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Abstract: Instantaneous Power Consumption (IPC) is relevant for understanding the autonomy and
efficient energy usage of electric vehicles (EVs). However, effective vehicle management requires prior
knowledge of whether they can complete a trajectory, necessitating an estimation of IPC consumption
along it. This paper proposes an IPC estimation method for an EV based on satellite information.
The methodology involves geolocation and georeferencing of the study area, trajectory planning,
extracting altitude characteristics from the map to create an altitude profile, collecting terrain features,
and ultimately calculating IPC. The most accurate estimation was achieved on clay terrain with a
5.43% error compared to measures. For pavement and gravel terrains, 19.19% and 102.02% errors
were obtained, respectively. This methodology provides IPC estimation on three different terrains
using satellite information, which is corroborated with field experiments. This showcases its potential
for EV management in industrial contexts.

Keywords: instantaneous power consumption; electric vehicles; satellite information

1. Introduction

The increase in the quantity of vehicles worldwide in recent years has led to a greater
demand for energy, primarily from fossil fuels. This increase has resulted in higher CO2
emissions, contributing to greenhouse gases (GHG) and global warming. Therefore, there is
a growing need to find environmentally friendly alternatives, particularly focusing on the
use of electric energy. The global trend towards electromobility is already underway, with
electric vehicles (EV) playing a crucial role in replacing fossil fuel vehicles and achieving
decarbonization [1–5].

The use of EVs is not limited to personal transportation, as they can also be employed
in various industrial applications, including agriculture, mining, luggage and material
transportation at airports, and other industries [5–8]. However, EVs are not yet compet-
itive in terms of range when compared to their fossil fuel-dependent counterparts [2].
Therefore, it is crucial to understand their energy consumption, specifically the instan-
taneous power consumption (IPC), to manage and estimate consumption along a given
route [9,10]. This work focuses on estimating IPC in EVs within agricultural scenarios.

The IPC can be directly measured from the batteries as it is a deterministic function
that depends on voltage and current. However, these variables are intricately influenced
by factors such as the vehicle mass, center of gravity, speed, acceleration, terrain type, and
aerodynamics, among others, which turns it into a stochastic problem [11]. The effect of
mass on IPC determines the trade-off between autonomy and battery weight. Additionally,
variations in IPC can occur in public transport due to passenger boarding and alighting, as
well as in agricultural applications with load changes during picking tasks [12,13].

Terrain characteristics, including roughness, inclination, rolling resistance coefficient,
and tire-terrain friction coefficient, also have a significant impact on energy consumption. It

Robotics 2023, 12, 151. https://doi.org/10.3390/robotics12060151 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12060151
https://doi.org/10.3390/robotics12060151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-1509-1369
https://doi.org/10.3390/robotics12060151
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12060151?type=check_update&version=2


Robotics 2023, 12, 151 2 of 17

is important to note that energy consumption differs when driving on pavement compared
to driving on sand [11,14,15] (See Figure 1). Factors such as aerodynamics, wheel deforma-
bility, load distribution, outside and inside temperature, vehicle speed and acceleration,
and auxiliaries (devices that consume battery power other than the motor, such as lights,
air conditioning, etc.) have been reported to influence IPC [16,17].

Figure 1. An example showcasing the three types of terrain on which vehicles can travel is presented.
Specifically, the top image displays a gravel terrain, followed by a pavement terrain in the middle,
and finally a clay terrain at the bottom.

The estimation of IPC of an EV following a trajectory cannot be accomplished solely
with voltage and battery measurement data, but it must also encompass certain terrain
characteristics. Several authors have tackled the modeling of IPC in EVs from various per-
spectives, yielding diverse outcomes [5,11,15,18,19]. These investigations have underscored
a pronounced reliance on vehicle dynamics [20]. Satellite information enables the acquisi-
tion of data concerning trajectory and terrain characteristics, such as altitude, distances,
and terrain type, within a map [21–24]. Moreover, research has been conducted on the
identification of features in satellite images, facilitating automated land classification [25].

To address the challenge of IPC estimation along a predefined trajectory, this study
presents a methodology that leverages satellite information to establish a connection be-
tween the physical phenomena of EV-terrain interaction. Relevant features are extracted
for the model, and IPC is computed across three terrain types: pavement, clay, and gravel.
Subsequently, a comparison is drawn between these results and measurements obtained
from field tests conducted along the same trajectory.

