
Citation: Yu, C.; Chao, Z.; Xie, H.;

Hua, Y.; Wu, W. An Enhanced

Multi-Sensor Simultaneous

Localization and Mapping (SLAM)

Framework with Coarse-to-Fine Loop

Closure Detection Based on a Tightly

Coupled Error State Iterative Kalman

Filter. Robotics 2024, 13, 2. https://

doi.org/10.3390/robotics13010002

Academic Editors: Kensuke Harada,

Shuxiang Guo, Yunchao Tang,

Mingjie Dong and Wei Feng

Received: 22 November 2023

Revised: 16 December 2023

Accepted: 19 December 2023

Published: 21 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

An Enhanced Multi-Sensor Simultaneous Localization and
Mapping (SLAM) Framework with Coarse-to-Fine Loop Closure
Detection Based on a Tightly Coupled Error State Iterative
Kalman Filter
Changhao Yu 1 , Zichen Chao 1, Haoran Xie 2, Yue Hua 1 and Weitao Wu 2,*

1 Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing 210094, China;
changhao.yu@njust.edu.cn (C.Y.); zichen.chao@njust.edu.cn (Z.C.); yhua@njust.edu.cn (Y.H.)

2 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
321101010048@njust.edu.cn

* Correspondence: weitaowwtw@njust.edu.cn

Abstract: In order to attain precise and robust transformation estimation in simultaneous localization
and mapping (SLAM) tasks, the integration of multiple sensors has demonstrated effectiveness
and significant potential in robotics applications. Our work emerges as a rapid tightly coupled
LIDAR-inertial-visual SLAM system, comprising three tightly coupled components: the LIO module,
the VIO module, and the loop closure detection module. The LIO module directly constructs raw
scanning point increments into a point cloud map for matching. The VIO component performs
image alignment by aligning the observed points and the loop closure detection module imparts
real-time cumulative error correction through factor graph optimization using the iSAM2 optimizer.
The three components are integrated via an error state iterative Kalman filter (ESIKF). To alleviate
computational efforts in loop closure detection, a coarse-to-fine point cloud matching approach is
employed, leverging Quatro for deriving a priori state for keyframe point clouds and NanoGICP
for detailed transformation computation. Experimental evaluations conducted on both open and
private datasets substantiate the superior performance of the proposed method compared to similar
approaches. The results indicate the adaptability of this method to various challenging situations.

Keywords: localization; mapping; multi-sensor; SLAM

1. Introduction

In recent years, SLAM technology has significantly advanced in creating 3D models
and determining real-time positions. Over three decades, SLAM has undergone three
pivotal iterations [1]. The widespread use of 3D LIDAR and enhanced processor computing
has driven the evolution of LIDAR-based positioning. Multi-line 3D LIDAR’s high-density
point cloud enriches information for matching tasks, emphasizing SLAM algorithm robust-
ness. Integrating image and odometry into LIDAR-based SLAM further enhances accuracy,
making 3D LIDAR-centric solutions prevalent in domains like autonomous driving and
UAV flight control. However, as the demands for navigating stringent, unstructured envi-
ronments continue to rise for intelligent robots, single-sensor SLAM systems prove fragile
and fraught with uncertainty. They struggle to simultaneously handle diverse and complex
environments such as high-speed scenes, confined spaces, open areas, and large-scale
scenarios. Among various sensors, cameras and IMUs are the most commonly used in
SLAM systems. Cameras rapidly capture color and texture in the environment but cannot
directly perceive depth and are susceptible to light interference. IMUs sensitively detect the
system’s subtle changes in a short time, yet long-term drift is inevitable. In comparison with
LIDAR, each sensor has distinct characteristics and clear advantages and disadvantages.

Robotics 2024, 13, 2. https://doi.org/10.3390/robotics13010002 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics13010002
https://doi.org/10.3390/robotics13010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0009-0003-4253-8765
https://orcid.org/0000-0002-7412-7552
https://doi.org/10.3390/robotics13010002
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics13010002?type=check_update&version=1


Robotics 2024, 13, 2 2 of 21

Therefore, the current trend in SLAM system development leans toward multi-sensor
fusion, combining LIDAR, cameras, and IMUs in either a loosely or tightly coupled model.

