
strategies. The effect of the choice of the interpolation method was even almost negligible.
Thus, the biggest influence stemmed from the search strategies. However, in the LAB
database (with smaller amounts of tilt) the differences between the search strategies were
still rather small. There were two noteworthy observations when comparing the search
strategies to the true tilt strategy. First of all, on the same-database experiments DxD and
NxN, the exhaustive search strategy was somehow capable of outperforming the true tilt
baseline. This might be explained by the previous observation on the home-vector fields:
the exhaustive search strategy might be capable of improving the homing performance
of warping on “bad spots” in general, probably at the cost of tilt-correction performance.
However, this effect was not observed on any of the cross-database experiments. Secondly,
the heuristic search strategies showed worse performance on the no-tilt experiments NxN
compared to the true tilt and exhaustive search strategy. This indicated that they tried to
tilt-correct images which were not tilted at all and thus introduced misleading distortions.

In general, as expected, the tilt search was worse than the ground-truth tilt correction,
and the heuristic search strategies yielded the worst performance. However, the differ-
ences between the pattern and the Nelder–Mead search strategies were rather small and
inconclusive, only slightly favoring the pattern search (in particular on the LIV database
comprising the bigger range of tilt). While all search strategies yielded similar performance
over the same-database experiments (all similar within 2°), there was a distinctively bigger
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difference over the cross-database experiments: in the worst case (LIV NxD), the pattern
and Nelder–Mead search strategies were worse than the true tilt strategy almost by a factor
of two, with the exhaustive search roughly in between, depending on the tilt-correction
solution. However, the worst case of 16.67° was still better than the baseline without tilt
correction at 34.60° by slightly more than a factor of two.

n--@lab-dd een@lab-dd

pen@lab-dd sen@lab-dd
Figure 23. Home vector field plots comparing the tilt search strategies with a nearest-neighbor
interpolation on the exact tilt-correction solution; the same sample snapshot location from the LAB
DxD dataset as in Figure 22 is shown.

Table 7. Median of the home-direction error εβ in degrees. The methods are grouped by tilt (search)
strategy first and then arranged by tilt correction and interpolation method. In each group, the best-
performing methods per dataset, i.e., those with the smallest home-direction error, are highlighted
in red.

LAB DxD LAB NxD LAB NxN LIV DxD LIV NxD LIV NxN

n-- 9.20 21.03 1.95 18.09 34.60 2.61

ten 2.21 4.34 1.95 2.98 6.65 2.61
tel 2.18 4.76 1.93 2.93 6.27 2.80
tan 2.23 4.36 1.95 3.11 6.80 2.61
tal 2.20 4.70 1.93 3.04 6.39 2.69
tvn 2.66 4.88 1.95 4.25 8.29 2.61
tvl 2.62 5.00 1.93 4.17 8.05 2.69
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Table 7. Cont.

LAB DxD LAB NxD LAB NxN LIV DxD LIV NxD LIV NxN

een 2.13 4.54 1.93 2.96 8.83 2.48
eel 2.14 5.39 1.95 2.87 7.37 2.57
ean 2.14 4.53 1.95 3.14 9.06 2.36
eal 2.16 5.32 1.99 3.02 7.60 2.41
evn 2.62 5.16 1.90 4.35 11.38 2.25
evl 2.61 5.67 1.92 4.22 10.53 2.21

pen 2.50 7.02 2.04 3.70 13.19 2.78
pel 2.62 10.53 2.29 3.52 11.14 3.01
pan 2.51 7.12 2.18 3.83 13.17 2.72
pal 2.62 10.44 2.35 3.69 11.45 2.87
pvn 2.98 7.98 2.04 5.09 15.31 2.57
pvl 3.07 9.57 2.30 5.00 14.25 2.82

sen 2.50 7.02 2.30 4.41 14.39 2.59
sel 2.52 9.25 2.30 4.34 12.08 2.73
san 2.51 7.09 2.29 4.63 14.63 2.53
sal 2.57 9.01 2.33 4.55 12.40 2.84
svn 2.97 7.58 2.23 5.90 16.67 2.94
svl 2.98 8.55 2.21 5.83 15.22 2.82

n--@liv-dd een@liv-dd

pen@liv-dd sen@liv-dd
Figure 24. Home vector field plots comparing the tilt search strategies with a nearest-neighbor
interpolation on the exact tilt-correction solution; one sample snapshot location from the LIV DxD
dataset is shown. As the LIV database had 225 tilt configurations (images) per position, there are 225
potentially overlapping black arrows per position showing the estimated home directions. For this
test, the snapshot position (1, 3) near the middle of the grid was chosen and hence the arrows should
ideally point there.
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Figure 25. Distribution of the home direction error εβ and tilt correction error εδ, exemplarily shown
for the exhaustive tilt search using an exact tilt correction with a nearest-neighbor interpolation on
the LAB DxD dataset (een@lab-dd). The median yields the better measure to summarize the homing
performance, compared to the mean, as the error of the home direction tends to show a skewed
distribution with a long tail of rarely occurring large errors. Though not as pronounced, the tilt
correction error behaves similarly.