This work is organized as follows: Section 2 presents the problem statement and
the mathematical formulation of IPC. Section 3 describes the methodology developed to
estimate IPC using satellite information. Section 4 presents the experimental setup, field
results, and concludes with a statistical comparison between the proposed methodology,
field tests, and manufacturer-provided information. Finally, Section 5 presents the main
conclusions of this work.

2. Problem Statement

The IPC can be directly measured from the vehicle’s batteries by obtaining the product
of voltage and current, as shown in Equation (1).

IPCt = Vt It (1)

where V and I represent the battery voltage and current, respectively, and the subscript t
denotes the dependence on time.

Previous works by Gionesmaki [18] and later Iora [19] have indicated that the IPC can
be estimated by considering the balance of forces acting on the wheels of the vehicle (See
Figure 2). This balance of forces required for wheel traction is presented in Equation (2).
It takes into account factors such as the air resistance on front surface of the vehicle, the
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resistance from the terrain due to the mechanical effects on the wheels, the slope of the
terrain, and the acceleration of the vehicle, among others, as shown in Equation (2).

Ftr,t = Fad,t + Frr,t + Fhc,t + Fma,t (2)

Here, Ftr represents the traction force, Fad is the aerodynamic force acting on the vehicle
due to the air, Frr is the rolling resistance force, and Fma is the acceleration force. These
forces can be described as follows:

Ftr,t =
1
2

ρACdv2
t + µrr,tmtg cos φt + mtg sin φt + mtat (3)

where ρ is the air density, A is the frontal area of the vehicle, Cd is the drag coefficient, v is
the vehicle speed, µrr is the rolling resistance coefficient, m is the vehicle mass (including
load), g is the acceleration due to gravity, φ is the slope of the terrain, and a represents
the vehicle acceleration. This equation is valid for steered vehicles with non-deformable
wheels [5,11,18].

mg

Fma

Frr

Fad

Fhc

Ftr

µrr

φ
mgcos(φ)

Figure 2. Forces acting on a vehicle.

The power required for wheel traction is a function of the force exerted by the wheels
and the speed, as shown below:

Ptr,t = Ftr,tvt (4)

The power supplied from the batteries can be determined by Ptr(t) = ηPb,t, where
Pb is the power from the battery, and η is the electromechanical conversion efficiency of
the vehicle system. It incorporates the efficiency of the battery, the motor, the mechanical
transmission from the motor to the wheels, and losses in accessories (e.g., lights, sensors,
on-board computer, etc.) other than the motor [18,26]. This efficiency can be obtained from
Equation (5).

ηt,T◦ =
ηb,t,T◦ηmηgPb,t − I2

a,tRa,t

Pb,t
(5)

Here, ηb, ηm, and ηg are the battery, motor, and transmission efficiency, respectively. T◦

represents the temperature, and Ia and Ra are the current and resistance of all accessories,
respectively. The equation for IPC can then be rewritten as follows:

IPCt = ηt,T◦

(
1
2

ρACdv2
t + µrr,tmtg cos φt + mtg sin φt + mtat

)
vt (6)

Based on the above, there are two approaches to acquiring IPC. One method involves
directly measuring the battery’s voltage and current. The alternative approach entails
estimating the forces implicated in the vehicle’s motion, taking into account the influencing
variables. In situations where significant temperature disparities exist, battery performance
and lifespan could be impacted [27,28]. Another factor to consider, the focus of this study,
is the terrain type, as it exerts an opposing effect on EV movement. Additionally, the terrain
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may be inclined, which could either facilitate or impede motion depending on the angle of
inclination [11,29,30], thus contributing to the IPC calculation.

Having prior knowledge of IPC and a predefined known route allows for effective
management, such as determining battery charging points along the trajectory, assessing
if the EV can reach its destination with its current autonomy, and optimizing navigation
resources, among other benefits [5,31].

Available satellite information enables route planning for navigation from one point to
another on a map (e.g., Google Maps, OpenMaps, etc.). Additionally, they provide relevant
information to approximate the IPC of an EV. This is the motivation behind using satellite
information for IPC estimation in this work.