Loosely coupled systems independently process sensor data, achieving state estima-
tion through filter-based fusion—a straightforward yet accuracy-limited method. Many
loosely coupled SLAM efforts, particularly those based on the groundbreaking 3D LIDAR
scheme LOAM [2], utilize the ICP method for point cloud error construction [3]. They
integrate gyroscope data from the six-axis IMU through simple integration, enhancing
LIDAR odometry precision. Subsequently, many LIDAR-IMU loosely coupled systems
have improved upon LOAM. LeGO-LOAM [4] introduces point cloud clustering and
ground segmentation in post-processing, incorporating IMU data for point cloud distortion
correction. In terms of point cloud feature extraction, many methods tend to use point
normal to extend feature types or improve quality, maximizing the utilization of point
cloud information. In the Chen’s latest framework, the Nano-GICP method, an extension
of ICP, exhibits superior real-time performance [5].

Yet, LIDAR odometry falters in repetitive and unstructured scenes, even with IMU
support, risking failure during prolonged use. In contrast, visual sensors do not require
specific structural features, such as edges and planes; they rely on sufficient texture and
color information for localization but lack direct depth perception. Combining cameras
with LIDAR provides a complementary solution. As VIO systems advance [6–8], multi-
sensor SLAM design evolves. LOAM’s authors extended V-LOAM using a monocular
camera tracking method fused with IMU information, associating feature point depth with
point clouds and iteratively refining the approach [9,10]. Wang [11] proposed a LIDAR-
visual-inertial SLAM system, combining the VINS-MONO tracking module with V-LOAM
backend optimization. Lowe [12] introduced a LIDAR-assisted visual SLAM system with
innovative feature depth and uncertainty estimation methods, exhibiting good adaptability
for handheld devices.

On the contrary, tightly coupled systems jointly optimize data, providing more ac-
curate pose estimation in complex environments. Current tightly coupled solutions are
primarily built upon the foundation of pre-integrating IMU data into the overall framework,
achieving breakthroughs initially in visual and IMU tightly coupled schemes [13,14]. Subse-
quently, in the LIDAR domain, the first tightly coupled approach for LIDAR and IMUs was
proposed in 2018 within the LIPS framework [15], using a graph optimization framework
where point cloud residuals and pre-integrated IMU residuals compose the final optimiza-
tion function. In Gentil’s work [16], pre-integrated results were used to eliminate point
cloud distortion, integrating IMU and LIDAR data closely into a manifold optimization
formula. LIOM [17] employed refinement methods based on LIDAR-inertial odometry pri-
ors through graph optimization and rotation constraints, while LIO-SAM [18] constructed
a sliding window using a factor graph and optimized using the iSAM2 optimizer [19],
achieving higher accuracy. LINS [20] was the first to implement motion estimation through
an iterative Kalman filter in a tightly coupled scheme. FAST-LIO [21] efficiently obtained a
robust LIO framework through a tightly coupled Kalman filter, with further extensions in
map maintenance [22].

Furthermore, the growing focus on the robustness of three-sensor tightly coupled
LVI systems in degraded situations has led to increased research attention in this field.
Optimization-based methods tightly integrate the error models of individual sensors,
reducing sensitivity to time synchronization through local maps or sliding windows. GR-
Fusion [23], built upon a foundational factor graph optimization system, tightly couples
local constraints with GNSS constraints, allowing real-time detection of sensor degradation
and suitability for various scenarios. LVIO-Fusion [24] employs a similar architecture,
introducing reinforcement learning to adaptively adjust sensor weights in different scenes.
Incorporating deep learning into tightly coupled VIO systems for dynamic object recog-
nition and dynamic impact elimination also enhances the SLAM system’s capabilities in
dynamic scenes [25,26]. LVI-SAM [27] uses the concept of treating LIO and VIO as sub-
systems, ensuring continued operation if either subsystem fails or jointly working when



Robotics 2024, 13, 2 3 of 21

a sufficient number of features are detected. Filter-based methods use only the current
frame’s sensor data, offering relatively lower computational complexity and good scal-
ability. Yang [28] couples visual point features within a certain distance range and IMU
measurements tightly using MSCKF, retaining plane feature constraints in the state vector.
FAST-LIVO [29] uses the error state iterative Kalman filter (ESIKF) [30,31] for multi-sensor
fusion state estimation. LIC-Fusion [32] utilizes the multi-state constraint Kalman filter
(MSCKF) fusion framework, tightly combining IMU measurements, extracted LIDAR edge
features, and sparse visual features. Subsequent work introduces a sliding window-based
plane feature tracking method [33]. R2LIVE [34] similarly uses an ESIKF for state estimation
and low-frequency factor graphs to optimize the VIO system.