4.4. Tilt-Correction Performance

Similar to the homing performance, the tilt-correction performance was evaluated by
comparing the angular error εδ between the true tilt vector z and the tilt vector ẑ estimated
by the tilt correction search:

εδ = arccos
(

ẑTz
)
∈ [0, π] (37)

These tilt vectors were computed as three-dimensional unit vectors from spherical coor-
dinates given by the tilt parameters in the roll-pitch representation (δX, δY) or (δ̂X, δ̂Y),
respectively:

z =
(
cos δX cos δY, sin δX cos δY, sin δY

)T (38)

The ground-truth tilt parameters of a snapshot/current view pair were those of the current
view as the snapshots were always selected with no tilt. Table 8 summarizes the quantitative
results of all methods on all datasets in terms of the angular error of the tilt correction εδ.
The results were averaged using the median. See again Figure 25 for a similar argument of
the skewed error distribution as that for the home direction error discussed previously. In
the case of no tilt correction n--, there was not really any angular error of the tilt correction
according to Equation (37). However, when inserting a zero tilt estimate into this equation,
it reduced to the magnitude of tilt described in Equation (4), which was consequently
reported for all n-- experiments. The median of this magnitude of tilt could be interpreted
as the average amount of tilt which needed to be corrected in the dataset: half of the
experiment samples showed images tilted less, the other half images tilted more than this
value. The maximum amount of tilt was about 7° for the LAB and about 11° for the LIV
database, thus the reported median was slightly above the middle of this range.
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Table 8. Median of the tilt-correction error εδ in degrees. The methods are grouped by tilt (search)
strategy first and then arranged by tilt correction and interpolation method. In each group, the
best-performing methods per dataset, i.e., those with the smallest tilt-correction error, are highlighted
in red.

LAB DxD LAB NxD LAB NxN LIV DxD LIV NxD LIV NxN

n-- 4.24 4.24 0.00 6.88 6.88 0.00

ten 0.00 0.00 0.00 0.00 0.00 0.00
tel 0.00 0.00 0.00 0.00 0.00 0.00
tan 0.00 0.00 0.00 0.00 0.00 0.00
tal 0.00 0.00 0.00 0.00 0.00 0.00
tvn 0.00 0.00 0.00 0.00 0.00 0.00
tvl 0.00 0.00 0.00 0.00 0.00 0.00

een 0.86 0.94 0.00 1.15 1.79 1.15
eel 0.86 0.97 1.15 1.12 1.60 1.15
ean 0.86 0.94 0.00 1.15 1.81 1.15
eal 0.86 0.97 1.15 1.12 1.64 1.15
evn 0.86 0.95 0.00 1.22 2.03 1.15
evl 0.86 0.95 1.15 1.20 1.97 1.15

pen 1.17 1.36 0.00 1.57 2.50 0.00
pel 1.22 1.63 0.00 1.49 2.29 2.01
pan 1.17 1.39 0.00 1.56 2.45 0.00
pal 1.22 1.61 0.00 1.51 2.34 2.01
pvn 1.18 1.41 0.00 1.63 2.68 0.00
pvl 1.21 1.50 0.00 1.62 2.68 0.00

sen 1.14 1.35 0.74 1.98 2.91 1.04
sel 1.17 1.55 0.71 1.96 2.72 1.36
san 1.15 1.37 0.77 1.99 2.92 1.07
sal 1.17 1.54 0.71 1.99 2.77 1.35
svn 1.17 1.42 0.71 2.16 3.13 1.25
svl 1.16 1.44 0.71 2.15 3.06 1.02

Overall, all proposed methods were capable of actually estimating the tilt of the images.
Compared to the baseline test (average amount of tilt in the dataset), an improvement of a
factor between two and five was achieved. The median tilt-correction error could then be
interpreted as the amount of tilt remaining in the dataset after correction. The choice of the
tilt-correction solution had an almost negligible impact on the tilt-correction performance,
especially, the exact and approximate solution were nearly identical. Although the vertical
solution was noticeably worse, it was still within 0.5° of the other solutions.

One noteworthy observation was the variants with linear interpolation: in many
cases these yielded slightly worse (or at least equivalent) tilt correction than their nearest-
neighbor interpolation counterparts (although not by much). This was somewhat unex-
pected, as the linear interpolation was expected to produce images with an overall better
quality, being beneficial to the underlying warping method and in turn making the tilt
correction easier. This particular effect seemed to be more pronounced on the LAB database
than on the LIV database, indicating it might be related to the content or overall structure of
the images (the environment) or to the different amounts of tilt comprised in the databases,
i.e., indicating that linear interpolation became beneficial only for larger amounts of tilt.

Though all search strategies were capable of finding a good tilt correction, there were
more differences between the search strategies compared to those between the tilt-correction
solutions. Still, they were all quite similar within 1°. Noteworthy is the pattern search
strategy, which was rather consistent in correctly estimating the no-tilt condition of the
NxN datasets. This was probably due to the initial center test point placed exactly in the
middle of the search space at the no-tilt configuration, making convergence to the right tilt
correction easier. The differences between the search strategies were rather independent
of the chosen tilt correction, and in many cases, the interpolation was even the second
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most important influence, making the choice of approximation almost insignificant to the
tilt-correction performance.

Figures 26–28 visualize the search process of the different search strategies and the
underlying objective function by plotting a heatmap of the function values.