3. IPC Based in Satellite Information Proposed Methodology

Satellite information provides valuable data for estimating the power consumption of
an EV. It includes latitude, longitude, and elevation information on a map, which helps
identify the starting and destination points. Indirectly, the distance between two points can
be extracted, and with advance knowledge of the speed, the travel time can be determined.
Elevation provides an approximation of the terrain slope. Additionally, satellite maps offer
visual representations of terrain characteristics, allowing for terrain classification and the
association of their respective effects on vehicle movement opposition. Approaches to
these effects have been addressed by Romero Schmidt and Auat [11], who proposed data
acquisition through visual classification techniques using support vector machines (SVM)
and established the relationship between speed and IPC consumption in four types of
terrain: clay, grass, gravel, and pavement. Subsequently, Villacrés and Auat [5] conducted
experiments that collected IPC data, establishing a polynomial model adjusted through
a piecewise regression algorithm, enabling the correlation of velocity and IPC in three
different types of terrain. These works, particularly in the experimental results, assume
constant mass and velocity and are carried out on flat terrain, disregarding the slope.

Based on the aforementioned, this paper aims to estimate IPC using satellite informa-
tion while considering the effects of terrain and slope. The methodology is illustrated in
Figure 3. In this methodology, the satellite information used is considered to be the position
in latitude, longitude and altitude, and the image in which the trajectory is fitted. The
estimation of the IPC is made prior to traveling the defined trajectory. Therefore, satellite
information on the vehicle speed is not considered.

Global positioning and
geolocalization

Trajectory planning

Altitude features extraction

Terrain features extraction

Calculation of the IPC
according to altitude

lat, lon

nodes

start

goal

intermediates

Elevation profile

Type of terrain

rolling resistence

Figure 3. Schematic of the proposed methodology.
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3.1. Global Positioning and Geolocation

The process begins by acquiring satellite information of a given city or location using
platforms such as Google Maps and OpenStreetMap. This information provides latitude
and longitude data. The latitude and longitude allow for the identification of the vehicle’s
location in space, which can then be georeferenced on a map. To achieve this, an image is
obtained, and the coordinates of the image’s corners are known.

Georeferencing enables working with the image using the global position information
provided by latitude and longitude and transforming it into x and y coordinates with
respect to a reference frame.

3.2. Trajectory Planning

The definition of the trajectory is essential to determine how the vehicle will travel
from a starting point A to a destination point B. This involves moving along the map
following a route that connects A and B, with intermediate points that the vehicle must
pass through. This can be represented as a series of nodes, which represent the points, and
arcs, which represent the connections between these points.

In this methodology, the starting point, intermediate points, and destination point are
arbitrarily determined to create a predefined route. However, different strategies can be
considered for route construction. For example, in street navigation, a start and end point
can be specified, and the intermediate points can depend on the streets, intersections, etc.
This allows the establishment of adjacency between nodes for subsequent optimization.

Considering that navigation encompasses various terrain types and not just road
or pavement conditions, only points that allow navigation along the trajectory and are
reachable are taken into account.

3.3. Altitude Feature Extraction

The nodes positioned along the trajectory need to have information about their ge-
ographical position to be accurately placed on the georeferenced image. Additionally,
each node should have elevation information corresponding to its location. This elevation
information is not readily available for free from platforms like Google Maps or Open-
StreetMap. However, there are APIs available, such as Open-Elevation (open-elevation.com
(accessed on 30 October 2023)), that can be used to obtain elevation data. These APIs accept
latitude and longitude coordinates as input and provide elevation information as output.
Alternatively, manual methods can be employed, as some service providers offer on-screen
altitude or elevation information.

It is important to note that the elevation information obtained is based on topographic
contour lines, and there may be errors in determining the exact height of a point on the map
due to surface irregularities. Nevertheless, these data allow for an approximate estimation
of the slopes between nodes.

3.4. Terrain Features Extraction

The georeferenced satellite image provides a visual representation of various types of
terrain. Streets appear as gray surfaces, grass or wooded areas as green, and dirt and clay
surfaces as brown. Consequently, it is possible to label the arcs between nodes based on
the types of terrain that the vehicle may navigate. In this methodology, the labeling of arcs
is performed manually. Each node was labeled considering the color of the surrounding
terrain, defining each node in three categories: pavement, clay and gravel, according to
whether the terrain is light gray, brown, and gray, respectively. However, the utilization
of image processing techniques for feature extraction to classify the terrain like proposed
in [5,11] in is not disregarded.

3.5. Calculation of the IPC

First, the distance and slope between adjacent points need to be calculated.

open-elevation.com
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The distance between nodes can be determined using the Euclidean distance formula,
considering that the position data are known, as shown in Equation (7). This, considering
that the difference in height is negligible between nodes.

dij =
√
(xi − xj)2 + (yi − yj)2 (7)

Here, dij represents the distance between nodes i and j, and xi, yi, xj, and yj denote
the position coordinates of the respective nodes.

