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Abstract: The present work proposes the use of a hybrid controller combining concepts of a PID
controller with LQR and a feedforward gain to control the positioning of a 2 DOF robotic arm
with flexible joints subject to non-ideal excitations. To characterize the performance of the controls,
two cases were studied. The first case considered the positioning control of the two links in fixed
positions, while the second case considered the situation in which the second link is in rotational
movement and the first one stays in a fixed position, representing a system with a non-ideal excitation
source. In addition to the second case, the sensitivity of the proposed controls for changes in the
length and mass of the second link in the rotational movement was analyzed. The results of the
simulations showed the effectiveness of the controls, demonstrating that the PID control combined
with feedforward gain provides the lowest error for both cases studied; however, it is sensitive
to variations in the mass of the second link, in the case of rotational movements. The numerical
results also revealed the effectiveness of the PD control obtained by LQR, presenting results similar
to the PID control combined with feedforward gain, demonstrating the importance of the optimal
control design.

Keywords: non-ideal systems; feedforward control; PID control; LQR control; robotic manipulators

1. Introduction

Robotic arms can be considered anthropomorphic robotic devices, due to their sim-
ilarity with the human arm. They are formed of rigid links interconnected by joints and
intended to function like a human arm, but with greater resistance and payload capacity.
Such devices have been applied since their development to replace human work in carrying
out dangerous activities in inaccessible places and in cases where repetitive tasks need to
be performed during a certain period [1,2].

The trend is that, in the future, the use of robots as a workforce will grow, not only
in industrial environments but also in other sectors of society. Industrial applications of
robotic manipulators comprehend painting, welding, assembly, and precise positioning,
among other skills. The applications in areas other than the industrial environment include
underwater exploration, medical applications, such as assisted surgery, handling radioac-
tive materials, and those with a risk of biological contamination, in the aerospace area, just
to name a few [3,4].

Robotic manipulators are mechanical systems programmed to manipulate objects in a
given space, obeying performance criteria and with a high degree of autonomy. However,
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the control of these devices is a challenging task, as they are non-linear, complex, and highly
coupled dynamic systems.

Considering the non-linear and complex couplings inherent in robotic manipulators,
Saleem et al. [5] proposed a new design of a linear quadratic integral regulator (LQIR)
of complex fractional order (CFO), aiming to increase the robustness of inverted pendu-
lum robotic mechanisms against limited exogenous perturbations. Experimental results
demonstrated the described control’s effectiveness (CFO-LQIR) compared to their integer
and fractional order counterparts. In Ali et al. [6], a robust control algorithm with an
integral sliding mode control (ISMC) was suggested for a robotic arm with five degrees
of freedom (DOF). The proposed nonlinear control considered friction compensation us-
ing the LuGre model. Numerical simulations using the Matlab/Simulink environment
and experimental results on an autonomous articulated robot, developed internally on an
educational platform (AUTAREP) and NI myRIO hardware interfaced with Lab-VIEW,
were presented to demonstrate the effectiveness of the proposed control in trajectory track-
ing. Ali et al. [7] described a control algorithm in their work, combining the fast integral
sliding mode control (FIT-SMC), with a robust exact differentiator observer (RED) and an
estimator based on a feedforward neural network (FFNN). Numerical simulations for a
robotic manipulator with 5 degrees of release, including joint friction modeled by LuGre
friction, were presented. The numerical results demonstrated the efficacy of the control
proposed by the authors for the robotic system with friction compensation and with an
overshoot and a stabilization time of less than 1.5% and 0.2950 s, respectively, for all joints
of the robotic manipulator considered. In Asghar et al. [8] the control techniques of a linear
quadratic regulator (LQR) and proportional integral (PI) and integral (I) were analyzed
and compared, for the positioning control of a serial robotic manipulator with 4 DOF.
Numerical results were presented for comparison. In Rezoug et al. [9], a non-singular ter-
minal sliding mode controller was proposed using an optimization technique with a hybrid
metaheuristic method, for a robotic manipulator with 3 DOF. Numerical simulations were
presented, demonstrating the effectiveness of the proposed control in tracking trajectories
in the presence of disturbances and control uncertainties.