een ean

evn
Figure 26. Visualization of the exhaustive search with the different approximations of the tilt correc-
tion and with a nearest-neighbor interpolation. For each of the tilt configurations from the exhaustive
search parameter grid, the d value of the corresponding warping run, i.e., the objective function
value, is plotted. The darker the pixel, the lower the d, and hence the better the match of the tilt
correction. The green cross marks the location of the ground-truth tilt parameters, i.e., the expected
minimum, and the red-blue circle marks the minimum found by the search procedure. For all
tilt-correction solutions, good matches are clearly concentrated around the true minimum with the
objective function values decreasing towards it. A pronounced valley is visible and the overall
terrain is not “too bumpy”, as necessary for the heuristic search methods to be applicable. The two
approximations show a slightly more elongated valley of potential or near matches. In these cases,
the estimated minimum of all solutions is between 1° and 2° off of the true tilt configuration, i.e.,
at one of the adjacent grid points. This particular sample was produced from the LAB DxD dataset
taking the snapshot image at position (1, 2) with no tilt and with an added rotation of 0.52 rad and the
current view image at position (0, 0) in the (−0.07 rad,−0.07 rad) tilt configuration with an added
rotation of 1.41 rad. The rotation added to the current view image caused the tilt configuration to be
rotated as well to the (−0.08 rad, 0.06 rad) location marked by the green cross (see Equation (31) for
more details).
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Figure 27. Visualization of the pattern search strategy pen. As a reference, the exhaustive search
heatmap of the een strategy (see Figure 26 for information on the selected image pair) is plotted
as the background. The green cross marks the location of the ground truth tilt parameters, i.e., the
expected minimum. At each step, the state of the search pattern is visualized as a red cross connecting
the test points. At the final step, the red-blue filled center circle marks the minimum found by
the search procedure. After only four update steps the pattern is already centered at the top left
quadrant containing the minimum. In total, only seven update steps corresponding to 22 warping
evaluations are necessary to find a good approximation of the tilt correction—this is in contrast with
the 225 evaluations of the exhaustive search grid. According to Table 11, this actually represents a
worse-than-average performance with a mean and median number of evaluations of about 18 if tilt
is present.

Just as assumed, the heatmap showed systematic variations of the warping objective
d depending on the tilt parameters. As expected, the distance values d tended towards
minima in the vicinity of the true tilt correction. While all strategies were capable of finding
a good approximation of the true tilt up to the chosen resolution and discretization, the
two heuristic search strategies did so with substantially fewer steps, i.e., evaluations of the
warping objective. This, however, is investigated in more detail in the runtime analysis
presented in the following section. As already inferred from the previous performance
summary, the differences between the tilt-correction approximations on the objective
function were minuscule and only caused a slight broadening of the valley surrounding
the minimum. While this might lead to small deviations of the tilt-parameter estimate,
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it probably did not result in an increase of severe errors such as shifting the minimum
to another quadrant. This indicated the warping objective to be rather robust against
approximations of the tilt correction. While there were some local minima, they were
not as pronounced as the global minimum. With a systematic—though not necessarily
continuous—decrease towards the minimum, the warping objective was well suited for the
application of heuristic search strategies such as the proposed pattern and Nelder–Mead
search strategies.

Figure 28. Visualization of the Nelder–Mead search strategy sen. As a reference, the exhaustive
search heatmap of the een strategy (see Figure 26 for information on the selected image pair) is
plotted as the background. The green cross marks the location of the ground truth tilt parameters, i.e.,
the expected minimum. At each step, the state of the search simplex is visualized as a red triangle
connecting the test points. At the final step, the red-blue filled circle marks the minimum found by
the search procedure. After only three update steps, the minimum already lies inside the simplex. In
total, only eight update steps corresponding to 13 warping evaluations are necessary to find a good
approximation of the tilt correction—this is in contrast with the 225 evaluations of the exhaustive
search grid. Note that most of the update steps were contractions, requiring two evaluations of the
warping objective. However, in steps 2, 4, and 6 the reflected point, which was computed before
the contraction, would be outside of the search range causing the warping evaluation to be skipped,
reducing the number of evaluations to one. According to Table 11, this actually represents a slightly
better-than-average performance with respect to the median number of evaluations of 15 (and a mean
number of 30), if tilt is present.
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4.5. Runtime Performance

To assess the practical usefulness of the proposed methods, a runtime analysis of the
implementation was conducted. This was done by measuring the execution time per snap-
shot/current view image pair at different points of the process, i.e., including/excluding
the search process. For the three tilt-correction search strategies, the number of warping
invocations necessary to find the optimum was counted, as this was expected to be the
dominating factor influencing the total runtime. All algorithms were implemented us-
ing C++ within the framework of WarpingSIMD [23,24]. The experiments were compiled
with optimizations enabled and executed on an Intel(R) Core(TM) i9-10980XE CPU @
3.00GHz using AVX-512 for warping and most image operations. Multithreading was only
used to parallelize experiment instances, not the algorithms itself.

Before investigating the runtime of a tilt-correction search in combination with warp-
ing, Table 9 shows the standalone runtimes of the tilt-correction and interpolation methods,
when applying a ground-truth tilt correction.

Table 9. Average runtime of the tilt-correction methods in milliseconds. Both the mean and the
median are reported, but they only show small differences, indicating only slight variation or outliers.
The average runtimes were pooled over all datasets as there was no dependence on the content of
the images to be expected; the determining factors for the runtime were the choice of method and
the size of the image, i.e., the number of pixels to transform, which was the same for all datasets.
Note, however, that these were runtimes for single tilt correction runs and there might be significant
speed-ups when doing repeated tilt corrections within the same run of the test program; see Table 10
for a comparison of this effect in the case of the warping algorithm.