In this paper, based on numerous multi-sensor schemes, we propose a novel sensor
fusion framework to obtain more accurate and robust position estimation through a low-
cost point cloud-based factor graph based on improvement in robustness, real-time, and
accuracy metrics. The contributions of this paper are as follows:

(1) We present a real-time simultaneous localization, mapping, and coloring framework.
Three parts of this framework are integrated through an ESIKF: the LIO module, the
VIO module, and the loop closure detection module. The whole system fuses data
from LIDAR, cameras, and IMUs together to achieve state estimation, while being able
to reconstruct a dense, 3D, RGB-colored point cloud of the environment in real-time.

(2) We propose a loop closure detection module utilizing Quatro and Nano-GICP, which
accomplishes state estimation between LIDAR frames via a radius-based search and
an extended point cloud alignment approach. Subsequently, we attain a more precise
evaluation of the current state via factor graph optimization through the iSAM2
optimizer. The optimization framework exclusively contains the LIDAR odometry
factor with the loop closure factor, resulting in a reduction in the optimization time
for other states.

(3) The developed system is validated on the open data sequence NTU VIRAL dataset [35]
and our customized device data. The results show that our system outperforms other
similar systems and that this approach effectively corrects the degradation of the LIO
scheme in structured scenarios.

Abbreviations used in this paper have been compiled in a table in Abbreviations for
better comprehension.

2. System Overview

An overview of our system is shown in Figure 1. It consists of three components: the
LIO module, the VIO module, and the loop closure detection module, which estimate the
states within the framework of the error state iterative Kalman filter, and together maintain
the LIDAR global map and the visual global map, as described in Section 2.3.

Robotics 2024, 13, x FOR PEER REVIEW 3 of 22 
 

 

dynamic scenes [25,26]. LVI-SAM [27] uses the concept of treating LIO and VIO as sub-
systems, ensuring continued operation if either subsystem fails or jointly working when 
a sufficient number of features are detected. Filter-based methods use only the current 
frame’s sensor data, offering relatively lower computational complexity and good scala-
bility. Yang [28] couples visual point features within a certain distance range and IMU 
measurements tightly using MSCKF, retaining plane feature constraints in the state vec-
tor. FAST-LIVO [29] uses the error state iterative Kalman filter (ESIKF) [30,31] for multi-
sensor fusion state estimation. LIC-Fusion [32] utilizes the multi-state constraint Kalman 
filter (MSCKF) fusion framework, tightly combining IMU measurements, extracted LI-
DAR edge features, and sparse visual features. Subsequent work introduces a sliding win-
dow-based plane feature tracking method [33]. R2LIVE [34] similarly uses an ESIKF for 
state estimation and low-frequency factor graphs to optimize the VIO system. 

In this paper, based on numerous multi-sensor schemes, we propose a novel sensor 
fusion framework to obtain more accurate and robust position estimation through a low-
cost point cloud-based factor graph based on improvement in robustness, real-time, and 
accuracy metrics. The contributions of this paper are as follows: 
(1) We present a real-time simultaneous localization, mapping, and coloring framework. 

Three parts of this framework are integrated through an ESIKF: the LIO module, the 
VIO module, and the loop closure detection module. The whole system fuses data 
from LIDAR, cameras, and IMUs together to achieve state estimation, while being 
able to reconstruct a dense, 3D, RGB-colored point cloud of the environment in real-
time. 

(2) We propose a loop closure detection module utilizing Quatro and Nano-GICP, which 
accomplishes state estimation between LIDAR frames via a radius-based search and 
an extended point cloud alignment approach. Subsequently, we attain a more precise 
evaluation of the current state via factor graph optimization through the iSAM2 op-
timizer. The optimization framework exclusively contains the LIDAR odometry fac-
tor with the loop closure factor, resulting in a reduction in the optimization time for 
other states. 

(3) The developed system is validated on the open data sequence NTU VIRAL dataset 
[35] and our customized device data. The results show that our system outperforms 
other similar systems and that this approach effectively corrects the degradation of 
the LIO scheme in structured scenarios. 
Abbreviations used in this paper have been compiled in a table in Abbreviations for 

better comprehension. 

2. System Overview 
An overview of our system is shown in Figure 1. It consists of three components: the 

LIO module, the VIO module, and the loop closure detection module, which estimate the 
states within the framework of the error state iterative Kalman filter, and together main-
tain the LIDAR global map and the visual global map, as described in Section 2.3. 