The case of robotic manipulators with 2 DOF degrees of freedom is a classic control
problem, and, due to the widespread use of this type of robot in an industrial environment,
this class is the subject of much research in the field of control and robotics. Over the years,
many control strategies have been developed to control these devices and are reported in
the literature and practical applications [10–12].

In their study, Zakia et al. [13] present a combination of sliding mode control (SMC)
and PID control. Since PID control adjusts for system errors, SMC control ensures fast
convergence. This hybrid controller provides greater system stability and the simulation
results showed that the SMC–PID controller performed well in controlling the trajectory of
the robotic arm.

In the work by Van et al. [14] a controller based on a fuzzy PID control and self-tuning
SMC, and a time delay estimate (TDE) was proposed. Based on the results obtained, the
authors state that, with fuzzy logic, the PID controller gains are effectively selected and
that the integration of the TDE helps to eliminate prior knowledge of the exact dynamics of
the system, in addition to reducing the computational load.

In studies by Rad et al. [15] and Yang et al. [16], adaptive control was used for robotic
manipulators. In both studies, simulation results showed that the proposed controllers
performed well, in addition to advantages such as lower sampling rate and tracking control
with high precision and robustness.

In Korayem et al. [17–20] the non-linear controller SDRE (state-dependent Riccati
equation) was applied to control a robotic manipulator with flexible joints. The simulation
results showed that the SDRE method is suitable for solving ideal closed-loop nonlinear
control problems, and, when comparing the method with the LQR controller, the SDRE
controller presented a better performance.
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In Lima et al. [21] a feedback control was obtained through the SDRE method (state-
dependent Riccati equation) to reduce the vibration of the flexible link of a robotic ma-
nipulator. The simulation results showed that the proposed controller was more efficient
for controlling vibrations when compared to the control provided only by the motors.
Lima et al. [22] designed and analyzed a robotic arm with two degrees of freedom with
flexible joints driven by a direct current motor (DC motor). To ease movement difficulties,
magnetorheological dampers (MR damper) were attached to the links of the arm to provide
a way to adjust the mechanical limitations of the arm. To control the positioning of the
manipulator and the torque applied to the MR damper, a feedback control was developed
through the state-dependent Riccati equation (SDRE). The simulation results demonstrated
that the combined use of a DC motor and an MR damper was effective in controlling the
position and behavior of the manipulator’s flexible joints. In Lima et al. [23,24], SDRE con-
trol was designed for a robotic manipulator with two degrees of freedom and a non-ideal
excitation source. In addition to the control design, an MR brake has been included in the
jousting. Numerical simulations demonstrated the efficiency of the studied control.

When interactions occur between dynamic systems, whether mechanical or not, os-
cillatory responses are produced. This kind of phenomenon has been comprehensively
studied in the literature on systems with ideal excitation, in which the energy source is
unlimited and depends only on the time. In the case of systems with nonideal sources
(NIS), there is a dependency on the properties of the excitation source, whose energy is
limited. This system has a source of linear excitation when the coupling of the equations
does not have linear terms.

Although theories about dynamic systems are constantly studied, and advances have
been obtained with each research, some phenomena related to nonlinear systems still do
not have a complete explanation. In this way, there is no justification for disregarding the
energy exchange between the excitation source and the system, reducing the complexity
of the physical model, and impacting the dynamics of the entire system by not observing
aspects that will influence the practical application of control strategies or analysis of
the system.

According to the work by Tusset et al. [25], the interaction dynamics of a NIS coupling
to a frame structure result in the existence of chaotic behavior from the excitation of the
non-ideal energy source.