The angle of elevation between nodes is determined using Equation (8), where H(nj)
and H(ni) represent the elevations at nodes i and j, respectively.

θij = arctan

(
|H(nj)− H(ni)|

dij

)
(8)

Then, the IPC is calculated for each pair of nodes, considering a predefined speed
for traversing the predefined trajectory, the mass of the vehicle (including passengers and
cargo), the terrain elevation, the type of terrain, and its corresponding rolling resistance co-
efficient. Equation (6) is used, where each parameter and variable is substituted accordingly.
Since the navigation time between nodes is known, an estimate of the energy consumption
for the given route can be obtained. This cumulative effect is applied to each pair of nodes
until the entire path between the starting and destination nodes is completed.

4. Experiments

This section presents the results of the computational experiments performed using the
proposed methodology, as well as the details of the experimental setup and the validation
results. In Table 1 is summarized the experiments and data to use. In the case of direct
measurement, it is obtained during field experiment to be used for validation.

Table 1. Types of experiments and data setup for variables to obtain IPC.

Experiment Velocity (m/s) Acceleration
(m/s2)

Node Position
(lat,lon) Altitude (m) IPC (W)

Computational
experiment defined defined defined API calculated

Field experiment measured (IMU) measured (IMU) measured (RTK) measured (RTK) calculated

Direct measurement - - - - measured

4.1. Computational Experiments

The computational experiments were conducted at the map of the facilities of Univer-
sidad Técnica Federico Santa María, located in Viña del Mar, Valparaíso, Chile.

A satellite image of the area was obtained from Google Maps using the Sas Planet
2022 software. The image captures three different terrains to be studied: gravel, clay,
and pavement. The latitude and longitude coordinates of the upper left (−33.03856107,
−71.48669920) and lower right (−33.04012602, −71.48467145) corners of the image were
collected for georeferencing purposes. The image and coordinates were transformed into
meters for distance analysis between nodes and into pixels for interaction with the image,
as shown in Figure 4 (north points upwards).
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Figure 4. Selected area of the facilities of Universidad Técnica Federico Santa María, Viña del Mar,
Valparaíso, Chile (https://goo.gl/maps/yscek8oYisThQJTT6) accessed on 12 July 2023.

The starting and ending points of each trajectory were determined to create three
routes: gravel, clay, and pavement. These routes are depicted in Figure 5, with points A
and B representing the start and goal, respectively.

Figure 5. Designed trajectories in gravel, clay, and pavement (ordered from top to bottom).

A total of 8 nodes were placed along each trajectory, including the start, intermediate,
and goal nodes, which were evenly spaced. The longest trajectory covered a distance
of 105 m. Once the nodes were determined, their elevations were obtained using the
open-elevation API based on their latitude and longitude coordinates (see Figure 6).

https://goo.gl/maps/yscek8oYisThQJTT6
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Figure 6. Nodes of trajectories in gravel, clay, and pavement colored according to altitude. Red
represents the maximum altitude, and green represents the minimum altitude.

With the nodes and their information available, the next step was to calculate the
distance and slope between them. To calculate the IPC, certain parameters or variables
needed to be established in advance. The speed was set at 5, 4 and 3 m/s for pavement, clay,
and gravel, respectively, as it is essential for determining the time between each section of
the trajectory. Given the speed, the effect of air resistance on the vehicle can be assumed to
be negligible due to its quadratic dependence. The IPC calculation demonstrated varying
behavior with slope and terrain type along the trajectory.

4.2. Experimental Setup

The Cushman Hauler Pro electric vehicle was used for the experimental study. This
vehicle is equipped with an AC motor and has a seating capacity for two people. An RTK
(Real-Time Kinematics) system was installed on the roof of the vehicle to obtain accurate
position data along the route.

Table 2 provides the characteristics of the hardware used in the setup, including the
electric vehicle specifications, the RTK GNSS (Navcom SF-3040) details, the IMU (Vectornav
VN-200) specifications, and the voltage and current sensor specifications.

The vehicle’s speed is estimated based on the predefined route and the time sampling.
An IMU (Inertial Measurement Unit) Vectornav VN-200 is installed to gather information
about the vehicle’s inclination and, consequently, the slopes encountered during the trials.
Additionally, a voltage and current sensor is connected to the batteries to calculate the IPC.