 

Figure 1. The overview of our proposed system.



Robotics 2024, 13, 2 4 of 21

The LIO module compensates for the motion distortion error of the LIDAR via back
propagation based on the estimated state of the IMU, and finally obtains the odometry of
the LIO module by constraining the residuals of the mapping from the point to the plane in
the LIDAR frames. The VIO module uses LIDAR sparse measurements within the camera
FOV through a non-feature-extracted direct matching method and tracks the image by
minimizing the direct photometric error. To further improve the LIDAR measurements, we
added a synchronously threaded, low-occupancy, optimization-based, coarse-to-fine loop
closure detection module for correcting cumulative errors over long periods of time and
distances, and updated the optimized localization information obtained from the QN-c2f-
SAM module matching into a Kalman filter to obtain a more accurate state estimation, as
described in Section 5. The three modules are tightly coupled together through an ESIKF, so
that the IMU measurements performed with multiple sensors, image alignment based on
photometric errors, and LIDAR scanning alignment together enable the acquisition of high-
precision odometry, and are able to operate for long periods of time without cumulative
systematic errors.

2.1. Filter-Based Odometry
2.1.1. System Definitions

In our system, we assume that the time offsets between the three sensors (LIDAR,
the IMU, and the camera) are known and can be calibrated or synchronized in advance.
We use the IMU coordinate system (denoted as I) as the body coordinate system, and the
first-frame body coordinate system as the global coordinate system origin (denoted as G).
In addition, we assume that the three sensors are rigidly connected together and that all
external sensors used are pre-calibrated.

2.1.2. The Boxplus “⊞” and Boxminus “⊟” Operator

The equation of state used in this paper is defined with the specified manifold
M = SO(3) × Rn, and the two operators “⊞” and “⊟” are defined to carry out the
computation of the state error with the manifold:

⊞ : M×Rn → M; ⊟ : M×M → Rn

M = SO(3) : R ⊞ r = RExp(r); R1 ⊟ R2 = Log
(
RT

2 R1
)

M = Rn : a ⊞ b = a + b; a ⊟ b = a − b
(1)

with r ∈ R3, a, b ∈ Rn. Exp(·) and Log(·) denote the bi-directional mappings between
rotation matrices and rotation vectors derived from Rodrigues’s formula. Thus, we can
obtain the following definition of the state operation equation:[

R
a

]
⊞
[

r
b

]
=

[
R ⊞ r
a + b

]
,
[

R1
a

]
⊟
[

R2
b

]
=

[
R1 ⊟ R2

a − b

]
(2)

2.1.3. Discrete State Transition Model

Based on the operations defined in (1), we can obtain the following discrete state
transfer model at the ith IMU measurement:

xi+1 = xi ⊞ (∆tf(xi, ui, wi)) (3)

where ∆t is the IMU sample period, and the state x, input u, process noise w, and function
f are defined as follows:



Robotics 2024, 13, 2 5 of 21

M = SO(3)×R15, dim(M) = 18

x .
=
[

GRT
I

GpT
I

GvT
I bT

ω bT
a

GgT
]T

∈ M
u .
=
[
ωT

m aT
m
]T , w .

=
[
nT

ω nT
a nT

bω nT
ba
]T

f(xi, ui, wi) =



ωmi − bωi − nωi
GvIi

GRIi (ami − bai − nai ) +
Ggi

nbωi
nbai
03×1


(4)

where GRI and GpI denote the current pose and position in the global frame; Gg denotes
the unknown gravity vector; ωm and am are directly measured by the IMU, accompanied
by their corresponding white noise; and bω and ba of the state are IMU biases, which are
modeled as random walks driven by Gaussian noise nbω and nba.

2.2. IMU Forward Propagation

In the tightly coupled system proposed in this paper, the error calculations of both
direct measurement models are based on the state estimates obtained from the forward
propagation of high-frequency IMUs. Also the arrival of data from the three important
modules mentioned in this paper (LIO module, VIO module, and loop closure module)
triggers the forward propagation process of the IMU. When the IMU input data ui arrives,
the calculation procedure for the state and its covariance, assuming a zero process error in
(3), is as follows:

x̂i+1 = x̂i ⊞ (∆tf(x̂i, ui, 0)) (5)

P̂i+1 = Fδx̂P̂iFT
δx̂ + FwQFT

w

Fδx̂ = ∂δx̂i+1
∂δx̂i

∣∣∣
δx̂i=0,wi=0

, Fw = ∂δx̂i+1
∂wi

∣∣∣
δx̂i=0,wi=0

(6)

where Q is the covariance of w. The associated estimation error is propagated in the
linearized error space as follows (more detailed derivations are available in Appendix A):