Figure 1 shows an example of a robotic manipulator with a non-ideal source of
excitation, which will be considered in this work, represented by the use of a cutting tool
attached to the end of the manipulator’s link.
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Figure 1a shows a robotic manipulator with a link and a cutting tool at its end, 
representing a robotic system with a non-linear excitation source. 

Figure 1. (a) Example of a robotic manipulator with a non-ideal excitation source. (b) Representation
of the non-ideal system using a DC motor with an unbalanced mass.

Figure 1a shows a robotic manipulator with a link and a cutting tool at its end,
representing a robotic system with a non-linear excitation source.

In Figure 1b we can see a representation of Figure 1a, in which the excitation source
is composed of a DC motor and an unbalanced mass coupled to the motor shaft. For
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numerical simulations, the unbalanced mass will be considered as the second link of the
robotic manipulator in rotational motion.

Considering Figure 1, this paper aims to contribute to the body of knowledge regarding
the positioning control and dynamic behavior of a robotic manipulator with two degrees of
freedom driven by DC electric motors, considering flexible joints and a non-ideal excitation
source. As its main contribution, the paper presents the problem of controlling a manip-
ulator submitted to a nonlinear excitation, investigating, through numerical simulations,
the behavior of three different control strategies, including the feedforward control and
the optimized PD control. The formulation of the feedforward control is demonstrated
and the effectiveness of the proposed controls is presented by the analysis of the errors
through the integral of the absolute magnitude of the error (IAE). This paper is organized as
follows: Section 2 introduces the mathematical model used. In Section 3, the control design
is described. In Section 4, numerical simulations are detailed considering the position
control of the two links at fixed points (Case 1), and the control of the first link at a fixed
point and the second in rotational movement, simulating the nonideal excitation source
(Case 2). In Section 5 the percentage of positioning error reduction, and the integral of
the absolute magnitude of the error (IAE) are presented, for the three proposed controls.
Finally, the article is completed in Section 6.

2. Mathematical Model

Aiming to model the robotic manipulator as close as possible to the real physical
model, the flexibility or elasticity of the material present in the structure of the materials
was considered in the modeling, parameters that are often disregarded [26,27].

The schematic diagram shown in Figure 2 demonstrates the transmission with flexible
joints between the DC motor and the links of a manipulator with 2 DOF.
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Where θ1 represents the angle of the first link, θ2 represents the angle of the second
link, θ3 is the shaft angle of the first motor, θ4 is the shaft angle of the second motor, L1 is
the length of the first link, L2 is the length of the second link, M1 is the mass of the first link,
M2 is the mass of the second link, bs1 is the first joint damping factor, bs2 is the second joint
damping factor, ks1 is the first joint spring factor, ks2 is the second joint spring factor, JM1 is
the moment of inertia of the first rotor, and JM2 is the moment of inertia of the second rotor.

For analysis and simulation, the modeling of a 2 DOF system with flexible joints was
considered. Taking into account the generalized coordinates of Figure 2 described by the
equations [19,22,24]:

px1 = L1 sin(θ1)
py1 = L1 cos(θ2)

px2 = L1 sin(θ1) + L2 sin(θ1 + θ2)
py2 = L1 cos(θ2) + L2 cos(θ1 + θ2)

(1)
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The equation that defines the kinetic energy of the system represented by Figure 2 is
given by [22,24]:

ξc =
1
2

(
M1

.
p2

x1
+ M1

.
p2

y1
+ M2

.
p2

x2
+ M2

.
p2

y2

)
(2)

The potential energy can be obtained through the equation [22,24]:

ξp = M1gL1 cos(θ1) + M2g(L1 cos(θ1) + L2 cos(θ1 + θ2)) (3)

From the energy balance we have the Lagrange equation [22,24]:

ξ = ξc − ξp (4)

Substituting Equations (2) and (3) in Equation (4) we have [22,24]:

ξ =
(

1
2 M1L2

1 +
1
2 M2L2

2 + M2L1L2 cos(θ2)
) .