The IPC sensor used in the study is depicted in the schematic shown in Figure 7. The
sensor consists of voltage and current inputs that allow for the measurement of IPC.
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Table 2. Characteristics of the Hardware Setup.

Name Description

Electric Vehicle-Cushman Hauler Pro
Motor 72 Vac; 16.7 kW at peak torque
Max. Speed 80 km/h
Speed 23.3 km/h ± 0.8 km/h
Curb Weight 411 kg
RTK GNSS-Navcom SF-3040
Horizontal Accuracy (<40 km) 1 cm + 0.5 ppm
Vertical Accuracy (<40 km) 2 cm + 1 ppm
Data Rate Selectable between 1 Hz, 5 Hz, and 10 Hz
Communication Serial port through USB
IMU Vectornav VN-200
Data Rate 800 Hz
Dynamic Heading Accuracy 0.02 degrees
Dynamic Pitch/Roll Accuracy 0.03 degrees
Voltage and Current Sensor
Voltage Range From 15 V to 80 V
Current Range From −300 A to 300 A
Precision 12-bit ADC
Sampling Rate 800 Hz (average)
Communication Serial port through USB
Nvidia Jetson TX2
GPU NVIDIA PascalTM, 256 CUDA cores
CPU HMP Dual Denver 2/2 MB L2

+ Quad ARM® A57/2 MB L2
Memory 8 GB 128-bit LPDDR4 59.7 GB/s

Provided by the manufacturer.

Figure 7. Circuit schematic and curve of operation for the voltage and current inputs of the
IPC sensor.
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The inputs of voltage and current are designed to operate within specific ranges. The
curve in Figure 7 illustrates the relationship between the input voltage and current. It
demonstrates how the sensor adapts and converts the battery voltage and current signals
into measurable values.

The voltage input range of the sensor extends from 0 to 80 V. This range is adjusted
using voltage dividers to ensure accurate measurements within the 0–2 V output range.
Similarly, the current input range is accommodated by the sensor, allowing for measure-
ments within the 0–2 V range. The analog signals from both inputs are then converted to
digital signals and read by a microcontroller for further processing.

Overall, the IPC sensor and its operational characteristics enable the accurate mea-
surement and monitoring of voltage and current, facilitating the estimation of IPC in
the study.

All this information, from RTK, IMU, and IPC sensors, is acquired and processed by the
industrial on-board computer, using the Ubuntu operating system with ROS implemented.
The specifications of the hardware used are detailed in Table 2 and the experimental setup
is shown in Figure 8, where the platform used and the sensors mounted are shown.

Figure 8. Electric vehicle used for field testing, equipped with an RTK system, an IMU, and an IPC
(voltage and current) sensor connected to the batteries.

4.3. Field Experiments

Field tests were conducted at the facilities of the Universidad Técnica Federico Santa
María in Viña del Mar, Valparaíso, Chile. Three routes were established, each with a
different type of terrain: pavement, clay, and gravel, based on the simulation trajectories.

The following experiments were conducted:

• 10 trials in pavement terrain.
• 10 trials in clay terrain.
• 10 trials in gravel terrain.

In each of these trials, measurements from RTK, IMU, and IPC sensors were collected
along their trajectories.

The main objective of these measurements was to collect data to visualize the effects
of the elevation angle on the IPC and to gather information on the global position of the
vehicle for trajectory reconstruction. The data were processed considering the velocity and
acceleration behavior, and a reference IPC was generated by directly measuring the data
from the batteries.

Figure 9 shows the nodes where RTK measurements were taken, along with their
corresponding altitudes. The vehicle traveled from the lowest altitude zone to the highest
altitude zone, encountering a positive elevation angle for most of the journey.
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Figure 9. Nodes and altitudes measured in each trajectory.

5. Results

Figure 10 shows the data obtained from the RTK, IMU, and IPC sensor measurements
on the three types of terrain. The height, velocity, acceleration, and IPC data are presented
with respect to the number of measurements synchronized by the slowest sensor, in this
case, the RTK, which has a sampling time of 0.3 s.