Mean Median

en 3.41 3.36
el 4.24 4.15
an 1.03 0.99
al 1.81 1.76
vn 0.32 0.31
vl 0.72 0.71

The nearest-neighbor interpolation was much faster: in the case of the vertical ap-
proximation, up to two times as fast as the linear interpolation. This was expected, as the
linear interpolation required four source image pixels surrounding the target pixel and
some arithmetic (including multiplications) to compute a weighted sum of these values,
while the nearest-neighbor interpolation required only a rounding of the pixel coordinates
for copying one pixel of the source image. As expected, the stronger the approximation,
the faster the image transformations were computed. This was achieved by reducing
the number of trigonometric operations and multiplications, which contributed the most
significant speedup: the approximate solution was about three times faster compared to
the exact solution with a nearest-neighbor interpolation. Furthermore, the vertical solution
allowed the computations to be reduced to one per image column instead of one per pixel.
This contributed another speedup factor of roughly two to three, going from approximate
to vertical (with the interpolation kept constant). Going from the most accurate solution
with the linear interpolation el to the most simplified with the nearest-neighbor interpo-
lation vn, these approximations, in total, yielded a speedup factor of about 13. However,
with runtimes ranging between 4 ms and 0.3 ms, all tilt corrections operated an order of
magnitude faster than the warping algorithm with runtimes of about 23 ms to 28 ms, as
shown in Table 10. Thus, the runtimes of the tilt correction search methods were definitely
dominated by the runtime of warping: saving a single warping evaluation was worth
between 5 and 76 tilt corrections, depending on the chosen approximation.
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Table 10. Comparison of the average raw warping runtime per snapshot/current view pair in
milliseconds when doing only a single vs. repeated executions of the algorithm within the same run
of the test program. These are average runtimes pooled over all experiments, i.e., Single summarizes
the n-- and t** methods while Repeated summarizes all search strategies e**, p**, and s**. There
is a noticeable speed-up of about 4 ms when doing repeated warping runs, which is probably due to
cache or branch-prediction influences only effective after multiple passes through the same portion
of code or image data. This effect needs to be considered when comparing the runtimes of the search
strategies which rely on repeated warping runs to those doing only a single warping run, i.e., the t**
methods.

Single Repeated
Mean Median Mean Median

27.2 27.7 23.7 23.0

Furthermore, thorough measurements of these warping runtimes revealed noticeable
variations of the warping runtime of about 4 ms (which was on the order of magnitude of
the tilt corrections), when doing repeated evaluations of the algorithm within the same run
of the test program. This effect, probably due to caching and branch-prediction speed-ups,
needed to be considered when comparing tilt-correction schemes with different numbers
of warping evaluations in the following.

Tables 11 and 12 list the average runtimes off all method combinations and the over-
all speed-ups which could be achieved when using one of the heuristic search strategies
instead of the exhaustive search, respectively. The results were pooled over datasets con-
taining tilt (DxD and NxD) and those containing no tilt (NxN) from both databases, as there
should be noticeable differences between these situations for the heuristic search strategies:
the heuristic search strategies should be able to converge more quickly towards a no-tilt
configuration, which lay in the center of the initial search pattern. This could indeed be
observed, for both the pattern and Nelder–Mead search strategies. For both, the runtime
and the warping count, the mean as well as the median were reported and generally ex-
pected to be rather similar, i.e., reflecting uniformly or even normally distributed runtimes.
This was due to the runtime of most of the components being determined by the size of
the images and number of parameters to be probed and not by some particularities of
individual image pairs.

However, in the case of the heuristic search strategies, the number of warping evalua-
tions actually became variable, depending on how well the search converged towards the
minimum. This number then might actually depend on particularities such as the location
of the minimum or the smoothness of the objective function values produced by warping.
In these cases, the differences between mean and median might actually yield some inter-
esting insights regarding the behavior of the search strategies: for the pattern search, there
were almost no differences between the mean and median runtime as well as warping
counts. Thus, the pattern search probably behaved consistently across all samples from the
test dataset and seemed to be rather robust against outliers and difficult/extreme situations
such as strong tilt or noisy warping objectives. The Nelder–Mead search on the other hand
showed huge differences between the mean and median runtime, which were also reflected
in the warping counts. The mean runtime of the Nelder–Mead search was almost twice as
big as the median and there were more then twice as many warping evaluations necessary
in the mean than median. This indicated a skewed distribution of runtimes or warping
counts with at least half of the samples performing rather well—actually running faster
than the pattern search—and probably few samples with very long runtimes. These long
runtimes might even correspond to search processes failing to converge at all, running into
the hard implementation limit of 50 steps stopping the test program from running end-
lessly. This might have been caused by the rather difficult initialization of the three-point
search simplex covering a square search space in contrast to the almost trivial and effective
initialization of the five-point, symmetric search pattern.



Robotics 2023, 12, 20 38 of 48

Table 11. Average runtime in milliseconds and average count of warping runs per snapshot–current
view pair. The results are pooled by datasets containing tilt and containing no tilt. Both the mean
and the median are reported and are rather similar for most of the methods, i.e., not more than one
warping runtime apart. Only the Nelder–Mead search strategy shows a huge discrepancy between the
mean and median runtime, which is also reflected in the warping counts. The methods are grouped
by search strategy first and then arranged by tilt correction and interpolation method. In each group,
the best-performing methods per column, i.e., those with the smallest runtime, are highlighted in red.
Except for the Nelder–Mead strategy, the methods in each group behave consistently with *vn, i.e.,
the most optimized, being the fastest in general. The n--, t**, and e** methods have the count of
warping runs fixed by design, i.e., 225 is the size of the exhaustive search grid.