θ
2
1 +

(
M2L2

2 + M2L1L2 cos(θ2)
) .
θ2

.
θ1 · · ·

· · ·+ 1
2 M2L2

2

.
θ

2
2 − M2gL2 cos(θ1)− M2gL2 cos(θ1 + θ2)− M1gL1 cos(θ1)

(5)

To obtain the mathematical model, the Euler-Lagrange equation was considered [24]:

d
dt

(
∂ξ

∂
.
θi

)
− ∂ξ

∂θi
= τi (6)

in which θi is the generalized coordinates, and τi is the torque. The torque equation is given by [24]:

τ1 =
(

M2L2
2 + 2M2L1L2 cos(θ2) + M1L2

1 + M2L2
1
) ..
θ +

(
M2L2

2 + M2L1L2 cos(θ2)
) ..
θ2 · · ·

· · · − M2L2L1 sin(θ2)
..
θ2 − 2M2L1L2 sin(θ2)

.
θ1

.
θ2 − M1gL1 sin(θ1)− M2gL1 sin(θ1) · · ·

· · · − M2gL2 sin(θ1 + θ2)− M2L2L1 sin(θ2)

τ2 =
(

M2L2
2 + M2L1L2 cos(θ2)

) ..
θ1 + M2L2

2

..
θ2 + M2L2

2

..
θ2 + M2L2L1 sin(θ2)

.
θ

2
1 · · ·

−M2LgL2 sin(θ1 + θ2)

(7)

Adding the Friction Matrix F(
.
θ) =

[ .
θ1

.
θ2

]
in the system of Equation (7) and orga-

nizing it in matrix form, we have the system [22,24]:

..
θ = M(θ)−1

(
−C(θ,

.
θ)

.
θ − F(

.
θ)− G(θ) + τ

)
(8)

where C(θ,
.
θ) =

[
c1 0
0 c2

]
, F(

.
θ) =

[ .
θ1.
θ2

]
, G(θ,

.
θ) =

[
g1
g2

]
, and M(θ)−1 =

[
p11 p12
p21 p22

]
.

The constant ka represents the coefficient of the friction of the manipulator, while the
coefficients of the matrices C(θ,

.
θ) e G(θ,

.
θ) can be determined by [22,24]:

c1 = −M2L1L2sen(θ2)
.
θ2

c2 = −2M2L1L2sen(θ2)(2
.
θ1 +

.
θ2)

g1 = −(M1 + M2)gL1sen(θ1)− M2gL2sen(θ1 + θ3)

g2 = −2M2L1L2sen(θ2)(2
.
θ1 +

.
θ2)

(9)

The variables that represent joints with elastic characteristics τs are given by [22,24]:

τs =

(
bs(

.
θM1 −

.
θ1) + ks(θM1 − θ1)

bs(
.
θM2 −

.
θ2) + ks(θM2 − θ2)

)
(10)
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The equation that represents the DC motor corresponds to [20,22,24]:

..
θM =

1
JM

(
kMi − bv

.
θM − τs

)
(11)

Considering Equations (7) and (11), the mathematical model of the robotic manipulator
can be written in state space form:

.
x1 = x2.
x2 = −p11ksx1 + αx2 − p12ksx3 + βx4 + p11ksx5 + p11bsx6 + p12ksx7 + p12bsx8 − p11g1 − p12g2.
x3 = x4.
x4 = −p21ksx1 + γx2 − p22ksx3 + δx4 + p21ksx5 + p21bsx6 + p22ksx7 + p22bsx8 − p21g1 − p22g2.
x5 = x6.
x6 = 1

Jm
(−ksx1 + bsx2 − ksx5 − (bv + bs)x6 + kti1)

.
x7 = x8.
x8 = 1

Jm
(−ksx3 + bsx4 − ksx7 − (bv + bs)x8 + kti2)

(12)

where x1 = θ1, x2 =
.
θ1, x3 = θ2, x4 =

.
θ2, x5 = θM1 , x6 =

.
θM1 , x7 = θM2 , x8 =

.
θM2 ,

α = −p11(ka + bs)− p12c2, β = p11c1 − p12(ka + bs), γ = −p21(ka + bs) − p22c2,
δ = −p22(ka + bs)− p21c1, p11 = −m22

−m12m21+m11m22
, p12 = −m21

−m12m21+m11m22
,

p21 = −m12
−m12m21+m11m22

, and p22 = −m11
−m12m21+m11m22

.