δx̂i+1 = xi+1 ⊟ x̂i+1
= (xi ⊞ (∆t · f(xi, ui, wi)))⊟ (x̂i ⊞ (∆t · f(x̂i, ui, 0)))
∼ N

(
0, Σδx̂k+1

)
,

(7)

where:
Σδx̂i+1 = Fδx̂Σδx̂i F

T
δx̂ + FwQFT

w

Fδx̂ =
∂(δx̂i+1)

∂δx̂i

∣∣∣
δx̂i=0,wi=0

, Fw =
∂(δx̂i+1)

∂wi

∣∣∣
δx̂i=0,wi=0

(8)

The time for IMU forward propagation (Equations (5) and (6)) is the time between
measurements of the two key data, i.e., from the time of arrival of the previous LIDAR or
image, ti+1, to the time of arrival of the propagation to the current LIDAR or image data, tk.
In general, forward propagation involves using the current state estimate obtained by the
ESIKF as the base state, and the results are used to calculate the error terms required for the
ESIKF. Particularly, when loop closure detection optimization yields superior results, the
base state is replaced with the latest state obtained from the loop closure module.

2.3. Map Management

In this paper, map management encompasses three distinct types of point cloud maps:
a LIDAR point cloud map designed for LIDAR point cloud matching, a point-patch cloud
map utilized for photometric error calculation, and a colored point cloud map employed
for visualization purposes.



Robotics 2024, 13, 2 6 of 21

2.3.1. LIDAR Point Cloud Map

LIDAR point clouds are organized and queried using the ikd-Tree method described
in [22]. The merging of scan results of point clouds is triggered by the update rate of
filters caused by the LIO module or loop closure module. The insertion of new map points
occurs recursively under downsampling at a given resolution. To maintain efficient queries
during prolonged operation, only points within a distance l from the current state position
are involved in building the ikd-Tree. Additionally, during each incremental process, the
ikd-Tree actively monitors its balance characteristics. It dynamically rebalances itself by
reconstructing relevant subtrees, ensuring complete accuracy in nearest neighbor searches
through its reconstruction mechanism with a caching mechanism.

2.3.2. Point-Patch Cloud Map

The point-patch cloud map utilized for the VIO module is fundamentally a sparse
point cloud map jointly constructed by points from the LIDAR point cloud map and their
observed patches. Its data structure encompasses voxel positions for swift indexing, patch
pyramids for all images, observing the point along with their corresponding poses, and the
specific location in the global coordinate system. When data points in the point-patch cloud
map are employed for error computation in the VIO module, post-projection, a rejection
mechanism using outlier removal, as outlined in the “livo” method, is applied to eliminate
points with depth inconsistencies or those obscured in the image. Updates to points in
the map occur when the distance exceeds a set value or when the computed photometric
difference surpasses a defined range.

2.3.3. Colored Point Cloud Map

Traditional LIO systems typically visualize point clouds using intensity points or
physical information such as position and height, making it challenging to intuitively assess
the true attributes of objects. Although VIO systems can densely map and capture point
clouds with genuine color information, their poor depth quality often leads to suboptimal
mapping results.

In contrast, the multi-sensor SLAM system proposed in this paper goes beyond
conventional approaches. It projects registered LIDAR point clouds onto corresponding
frames of images, extracting RGB information from the images. This process results in
a colored point cloud map that offers superior visualization compared to visually dense
maps. In comparison to FAST-LIVO, this paper further optimizes the adaptation process
for commonly used mechanical LIDARs, achieving a comprehensive RGB point cloud
mapping visualization algorithm applicable to all prevalent types of LIDARs in the market.

2.4. Frame-to-Map Measurement Error Model
2.4.1. LIDAR Point-to-Plane Residual Error Model

During the measurement process of mechanical LIDAR, motion distortion can lead
to a mismatch between the collected point cloud and the reference frame. Utilizing the
reverse propagation method in [21], it is possible to compensate for the point cloud Lpj
collected at sampling intervals in the local LIDAR coordinate system L at the time tk when
a certain level of cumulative data is reached. Assuming these corrected point clouds are
adjacent to a normal uj and a central point qj in the global map, we can define the error
term as these point-to-plane distances when the point cloud is projected into the global
coordinate system:

rl

(
x̌k+1, Lpj

)
= uT

j

(
GTIk+1

ITL
Lpj − qj

)
(9)

2.4.2. Visual Photometric Error

In processing visual data, this paper employs a sparse direct matching method based
on [5] that does not rely on visual features. This approach omits the conventional VIO
stages of visual feature extraction and depth estimation. Instead, it directly utilizes the



Robotics 2024, 13, 2 7 of 21

visual intensity point cloud from camera-observed patches for the matching and tracking
processes, yielding motion state estimation results between visual images, as schematically
shown in Figure 2.