Time Count
Tilt No Tilt Tilt No Tilt

Mean Median Mean Median Mean Median Mean Median

n-- 27.5 28.1 27.3 27.9 1.0

ten 30.4 31.0 30.5 30.9

1.0

tel 31.3 31.9 31.6 31.9
tan 28.1 28.6 28.6 28.8
tal 28.9 29.5 29.2 29.7
tvn 27.8 28.3 27.5 28.3
tvl 28.5 29.1 29.0 29.2

een 5632.0 5573.5 5528.7 5484.4

225.0

eel 5773.6 5711.6 5672.9 5647.2
ean 5269.6 5217.5 5178.6 5142.6
eal 5401.9 5347.6 5291.4 5269.3
evn 5197.9 5147.0 5105.5 5072.7
evl 5311.1 5258.3 5215.1 5173.1

pen 486.3 477.4 376.9 364.9 18.1 17.0 14.1 13.0
pel 509.3 497.0 416.5 395.7 18.5 18.0 15.2 13.0
pan 453.3 444.7 356.0 345.1 18.0 17.0 14.2 13.0
pal 474.7 463.2 390.3 372.9 18.5 18.0 15.1 13.0
pvn 447.5 437.6 354.7 346.9 18.0 17.0 14.3 13.0
pvl 466.9 455.7 386.8 367.0 18.5 18.0 15.1 13.0

sen 794.3 409.2 531.5 367.0 30.3 15.0 19.9 13.0
sel 957.2 430.1 771.8 380.1 35.8 15.0 29.2 14.0
san 777.8 384.5 591.6 342.4 31.8 15.0 24.3 14.0
sal 910.2 403.7 739.5 361.6 36.4 15.0 29.9 14.0
svn 873.5 387.9 618.5 338.1 36.6 15.0 26.1 14.0
svl 923.3 401.5 675.3 343.5 37.6 15.0 27.6 13.0

Relating the average number of warping evaluations to the total runtime and the
known runtime of a single warping run (see Table 10) confirmed the expectation of the
number of warping evaluations being the determining factor of the total runtime with
approximation and interpolation being only secondary factors almost not affecting the
warping count at all. To summarize, a speed-up of 6 to 17 could be expected by switching
from an exhaustive search to one of the heuristic strategies, placing the runtime at a few
hundred milliseconds instead of the more than five seconds of the exhaustive strategies.
While these were clearly impressive numbers, a thorough analysis of the trade-offs between
runtime and homing performance as well as tilt-correction performance was necessary to
decide which methods were indeed viable improvements and which just lost too much
navigation performance for too little runtime gains. This trade-off analysis is presented in
Figures 29 and 30, separately for the two databases, as the viability of a method might actu-
ally depend on the difficulty of the environment or the amount of tilt under consideration.
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Figure 29. Runtime vs. home-direction error of all tilt-correction search method variants pooled
over all datasets per LAB/LIV database. Both metrics are summarized using the median, which
in case of the home direction is definitely the better measure as discussed in Figure 25. For the
runtime, the simplex strategies show a difference between median and mean. According to the
latter, the simplex strategies would be placed slightly behind the pattern search in terms of runtime.
However, the median was chosen for the runtime as well, to treat both metrics consistently. In terms of
runtime, there is not much difference between the two databases, and the difference in home-direction
errors probably stems from the increased range of tilt and the more difficult environment of the
LIV database. The methods form two broad clusters: the fast but more error-prone heuristic search
strategies clustering around 400 ms and the slow but precise exhaustive search between 5 s to 6 s. The
effects of the choice of the tilt-correction method are subordinate and the interpolation is behaving
rather inconsistently between the two databases.
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Figure 30. Runtime vs. tilt-correction error of all tilt-correction search method variants pooled per
database. Similar to Figure 29, both metrics are summarized using the median instead of the mean.
Again, the different error ranges between the databases probably stem from the increased range of tilt
and the more difficult environment of the LIV database. Similar to the homing performance, the meth-
ods form the two clusters of heuristic and exhaustive search strategies with the tilt-correction methods
being the secondary effect and the effect of the interpolation switching between the two databases.
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Table 12. Relative speed-ups of the search strategies compared to the slowest strategy, i.e., the
exhaustive search. For each strategy, the runtime of the fastest method from its group per column of
Table 11 is related to the runtime of the fastest exhaustive search e** in that column. The n-- and
t** strategies are not reported as they do not search for the tilt correction and thus are necessarily
much faster (about 180 times). As already observed in the raw runtimes, the mean speed-up of the
Nelder–Mead search is surprisingly low compared to its median and to the pattern search according
to both metrics.

Time Count
Tilt No Tilt Tilt No Tilt

Mean Median Mean Median Mean Median Mean Median

e** 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
p** 11.6 11.8 14.4 14.7 12.5 13.2 16.0 17.3
s** 6.7 13.4 9.6 15.0 7.4 15.0 11.3 17.3

5. Discussion

The results showed that all proposed methods—using different solutions for trans-
forming panoramic images according to tilt as well as different search strategies—were
indeed capable of vastly improving the homing performance of warping and simulta-
neously estimating the tilt of the camera. As expected, the homing performance of the
original warping method, which was derived under the assumption of a robot moving
on flat ground, was already severely impaired by small deviations; 11°, the maximum tilt
angle contained in the test databases, is actually a small value in outdoor environments.
The proposed tilt-correction scheme followed the same general idea as the warping method
itself: formulate the transformation, i.e., warping, of the panoramic image according to
hypothetical movement parameters and then do a systematic search through the set of
potential parameters by optimizing a criterion based on an image distance measure. As
warping already computes such a distance measure, it seemed natural to simply reuse
it by wrapping the warping algorithm in additional search loops covering the two new
tilt parameters.