3. Proposed Control Law

The positioning control of the motor connections and the motor shaft is given by the
electric current (i). Introducing the control of the electric current in the System (12), we will
have the following system:

.
x1 = x2.
x2 = −p11ksx1 + αx2 − p12ksx3 + βx4 + p11ksx5 + p11bsx6 + p12ksx7 + p12bsx8 − p11g1 − p12g2.
x3 = x4.
x4 = −p21ksx1 + γx2 − p22ksx3 + δx4 + p21ksx5 + p21bsx6 + p22ksx7 + p22bsx8 − p21g1 − p22g2.
x5 = x6.
x6 = 1

J (−ksx1 + bsx2 − ksx5 − (bv + bs)x6 + ktU1)
.
x7 = x8.
x8 = 1

J (−ksx3 + bsx4 − ksx7 − (bv + bs)x8 + ktU2)

(13)

where Ui = ui + ũi, ui is the state feedback control, and ũi is the feedforward control, the
latter being composed of terms that depend on the gravitational force g in the following
form [15]:

ũ1 = p11g1 + p12g2
ũ2 = p21g1 + p22g2

(14)

In this paper, the state feedback control can be a PD control or a PID control. The
gains of control given by: Kp is the proportional gain, Kd is the derived gain, and Ki is the
corresponding integral gain of the control loop, respectively.

The errors are e1 = x̃1 − x1, e2 =
.
x̃1 −

.
x1, e3 = x̃3 − x3, e4 =

.
x̃3 −

.
x3, e5 = x̃5 − x5,

e6 =
.
x̃5 −

.
x5, e7 = x̃7 − x7 and e8 =

.
x̃7 −

.
x7, where x̃− represent the desired states for the

angular position of the links and the motor shaft.
The LQR control was used to determine the gains of Kp e Kd, which allows the design

of an optimal PD control.
K = R−1BTP (15)
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where Kp = ki,j for j = 1, 3, 5, 7 . . ., Kd = ki,j for j = 2, 4, 6, 8 . . ., and for a PD control: Ui.
The matrix P is obtained by solving the following Riccati equation:

ATP + PA − PBR−1BTP + Q = 0 (16)

The cost function for the control problem for optimal PD control is given by:

J =
1
2

∞∫
t0

(eTQe + uTRu)dt (17)

where Q and R are positive definite matrices.

4. Numerical Simulation

The proposed control technique has been simulated in MATLAB software (license:
MathWorks 1115175), considering the “ode45” integrator, with fixed-step integration
(h = 0.10). Numerical simulations considered two different cases for the efficiency analysis
of the proposed control. In the first case, the links were positioned at two fixed points. In
the second case, the first link was positioned at a fixed point, while the second link was in
kept rotational motion, representing an engine with unbalanced mass (non-ideal system).

The parameters used in numerical simulations are shown in Table 1:

Table 1. Parameters used in simulations.