Robotics 2024, 13, x FOR PEER REVIEW 7 of 22 
 

 

2.4.2. Visual Photometric Error 
In processing visual data, this paper employs a sparse direct matching method based 

on [5] that does not rely on visual features. This approach omits the conventional VIO 
stages of visual feature extraction and depth estimation. Instead, it directly utilizes the 
visual intensity point cloud from camera-observed patches for the matching and tracking 
processes, yielding motion state estimation results between visual images, as schemati-
cally shown in Figure 2. 

 
Figure 2. Our VIO module tracks with minimizing the frame-to-map photometric error of the 
patches under different states and different observation paths. 

Precisely, we implement a relative transformation 𝐈௞(൉) from the global points  ீ𝐩௜ 
in the visual point cloud map to the points corresponding to the current frame. By pro-
jecting these points using 𝝅(൉), we filter out those within the camera field of view (FOV) 
and match the newly obtained sparse image points with the nearest projected points. This 
process yields the observation paths 𝐐௜ for the same point in other images and their cor-
responding coefficients 𝐀୧ for the photometric value retrieval. The visual error term, for-
mulated for state updates, manifests as the photometric error resulting from distinct ob-
servation paths within the sparse point block obtained in the current image: 𝐫ୡ(𝐱ු୩ାଵ,  ୋ𝐩୧) = 𝐈୩ାଵ ቀ𝛑൫ ୍𝐓େି ଵୋ𝐓୍ౡశభିଵୋ𝐩୧൯ቁ − 𝐀୧𝐐୧ (10) 

2.4.3. Loop Closure Detection Error Model 
The specific method for loop closure detection is detailed in Section 5. The founda-

tional factor graph nodes are established based on the poses of each historical LIDAR 
keyframe, and initial pose transformations between nodes are obtained using the corre-
sponding odometry differences at each moment. Newly received LIDAR keyframes are 
inserted as new nodes into the existing factor graph. They are matched with the closest 
keyframes based on odometry information using the minimum radius method. When an 
accurate loop closure is detected, the calculated pose transformation between the current 
keyframe and its corresponding loop closure frame serves as an edge. This edge, along 
with odometry transformation edges between other neighboring nodes, is used in con-
junction with the Bayesian tree’s incremental smoothing and mapping to optimize the 
factor graph [19]. The results of graph optimization are then used to update the founda-
tional state of the current system. 

2.5. ESIKF Update 
Building upon the forward propagation of IMU data conducted in (5) to obtain the 

state 𝐱௞ାଵ, with reference to the derivation in [34], we can define its prior distribution as 
follows: 

Figure 2. Our VIO module tracks with minimizing the frame-to-map photometric error of the patches
under different states and different observation paths.

Precisely, we implement a relative transformation Ik(·) from the global points Gpi in
the visual point cloud map to the points corresponding to the current frame. By projecting
these points using π(·), we filter out those within the camera field of view (FOV) and match
the newly obtained sparse image points with the nearest projected points. This process
yields the observation paths Qi for the same point in other images and their corresponding
coefficients Ai for the photometric value retrieval. The visual error term, formulated for
state updates, manifests as the photometric error resulting from distinct observation paths
within the sparse point block obtained in the current image:

rc

(
x̌k+1, Gpi

)
= Ik+1

(
π
(

IT−1G
C T−1G

Ik+1
pi

))
− AiQi (10)

2.4.3. Loop Closure Detection Error Model

The specific method for loop closure detection is detailed in Section 5. The foundational
factor graph nodes are established based on the poses of each historical LIDAR keyframe,
and initial pose transformations between nodes are obtained using the corresponding
odometry differences at each moment. Newly received LIDAR keyframes are inserted as
new nodes into the existing factor graph. They are matched with the closest keyframes
based on odometry information using the minimum radius method. When an accurate loop
closure is detected, the calculated pose transformation between the current keyframe and
its corresponding loop closure frame serves as an edge. This edge, along with odometry
transformation edges between other neighboring nodes, is used in conjunction with the
Bayesian tree’s incremental smoothing and mapping to optimize the factor graph [19].
The results of graph optimization are then used to update the foundational state of the
current system.