5.1. Runtime Cost and Search Strategies

While an exhaustive search through the original warping parameters and the tilt
parameters proved to be successful, the naive approach of doing an exhaustive search
over the tilt parameters, wrapping the already exhaustive search of the warping algorithm,
comes at a huge runtime cost. Doing an exhaustive search, the total computation time
for a single home direction estimate, i.e., a single snapshot–current view image pair, was
about 5 s on the hardware used for the experiments, which is rather impractical for any real
application (In particular when considering the processor used for the experiments, which
was a workstation processor and thus rather uncommon for the intended embedded or
robotics setting). This runtime is the accumulated warping runtime which, in case of the
exhaustive search, scales quadratically with the desired estimation quality. However, as the
image distance measure provided by warping showed to be well-behaved enough (see below)
to consider the application of direct and heuristic search strategies, it is possible to bring the
runtime down to a more practical few hundred milliseconds at the cost of estimation quality
by using the implemented pattern search and Nelder–Mead strategies. These generally find
a good estimate of the tilt parameters, as well as the warp parameters, while only requiring
a fraction of the warping evaluations compared to the exhaustive search. Here, well-behaved
means the image distance varies systematically and almost smoothly depending on the
tilt with a global minimum near the true tilt configuration surrounded by a wide and
pronounced valley without too many distracting local minima. This good behavior of the
optimization criterion motivates us to look into other direct and heuristic search strategies
to further reduce the number of warping evaluations. In particular, strategies based on
randomized test points surrounding the candidate solution, for example the Luus–Jaakola
heuristic search [25], seem to be promising since they are simple and require only a single
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test point per iteration (though the number of iterations required needs to be explored).
Furthermore, it might even be possible to apply gradient-based optimization schemes if
warping can either be formulated to be differentiable with respect to the tilt parameters, or
it is at least possible to numerically estimate the gradient of the image distance from only a
few warping runs, i.e., test points.

5.2. Mitigating the Runtime Costs

As the runtime was clearly dominated by the search process and in particular by
the runtime of the warping-based optimization criterion, future research should focus on
these aspects first, before looking at the more nuanced details of the tilt-correcting image
transformations or thinking about extensions to even more movement parameters. The
approaches for tackling the runtime problem of the proposed tilt-correction scheme fall
into three broad categories: search and initialization strategies, reduction of the warping
runtime, or alternatives to the warping-based optimization criterion.

5.2.1. Search and Initialization Strategies

First, as already mentioned, other heuristic search strategies might reduce the number
of warping evaluations necessary to find the optimum or at least reduce the complexity
of the overall search process. In this context, the initialization of the heuristic search
patterns, which was more or less disregarded here by using reasonable defaults derived
from the exhaustive search grid, is definitely worth more investigations. Though not further
examined here, the noticeable difference between the mean and median runtime of the
Nelder–Mead strategy can probably be attributed to the more difficult initialization of the
three-point search simplex compared to the five-point pattern of the pattern search. These
initialization difficulties need to be sorted out to make the Nelder–Mead strategy viable
in general. Alternatively, future research should focus either on heuristic strategies with
symmetric search patterns, as in the five-point pattern search, or those without any special
initialization, such as the already mentioned, randomized Luus–Jaakola heuristic search.

5.2.2. Reduction of the Warping Runtime

The second approach to the runtime problem involves reducing the runtime of the
warping-based optimization criterion. This can be achieved by reducing the size of the
images or the resolution of the warp parameter space, which is searched exhaustively by
warping. While this will definitely impair the homing performance, it could still allow for
a sufficiently good estimation of the tilt at reduced runtime costs. Employing a coarse-to-
fine strategy, it might then be possible to refine this initial estimate of the tilt and warp
parameters by only a few additional (costly) evaluations using the full size and resolution
on a small and constrained tilt parameter range. When using such a coarse-to-fine scheme,
it might also be possible to combine different search strategies throughout different levels
of coarseness; for example, a coarse exhaustive search followed by a fine heuristic (e.g.,
pattern) search or vice versa.

Another approach to reduce the overall time spent evaluating the warping objective
is to simply run multiple warping instances in parallel, e.g., evaluate all five points of
the pattern search at once using multithreading. In this way, the total runtime could be
sped up roughly by the number of processor cores available. This however, requires a
target platform which actually provides multiple processor cores or at least some form
of simultaneous multithreading, which in the context of resource-restricted embedded or
robotics platforms is not necessarily the case.

5.2.3. Alternative Optimization Criteria

Finally, the third approach is to get rid of the warping-based objective altogether,
i.e., just remove the costliest operation. While this obviously does not allow to estimate
the home direction simultaneously and thus would require a single, additional warping
evaluation afterwards, finding a faster way to compute an image distance measure or



Robotics 2023, 12, 20 43 of 48

at least some rough estimate thereof has the potential to significantly speed up the tilt
estimation. However, such a distance measure probably requires the images to be aligned
first using some external compass, which in the case of warping is already part of the
method itself.

One idea avoiding an additional compass is to still utilize the first phase of warping,
i.e., the columnwise distance image which can be computed efficiently in just a fraction of
the total warping runtime. These distance images should show an increased number of
matching image columns if they are brought into alignment by tilt correction first. If it is
somehow possible to uncover the number of these matches using only simple operations,
e.g., some statistics over the distance values, this could serve as an estimator for the image
matching without requiring the full search through the warp parameters. Using the tilt
correction implemented within the warping framework and the two newly collected image
databases, it should now be possible to systematically produce enough sample distance
images under varying tilt to experimentally search for such an estimator.

5.3. Approximations of Tilt-Correction Solutions

Regarding the proposed approximations (and the chosen interpolation method as well)
of the tilt-correction solutions of panoramic images, the results were rather inconclusive.
While the trade-off between the runtime and the correction quality was clearly evident
and behaved as expected, the runtime was at least an order of magnitude below that of
the dominating warping runtime. Thus, even the accumulated runtime of multiple tilt
corrections was still almost negligible relative to the whole search process. That means
that before figuring out a faster optimization scheme as discussed before, there is no point
in considering the runtime gains by approximating the tilt correction. Only in the case of
known tilt-correction parameters, for example measured by an inertial measurement unit,
when only a single warping evaluation is done, might a more inaccurate solution yield a
considerable runtime improvement.