Parameter Value Parameter Value

M1 1 [kg] ks 450 [Nm/rad]

M2 1 [kg] bs 510 [Nms/rad]

L1 0.8 [m] ka 6 [Nm/rad]

L2 0.8 [m] bv 0.02 [Nms/rad]

g 9.8 [m/s2] J 0.0002
[
kgm2

]
kt 0.8 [Nm/A] xi(0), i = 1:8 0

Considering the parameters in Table 1 and Equation (13) in matrix form
.
X = AX+BU,

we have the following matrices A and B:

A =



1 0 0 0 0 0 0 0
−kp11 α −kp12 β kp11 bs p11 kp12 bs p12

0 0 1 0 0 0 0 0
−kp21 γ −kp22 δ kp21 bs p21 kp22 bs p22

0 0 0 0 0 1 0 0
−k
J

bs
J 0 0 −k

J
−(bs+bv)

J 0 0
0 0 0 0 0 0 1 0
0 0 −k

J
bs
J 0 0 −k

J
−(bs+bv)

J


and B =



0 0
0 0
0 0
0 0
0 0
kt
J 0
0 0
0 kt

J


Defining the matrices Q and R:

Q =



109 0 0 0 0 0 0 0
0 102 0 0 0 0 0 0
0 0 109 0 0 0 0 0
0 0 0 102 0 0 0 0
0 0 0 0 109 0 0 0
0 0 0 0 0 102 0 0
0 0 0 0 0 0 109 0
0 0 0 0 0 0 0 102


and R =

[
10−3 0

0 10−3

]
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Considering Equation (15), we obtain the optimal PD gains:

K =

[
−708316 −5234.9 989.1866 1928.63 −705899.35 74.66 −1086.83 0.15
1036.83 1928.9 −707146.8 −3008.18 −989.18 0.150 −707630.3 74.84

]
(18)

The gains of integrative control are given by and considered: for u1(Ki1 = 2179449.33,
Ki3 = 224821.58, Ki5 = 2280104.28, and Ki7 = 21848.79) and for u2(Ki1 = 162457.09,
Ki3 = 2950790.59, Ki5 = 170105.19, and Ki7 = 300778.54) [3].

4.1. Control Design for the First Case: Two Links Positioned at Two Fixed Points

Considering the positioning of the two links at fixed points, the desired points in
this work were defined at x̃1 = x̃5 = π

3 , x̃3 = x̃7 = π
2 , and x̃2 = x̃4 = x̃6 = x̃8 = 0,

while the errors were given by e1 = x̃1 − x1 [rad], e2 =
.
x̃1 −

.
x1 [rad/s], e3 = x̃3 − x3 [rad],

e4 =
.
x̃3 −

.
x3 [rad/s], e5 = x̃5 − x5 [rad], e6 =

.
x̃5 −

.
x5 [rad/s], e7 = x̃7 − x7 [rad], and

e8 =
.
x̃7 −

.
x7 [rad/s].

Figure 3 shows the variations of positioning errors for two fixed points.
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Table 2 shows the highest error value for t = [15:20] seconds for Figure 3.

Table 2. Positioning error for point-to-point position control.

Error PD PD + Feedforward PDI+ Feedforward

e1 0.02022 0.0202 0.01989

e3 0.005444 0.005422 0.000777

e5 −0.01863 −0.01861 −0.01802

e7 −0.002884 −0.002804 −0.00162

As we can see in Figure 3, and in the data in Table 2, the three control strategies proved
efficient, emphasizing that the PD controller was enough to produce results very close to
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those of the PD + feedforward controller. As the PD control was obtained from the LQR, its
response is an optimal PD control, which justifies its performance. Similar behavior was
also observed in [5].

4.2. Control Design for the Second Case: One Link Positioned at a Fixed Point and the Other in
Rotational Motion

Considering the case in which the second link represents a rotational mechanism, thus
generating a non-ideal excitation source, the desired points were defined as: x̃1 = x̃5 = π

3 ,
x̃3 = x̃7 = sin(t) + t, x̃2 = x̃6 = 0, and x̃4 = x̃8 = cos(t) + 1.

Figure 4 shows the position error variations considering the case of M2 = 1 [kg] and
L2 = 0.05 [m].
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Table 3 shows the highest error value for t = [15:20] seconds for Figure 4.

Table 3. Positioning error for position control in the case of one link at a fixed point and the other in
rotational motion.