2.5. ESIKF Update

Building upon the forward propagation of IMU data conducted in (5) to obtain the
state xk+1, with reference to the derivation in [34], we can define its prior distribution
as follows:

xk+1 ⊟ x̂k+1 = (x̌k+1 ⊞ δx̌k+1)⊟ x̂k+1
≈ x̌k+1 ⊟ x̂k+1 +Hδx̌k+1
∼ N

(
0, Σδx̂k+1

) (11)

with

H =
(x̌k+1 ⊞ δx̌k+1)⊟ x̂k+1

∂δx̌k+1

∣∣∣∣
δx̌k+1=0

(12)



Robotics 2024, 13, 2 8 of 21

Hence, the prior distribution of δx̌k+1 in Equation (7) can be articulated as follows:

δx̌k+1 ∼ N
(
−H−1(x̌k+1 ⊟ x̂k+1),H−1Σδx̂k+1H

−T
)

(13)

Taking into account the measurement errors involved in the direct method, and
combining it with the prior distribution in (13), we can obtain the maximum a posteriori
(MAP) estimate for δx̌k+1 by cumulatively combining the error distributions from the
LIDAR measurement and the image formula. The MAP estimate is expressed as follows:

min
δx̌k+1

(
∥ x̌k+1 ⊟ x̂k+1 +Hδx̌k+1 ∥

Σ−1
δ
∼
x k+1

+
ml
∑

j=1
∥ rl

(
x̌k+1, Lpj

)
+ Hl

jδx̌k+1 ∥
2

Σ−1
αj

+
mc
∑

s=1
∥ rc

(
x̌k+1, Cps, GPs

)
+ Hc

sδx̌k+1 ∥2
Σ−1
βs

) (14)

where the cumulative formula is given by ∥ x ∥2
Σ = xTΣ−1x, with other notations main-

tained as follows:

HT =
[
Hl

1, . . . , Hl
ml

, HcT
1 , . . . , Hc

mc

]T

R = diag
(

Σα1 , . . . , Σαml
, Σβ1 , . . . , Σβmc

)
žT

k+1 =
[
rl
(
x̌k+1, Lp1

)
, . . . , rl

(
x̌k+1, Lpml

)
,

rc
(
x̌k+1, Cp1, GP1

)
, . . . , rc

(
x̌k+1, Cpmc

, GPmc

)]
P =

(
H)−1Σδx̂k+1

(
H)−T

(15)

The update for the Kalman gain is referenced from [21]:

K =
(

HTR−1H + P−1
)−1

HTR−1 (16)

Finally, the updated state can be derived as follows:

x̌k+1 = x̌k+1 ⊞
(
−Kžk+1 − (I − KH)

(
H)−1(x̌k+1 ⊟ x̂k+1)

)
(17)

In this context, optimization takes the form of the iterated Kalman filter using the
Gauss–Newton method [30] for iterative solving. The optimized state, as indicated in
Equations (16) and (17), is subsequently employed in the IMU forward propagation pro-
cess outlined in Equations (5) and (6). Concurrently, the map management described in
Section 2.3 also uses the updated state as the odometry for registration:

x̂k+1 = x̌k+1, Σ̂δxk+1 = (I − KH)Σ̌δxk+1 (18)

It is essential to emphasize that this formula can have different forms depending on
the triggering of different modules within the system. For instance, when the results from
the loop closure module arrive, the updated state values and error terms change from
the filter’s updated results to the loop closure results. Similarly, for the two error terms,
when LIDAR data arrives, the image photometric residual term will not be activated, and
vice versa.

3. QN-C2F-SAM Loop Method

The tightly coupled framework established by FAST-LIVO [29] performs well in the
realm of multi-sensor fusion, but it lacks an effective solution for errors accumulated over a
long period. We propose QN-C2F-SAM, a coarse-to-fine point cloud loop closure method.
This approach utilizes optimized odometry information and local point clouds. It employs



Robotics 2024, 13, 2 9 of 21

the QN-C2F point cloud registration method to search for and obtain relative poses within
a certain radius R for historical keyframes. Subsequently, an incremental factor graph
is constructed, and the iSAM optimizer is employed to optimize the poses of historical
keyframes, resulting in a more accurate transformation for the current pose. Its structure is
depicted in Figure 3.