If the revision of the optimization scheme based on statistics over the distance images
of the first warping phase proposed earlier succeeds, the runtime of this estimator should
be on the same order of magnitude as the tilt correction. At that point the runtime–quality
trade-off will indeed become an important factor to consider. In that case, the approximate
solutions an and al are probably the most reasonable compromise as the homing and
tilt-correction performance was very similar to the more costly exact solution and thus
the runtime improvement by a factor of about three (counting only the runtime per image
transformation) was almost free in terms of cost of estimation quality. The vertical solution,
i.e., the strongest approximation, performed noticeably worse compared to the other
solutions and thus cannot be recommended as a runtime-saving alternative at the moment.
This is somewhat unfortunate, as the simplicity of handling the tilt only within the same
image column opens up a lot of possibilities for optimizing the implementation in terms
of computation as well as memory efficiency; for example, instead of computing two new
indices per pixel, only one offset per image column is required. This is not just much faster
to compute (as proven by the results) but also small enough to consider precomputing
an offset table for all possible tilt configurations. However, as long as the homing and
tilt-correction performance of the vertical solution cannot be improved—and this might
actually be an inherent limitation of neglecting the horizontal component of tilt—these
practical optimizations are not worth any effort.

5.4. Extension to More Difficult Scenarios

The proposed tilt-correction methods were derived under some simplifying assump-
tions: the tilt was assumed to be a small out-of-plane rotation of only one of the images, i.e.,
the snapshot always served as an absolute reference orientation and was assumed to be not
tilted. Thus, the methods should further be tested in situations where these assumptions are
violated. Of particular interest is an extension of the methods to handle both images tilted
relative to a third reference orientation. While it should be straightforward to simply feed
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tilted snapshot images into the existing implementation as well, deriving a tilt estimation
for both images is probably not as simple as it might seem: there is an infinite number of
solutions bringing two tilted planes back into correspondence. That means a reasonable
constraint is necessary to select one of these solutions. Furthermore, tilting a second image
requires the introduction of two additional tilt parameters, resulting in the search space of
the already impractically slow exhaustive search now growing to the fourth power of the
search resolution. Thus, the extension to a two-image tilt can practically only be solved
by heuristic search strategies. Finally, it is not really clear how to estimate absolute tilt
parameters per image from such a relative tilt correction or whether this is even necessary
for a local navigation method.

An extension to large amounts of tilt, however, should already be doable with the
existing implementation: a large tilt merely invalidates the assumptions leading to the
approximate and vertical solution and thus should be handled by the exact solution. The
final limit on the range of tilt is then the vertical opening angle of the panoramic image,
which is related to the field of view of the camera/lens and the image cropping during
preprocessing. Exceeding this limit will result in tilting whole image columns out of sight
with only invalid pixels remaining at which point the column matching of the warping
algorithm probably starts to break down. However, testing these claims requires the
collection of additional databases, as the two introduced here comprise only small amounts
of tilt up to 11°. Furthermore, increasing the amount of tilt also requires increasing the tilt
parameter search range. If the estimation quality, i.e., the resolution of the search space
in case of the exhaustive search or the convergence threshold in the case of the pattern
and Nelder–Mead search strategies, is kept constant, this inevitably results in an increased
runtime as well.

6. Conclusions

Adding a tilt-correction phase to only one of the input images of warping leads
to vast improvements of the homing performance under moderate amounts of camera
tilt, as is typical for indoor environments. If the tilt parameters are known, for example
by measurements of an additional sensor, these improvements are almost free in terms
of runtime overhead, as the added runtime for a single image transformation is almost
negligible compared to the warping runtime. If no tilt parameters are known beforehand,
warping can be interpreted as an image distance measure and coupled to the tilt correction
via a search over hypothetical tilt parameters. This yields improvements of the homing
performance while at the same time providing good estimates of the relative tilt between
the snapshot and current view.

Thus, the warping framework can be extended to not only estimate the planar move-
ment parameters of the robot but also two additional parameters for a small out-of-plane
tilt, without the need for additional sensors or external image alignment. This is a first step
towards extending warping to a full pose estimation between two camera locations, which
additionally would include tilting the camera at both locations, larger amounts of tilt, and
possibly vertical translation out of the plane. As this extension comes at a huge runtime
cost, only the proposed heuristic search strategies for tilt correction, i.e., the pattern and
the Nelder–Mead search strategies, can be recommended for practical application in visual
robot navigation. These are about 10 times faster compared to the exhaustive search at only
moderate trade-offs in terms of homing performance and tilt estimation. The prohibitively
slow exhaustive strategy, however, will remain relevant in more theoretical considerations,
for example when further analyzing the systematic variations of the warping objective with
respect to the tilt parameters.

To the best of our knowledge, this is the second approach to handle tilt in a warping-
based holistic homing method. Compared with the previous approach described in [11], we
directly used the input images instead of performing computations in the frequency domain
by wrapping the already established warping method MinWarping. However, in [11], a
more general solution was proposed for arbitrary 3D movements. Though it is conceivable
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to extend our method to this more general case as well, this is currently limited by the
almost prohibitively huge runtime cost of the parameter search, as discussed previously.
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Appendix A. Derivations

Appendix A.1. Conversion between Axis-Angle and Roll-Pitch Representations

As described by Equation (1), the roll-pitch representation can be expressed by the
composition of the two basic rotation matrices about the X- and Y-axis. To construct a
conversion to the axis-angle representation, it is necessary to express this in terms of rotation
matrices as well. As described by Equation (2), the axis-angle representation expresses the
tilt as a rotation of ϕ about an axis which is described relative to the X-axis by rotating ΘR
about the Z-axis. A third parameter, Θ′R, is introduced to guarantee the existence of exact
solutions—this can be interpreted as reverting the effect of the first Z-axis rotation, as the
tilt is assumed to introduce no change in the view direction of the robot:

RX(δX)RY(δY)
!
= RZ(ΘR)RX(ϕ)RZ

(
Θ′R
)

This matrix equation can be solved by matching suitable sets of entries with only one of the
axis-angle parameters appearing on the right-hand side: cδY 0 sδY

sδX sδY cδX −sδX cδY
−cδX sδY sδX cδX cδY

 =

cΘR cΘ′R
− sΘR cϕsΘ′R

−cΘR sΘ′R
− sΘR cϕcΘ′R

sΘR sϕ

sΘR cΘ′R
+ cΘR cϕsΘ′R

−sΘR sΘ′R
+ cΘR cϕcΘ′R

−cΘR sϕ

sϕsΘ′R
sϕcΘ′R

cϕ


Assuming the tilt angle ϕ to be positive and small (allowing us to eliminate sϕ), the solutions
for ΘR, ϕ, and Θ′R can be obtained from the entries at [1, 3]/[2, 3], [3, 3], and [3, 1]/[3, 2]:

ΘR = atan2(sin(δY), sin(δX) cos(δY)) (A1)

ϕ = arccos(cos(δX) cos(δY)) (A2)

Θ′R = atan2(− cos(δX) sin(δY), sin(δX)) (A3)

http://www.ti.uni-bielefeld.de/html/people/ahoffmann/tiltdb.html
http://www.ti.uni-bielefeld.de/html/people/moeller/tsimd_warpingsimd.html
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By assuming only small tilt angles δX and δY, Equations (A1) and (A3) can be simplified,
and it is possible to express Θ′R in terms of ΘR getting rid of the additional parameter:

ΘR ≈ atan2(δY, δX) (A4)

Θ′R ≈ atan2(−δY, δX) ≈ −ΘR (A5)

Thus, the axis-angle representation can be seen as an X-axis rotation undergoing a similarity
transform to align the coordinate system with the tilt axis:

Axis-Angle =̂ RZ(ΘR)RX(ϕ)RZ(ΘR)
−1 ≈ RX(δX)RY(δY) (A6)

Conversions from axis-angle to roll-pitch representation can be obtained from the entries at
[2, 3]/[3, 3] and [1, 3], again assuming the previous small angle approximations:

δX = atan2(cos(ΘR) sin(ϕ), cos(ϕ)) ≈ ϕ cos(ΘR) (A7)

δY = arcsin(sin(ΘR) sin(ϕ)) ≈ ϕ sin(ΘR) (A8)

Appendix A.2. Adaptation of Tilt Parameters under Rotation

Starting from a representation X − Y− Z where a tilt (δX, δY) is applied first before
rotating the image by δR about the tilted Z-axis, a parametrization (δ′R, δ∗X , δ∗Y) describing
the same tilt configuration where the robot tilts in the already-rotated coordinate frame is
sought. Note that the order of the tilt axes is kept the same, treating the tilt as the same
atomic operation according to the introduced roll-pitch representation:

RX(δX)RY(δY)RZ(δR)
!
= RZ

(
δ′R
)
RX(δ

∗
X)RY(δ

∗
Y)

This matrix equation can be solved by matching suitable sets of entries with only one of the
adapted parameters appearing on the right-hand side: cδY cδR −cδY sδR sδY

sδX sδY cδR + cδX sδR −sδX sδY sδR + cδX cδR −sδX cδY
−cδX sδY cδR + sδX sδR cδX sδY sδR + sδX cδR cδX cδY


=cδ′R

cδ∗Y
− sδ′R

sδ∗X
sδ∗Y

−sδ′R
cδ∗X

cδ′R
sδ∗Y

+ sδ′R
sδ∗X

cδ∗Y
sδ′R

cδ∗Y
+ cδ′R

sδ∗X
sδ∗Y

cδ′R
cδ∗X

sδ′R
sδ∗Y
− cδ′R

sδ∗X
cδ∗Y

−cδ∗X
sδ∗Y

sδ∗X
cδ∗X

cδ∗Y


Assuming the magnitude of all tilt angles to be smaller than π/2 (to allow the elimination of
the corresponding cosine within the atan2), the solutions for the tilt parameters δ∗X , δ∗Y, and
the rotation δ′R can be obtained from the entries at [3, 2]/[3, 3], [3, 1]/[3, 3], and [1, 2]/[2, 2]:

δ∗X = atan2(cos(δX) sin(δY) sin(δR) + sin(δX) cos(δR), cos(δX) cos(δY)/cos(δ∗Y)) (A9)

δ∗Y = atan2(cos(δX) sin(δY) cos(δR)− sin(δX) sin(δR), cos(δX) cos(δY)) (A10)

δ′R = atan2(cos(δY) sin(δR),− sin(δX) sin(δY) sin(δR) + cos(δX) cos(δR)) (A11)
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By assuming only small tilt angles δX and δY, Equations (A9)–(A11) can be simplified, and
it is possible to express δ′R in terms of δR by getting rid of the additional parameter:

δ∗X ≈ δX cos(δR) + δY sin(δR) (A12)

δ∗Y ≈ −δX sin(δR) + δY cos(δR) (A13)

δ′R ≈ −δR (A14)

These two approximations for the adapted tilt parameters correspond to a two-dimensional
rotation of −δR within the X-Y plane, and the rotation approximately acts as a similarity
transformation on the original tilt matrix in the roll-pitch representation:

RX(δ
∗
X)RY(δ

∗
Y) ≈ RZ(−δR)RX(δX)RY(δY)RZ(δR) (A15)

(
δ∗X
δ∗Y

)
≈
[

cos δR sin δR
− sin δR cos δR

](
δX
δY

)
(A16)
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