In Figure 10a, it is evident that the trajectory on pavement reveals fluctuations in the
vehicle’s altitude relative to sea level as it progresses at the onset of the journey. In gravel,
illustrated in Figure 10b, a consistent behavior is observed, demonstrating variations in
routes and even between trials, notwithstanding the ostensibly flat terrain. Conversely,
the altitude in clay, as illustrated in Figure 10c, displays a pattern akin to that of the
pavement–initiating at a lower altitude and gradually ascending. However, two of the
trials exhibit deviations in height measurements. It is crucial to note that along this
trajectory, there exists abundant vegetation and trees that could potentially impact RTK
data acquisition. Nonetheless, the trajectory follows a pattern similar to the other trials.
It is essential to emphasize that, for the subsequent utilization of altitude data, only its
variation is relevant for estimating the terrain’s incline angle.

Graph Figure 10d illustrates the speed profiles developed in the 10 trials conducted
on paved terrain. The profile is not uniform across each trial, given that the vehicle was
manually driven without speed control. Nevertheless, a resemblance is noted among
most trials, with speeds consistently hovering around 5 m/s. Additionally, the effects of
acceleration and braking are discernible at the beginning and end of the run, respectively.

In the case of the gravel speed (see Figure 10e, there is an observable variation in speed
within the intermediate samples of the trajectory. Concerning the phenomena witnessed
on the ground, instances of the vehicle sliding and skidding were noted at specific points
along the route.

As for the speed on clay, depicted in Figure 10f, a stable speed behavior is evident, with
trials exhibiting very similar patterns across various samples and reaching a development
speed of 4 m/s.

Regarding the acceleration derived from the IMU, graphs Figure 10g–i depict the
acceleration on pavement, gravel, and clay, revealing a noticeable noisy behavior that
consistently hovers around 0 for most of the route. The exception to this is evident at the
edges of the graphs, where the effects of startup are observed as the vehicle transitions
from inertia, and at the end, during the braking action.
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Figure 10. Raw data. In (a–c), altitude samples during the vehicle’s travel are shown across pavement,
gravel, and clay, respectively. Letters (d–f) depict the vehicle speed measured through the IMU for
the three types of terrains. In (g–i), acceleration samples for the three terrains are displayed. In (j–l),
the inclination angle of each terrain is shown based on the pitch obtained from the IMU. Using the
IPC sensor, curves (m–o) were obtained to visualize the behavior of battery power consumption
during each trial.

When measuring the vehicle’s lean angle with the IMU using pitch data, given its
close alignment with the vehicle’s straight line, these angles are illustrated in Figure 10j for
pavement, Figure 10k for gravel, and Figure 10l for clay. Moreover, it is observable that the
inclination behaviors align with the variations in the previously mentioned altitudes. In
the case of pavement, a pronounced inclination angle is noted at the beginning, gradually
reducing until it reaches a relatively flat position with an inclination close to 0. On gravel,
constant jumps in the measurements are apparent. Meanwhile, on clay, the inclinations
display two slopes with an intermediate flat sector. In Figure 10m–o, the IPC measurements
directly measured from the EV battery are presented for the experiments on pavement,



Robotics 2023, 12, 151 13 of 17

gravel, and clay. The behavior of these measurements shows a strong relationship with the
slope of the terrain since they follow a similar graphical shape.

With the data collected in the experiments, the measurements were compared with
the estimates from the field experiments. Figure 11 shows plots of IPC over time and
IPC versus velocity obtained in the three types of terrain analyzed. These graphs are
generated by estimating the IPC through Equation (9) and plotting the results against their
corresponding velocities.

IPCt = (µrr,tmtg cos φt + mtg sin φt + mtat)vt (9)

In Figure 12a, the estimated IPC with the sensor data for the pavement is presented.
Inputting the sensor inputs and parameters (mass, gravity, rolling coefficient) into the
model produces a curve describing power consumption that closely resembles the one
measured from the battery, as shown in Figure 12d. In Figure 12b, there is a notable
variation in the IPC for the gravel trajectory due to the variable and noisy nature of the
collected data, exhibiting partial similarity with the IPC measured in Figure 12e. A distinct
section reveals an increase in the magnitude of the IPC. However, the influence of the
angle of inclination displays a negative behavior, potentially associated with a regenerative
braking phenomenon. This behavior is attributed to the constant variation of the inclination
and intermittent contact with the terrain. Similarly, in Figure 12c, a comparable behavior
is observed between the model’s estimated IPC and its battery-measured counterpart. In
Figure 12g–i, the ratios of the IPC estimated in the terrain tests to the measured speed
for each type of terrain are depicted. Meanwhile, Figure 12j–l illustrate the ratio of the
measured IPC to speed. In the ratios of estimated IPC to speed, the presence of both positive
and negative power consumption occurrences at different speeds is diluted, aligning with
expected effects of the model tilt angle.
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Figure 11. IPC in field experiments and IPC measures. Figures (a–c) depict the average IPC measure-
ments and standard deviation from the 10 field trials on pavement, gravel, and clay, respectively. In
(d–f), the average IPC estimates are presented using data from the sensors utilized in the field trials.