Error PD PD + Feedforward PDI+ Feedforward

e1 0.01611 0.01609 0.0158

e3 0.009913 0.005553 −0.002616

e5 −0.01453 −0.01452 −0.01408

e7 0.02739 0.02735 0.0201

Analyzing the results presented in Figure 4 and the data in Table 3, we can observe
an increase in the error, which was expected, taking into account that the second link will
be in rotational movement. As the rotation movement of the second link interferes with
the positioning of the first link, the behavior of the system is classified as non-ideal, which
makes it difficult to control with the same precision observed in the case of a fixed point.
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Figure 5 shows the position error variations considering the case of M2 = 1 [kg] and
L2 = 0.1 [m].
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Table 4 shows the highest error value for t = [15:20] seconds for Figure 5.

Table 4. Positioning error for position control on a fixed point and the other in rotational motion.

Error PD PD + Feedforward PDI+ Feedforward

e1 0.01621 0.01619 0.01575

e3 0.009697 0.009421 −0.002373

e5 −0.01469 −0.01463 −0.01403

e7 0.02715 0.02699 0.01977

The results shown in Figure 5 and Table 4 indicated that the increase in the length of
Link 2 did not significantly interfere with the efficiency of the presented controls. These
results demonstrated that the control does not lose efficiency for small variations in the
length of the second link.

Figure 6 shows the position error variations considering the case of M2 = 0.1 [kg] and
L2 = 0.1 [m].

Table 5 shows the highest error value for t = [15:20] seconds for Figure 6.

Table 5. Positioning error for position control on a fixed point and the other in rotational motion.

Error PD PD + Feedforward PDI+ Feedforward

e1 0.009178 0.009169 0.0085555

e3 0.01041 0.01031 −0.002513

e5 −0.007585 −0.007575 −0.007162

e7 0.02742 0.02735 0.02022
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The results presented in Figure 6 and Table 5 show that the reduction of the mass M2
did not influence the result of the PD control and PD + feedforward controls; however,
we can observe that the PD + feedforward control had reduced errors compared to that
observed for the mass M2 higher. The result indicates that M2 influences the efficiency of
the PID control.

Figure 7 shows the position error variations considering the case of M2 = 0.05 [kg]
and L2 = 0.1 [m].

Table 6 shows the highest error value for t = [15:20] seconds for Figure 7.

Table 6. Positioning error for position control on a fixed point and the other in rotational motion.

Error PD PD + Feedforward PDI+ Feedforward

e1 0.009184 0.009178 0.008543

e3 0.01031 0.01028 0.001494

e5 −0.007565 −0.007561 −0.007164

e7 0.02743 0.02740 0.02023

The results shown in Figure 7 and Table 6 confirm that m2 influences the efficiency of
the PID control.
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5. Discussion

Table 7 presents the percentage of error reduction considering the feedforward control
plus the PD control and with the PID control with feedforward control for position control
on a fixed point and the other in rotational motion.

Table 7. Percentage of positioning error reduction concerning PD + feedforward control (PDf) and
PID + feedforward control (PIDf) for position control on a fixed point and the other in rotational motion.

L2 = 0.05 [m]
M2 = 1 [kg]

L2 =0.10 [m]
M2= 1 [kg]

L2 = 0.10 [m]
M2 = 0.1 [kg]

L2 = 0.05 [m]
M2 = 0.1 [kg]

Error PD PID PD PID PD PID PD PID

e1 0.12% 0.01% 0.12% 0.02% 0.09% 0.06% 0.06% 0.06%

e3 0.43% 0.73% 2.84% 0.75% 0.96% 0.75% 0.29% 0.85%

e5 0.06% 0.03% 0.40% 0.04% 0.13% 0.05% 0.05% 0.05%

e7 0.14% 0.26% 0.58% 0.27% 0.25% 0.26% 0.10% 0.26%

Table 8 shows the integral of the absolute magnitude of the error (IAE) considering the
PD control (PD) and PD + feedforward control (PDf) and obtained from the LQR control
and PID + feedforward control (PIDf) for position control on a fixed point and the other in
rotational motion.