The information regarding the IPC from the estimations and measurements conducted
in the field is presented in Figure 11.
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This figure summarizes the averages and standard deviations of each of the trials
carried out in the experiments on the three types of terrain. The estimated IPC averages
presented in Figure 11a–c exhibit significant similarity to the battery measurements for all
three experimented terrains. However, it is observed that there is a substantial standard
deviation in each experiment, which, in turn, is consistent with its measurement.
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Figure 12. IPC graphics. (a–c) display the IPC estimates for pavement, gravel, and clay over time.
Similarly, in (d–f), the IPC measurements for the same soils are shown. In (g–i), the estimated IPC
behavior curves concerning speed are presented. In the case of (j–l), we can observe the behavior
of the measured IPC with respect to speed. In these graphs, both positive and negative IPC can be
observed, mainly associated with acceleration and braking, as well as the effects of slope and the type
of terrain.

The results of the computational experiment, field experiments, and direct battery
measurements of the EV to obtain the average IPC on the three types of analyzed terrain
are shown in Figure 13. It can be observed that the performance of the computational
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experiment, which utilizes information from a georeferenced image and its height data,
presents an error of 5.43% for clay, 19.19% for pavement, and 102.20% for gravel. The
latter exhibits poor performance, considering that satellite images lose the quality of the
real terrain, coupled with phenomena arising from gravel terrain, such as skidding, wheel
burying, or even favorable effects allowing the vehicle to slide on slight slopes. Additionally,
differences in height acquisition of around 15 m were observed with an error of 3 m. On
the other hand, estimates based on the on-site experiment using RTK and IMU present an
error of 5.11% for gravel, 14.50% for pavement, and 21.25% for clay. This performance is
quite close to the directly measured battery values, which, when fed into the model with
greater precision and accuracy, would allow for an estimation through the EV’s longitudinal
dynamics very close to reality.
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2,000

1,000

0

Paviment Gravel Clay

IP
C

 (W
)

Comparison of computational experiment, field experiment and measures
Computational experiment estimation
Field experiment estimation
Measured from the batteries

Figure 13. The graph provides a visual representation of the IPC values for different terrains:
pavement, gravel, and clay. It shows that the estimation using satellite information, the experimental
estimation, and direct measurements from the batteries.

6. Conclusions

The presented study has introduced a novel methodology for IPC estimation leverag-
ing satellite information, employing nodes defined by latitude, longitude, elevation, and
terrain type data. The application of this method across three distinct terrains—gravel,
clay, and pavement—revealed promising results. Notably, the simulation demonstrated
a satisfactory approximation for pavement and clay terrains. Nevertheless, the estima-
tion performance for gravel terrain demands further scrutiny, particularly concerning the
accuracy of the measured IPC.

Field experiments were conducted to collect data on position over time and elevation
angles along the trajectory for IPC estimation. Moreover, direct measurements of IPC were
obtained from the batteries, serving as a benchmark for comparison.

Despite the challenges encountered, particularly in the case of gravel terrain, this
research significantly contributes to the field of IPC estimation for electric vehicles. The
utilization of satellite data and field experiments showcases the potential of the proposed
methodology. The observed discrepancies in gravel terrain underscore the complexities
associated with dynamic terrains, emphasizing the need for refinement and adaptation of
the methodology to address specific challenges presented by such conditions.

Looking ahead, potential future work should focus on optimizing the IPC estimation
model, with a particular emphasis on refining the algorithm for gravel terrain. Incorpo-
rating additional factors, such as real-time environmental conditions, filtered data, and
improved sensor technologies, could further enhance the accuracy and applicability of
the proposed method. Additionally, exploring the integration of machine learning tech-
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niques to adapt and learn from real-world experiences may contribute to overcoming
challenges and improving overall performance. This study lays the foundation for future
research in the realm of IPC estimation, offering valuable insights and paving the way for
advancements in electric vehicle technology.
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