Analyzing the results shown in Table 7, it can be seen that the control strategy with
PID Control+ Feedforward Control is the strategy that obtained the best performance, a
result consistent with what was expected, since the inclusion of the integrative control has
as the main objective to reduce the error in the regime, and the inclusion of the feedforward
control to eliminate the influence of gravitational force in the calculation of the feedback
control. However, it should be noted that the positioning error of the first link (e1 = x̃1 − x1)
is very similar for the three proposed strategies and that the control only with the PD control
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obtained results as efficiently as the others. This result can be explained due to the fact PD
control was obtained using the LQR, which provided an optimal PD control. The results
shown in Table 8 confirm the results obtained in Table 7.

Table 8. The integral of the absolute magnitude of the error (IAE) concerning PD control, PD (PDf),
and PID control with feedforward control (PIDf) for position control on a fixed point and the other in
rotational motion.

L2 = 0.05 [m]
M2 = 1 [kg]

L2 =0.10 [m]
M2= 1 [kg]

L2 = 0.10 [m]
M2 = 0.1 [kg]

L2 = 0.05 [m]
M2 = 0.1 [kg]

IAE PD PDf PIDf PD PDf PIDf PD PDf PIDf PD PDf PIDf

e1 0.289 0.289 0.389 0.291 0.292 0.239 0.288 0.289 0.234 0.234 0.288 0.234

e3 0.367 0.367 0.378 0.363 0.363 0.374 0.242 0.242 0.257 0.257 0.243 0.257

e5 0.075 0.075 0.025 0.072 0.073 0.024 0.079 0.080 0.026 0.026 0.080 0.026

e7 0.398 0.397 0.389 0.394 0.393 0.385 0.273 0.272 0.260 0.261 0.273 0.261

Table 9 shows the integral of the absolute magnitude of the error (IAE) considering
the PD control (PD), PD + feedforward control (PDf), and PID + feedforward control (PIDf)
for position control on two fixed points. Similar behavior was also observed in [5].

Table 9. The integral of the absolute magnitude of the error (IAE) concerning PD control, PD (PDf),
and PID control with feedforward control (PIDf) for position control on a fixed point and the other in
rotational motion.

IAE PD PDf PIDf

e1 5.252 5.790 5.906

e3 8.672 10.680 4.244

e5 5.143 5.724 1.134

e7 8.897 10.741 4.514

Analyzing the integral of the absolute magnitude of the error (IAE) data, shown in
Table 9, we can observe the contribution of the integrative term in the control. The results
demonstrate that the PID + feedforward control was more efficient than the other two ana-
lyzed controls. We can also observe that the optimal PD control and the PD + feedforward
control presented similar results, demonstrating the importance of designing optimal
controllers. Similar behavior was also observed in [5].

6. Conclusions

The numerical results presented in this work show that we can consider a robotic arm
with flexible joints as a system with non-ideal excitation sources. This behavior was clearer
with a link in rotational movement, behavior similar to that observed when we coupled a
motor to the end of the first link.

Analyzing the presented results, and considering the analysis of the influence of the
rotational movement of the second link on the positioning of the first link (non-ideal source
of excitation), it can be observed that there is a better error for smaller masses of m2 and
smaller length L2, parameters of the second link. Furthermore, it should be noted that
for all cases analyzed, the errors were centesimal, demonstrating that the proposal of an
optimal PD control through the use of the LQR, made it possible to obtain an efficient
control and that the inclusion of the integrative term and the feedforward control made
it possible to reduce a little more this error, which is extremely important for positioning
control with millimeter precision.
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The numerical results also showed that the combination of PID control is the most suit-
able for cases in which the links are subject to rotational movement (vibration) and that the
PD and LQR control demonstrates efficiency when combined with the feed-forward gain.
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