Robotics 2024, 13, x FOR PEER REVIEW 9 of 22 
 

 

3. QN-C2F-SAM Loop Method 
The tightly coupled framework established by FAST-LIVO [29] performs well in the 

realm of multi-sensor fusion, but it lacks an effective solution for errors accumulated over 
a long period. We propose QN-C2F-SAM, a coarse-to-fine point cloud loop closure 
method. This approach utilizes optimized odometry information and local point clouds. 
It employs the QN-C2F point cloud registration method to search for and obtain relative 
poses within a certain radius 𝐑 for historical keyframes. Subsequently, an incremental 
factor graph is constructed, and the iSAM optimizer is employed to optimize the poses of 
historical keyframes, resulting in a more accurate transformation for the current pose. Its 
structure is depicted in Figure 3. 

 
Figure 3. Our loop detection module updates the state estimation by optimizing (with iSAM2) a 
factor graph based on both LIDAR odometry constraints and loop closure constraints. 

3.1. Coarse Matching Method 
Quatro [36] is an efficient point cloud registration method operating at a global scale. 

It takes full advantage of the characteristics of small rotations in the x- and y-axis direc-
tions in urban spaces. Instead of the general rotation 𝐑෡ ା, it employs an approximate esti-
mation of rotation 𝐑෡, which is more focused on the z-axis. This approach effectively ad-
dresses the issue of degraded matching quality due to large viewpoint distances and ex-
cessive rotations. It completes the task of estimating relative poses for loop closure candi-
dates in various degenerate situations. We utilize the Quatro-SO(3) estimation algorithm 
and the COTE algorithm to estimate the transformation 𝐓, composed of the rotation rela-
tionship 𝐑෡ ା and translation estimate 𝐭̂, between the current keyframe point cloud and 
the historical keyframes within a radius 𝐫. We consider them as two matching point cloud 
clusters A = ሼa୧ሽ, B = ሼb୧ሽ. 

3.2. Fine Matching Method 
The standard ICP method [37] is renowned for its exceptional accuracy, but this al-

gorithm (as well as other ICP variants) heavily relies on nearest neighbor searches to as-
sociate the closest points [38]. NanoFLANN, a derivative of FLANN, is a C++ library based 
on kd-Trees. It is designed to approximate the neighbors around a point in a two-dimen-
sional or three-dimensional point cloud. It is invoked within the nearest neighbor function 
to expedite the computation speed of FeatureAffine and Strain. GICP [39], building upon 
the standard ICP algorithm, extends the matching approach by utilizing the surface co-
variance matrix of the point cloud to construct the cost function, as follows: 

We use Gaussian distributions to define the previously matched point cloud clusters, 
where a୧ ∼ 𝒩൫aො୧, C୧୅൯, b୧ ∼ 𝒩൫b෠୧, C୧୆൯  is the covariance matrix for each corresponding 
point. We combine the estimates obtained from Quatro to define the rigid transformation 
matrix 𝐓. Thus, the matching error can be defined in the following form: 𝐝መ𝐢 = 𝐛መ 𝐢 − 𝐓𝐚ො𝐢 (19) 

Due to the translational invariance property of the Gaussian distribution, the registration 
error in (18) can be expressed as: 

Figure 3. Our loop detection module updates the state estimation by optimizing (with iSAM2) a
factor graph based on both LIDAR odometry constraints and loop closure constraints.

3.1. Coarse Matching Method

Quatro [36] is an efficient point cloud registration method operating at a global scale.
It takes full advantage of the characteristics of small rotations in the x- and y-axis directions
in urban spaces. Instead of the general rotation R̂+, it employs an approximate estimation
of rotation R̂, which is more focused on the z-axis. This approach effectively addresses
the issue of degraded matching quality due to large viewpoint distances and excessive
rotations. It completes the task of estimating relative poses for loop closure candidates in
various degenerate situations. We utilize the Quatro-SO(3) estimation algorithm and the
COTE algorithm to estimate the transformation T, composed of the rotation relationship
R̂+ and translation estimate t̂, between the current keyframe point cloud and the historical
keyframes within a radius r. We consider them as two matching point cloud clusters
A = {ai}, B = {bi}.

3.2. Fine Matching Method

The standard ICP method [37] is renowned for its exceptional accuracy, but this
algorithm (as well as other ICP variants) heavily relies on nearest neighbor searches to
associate the closest points [38]. NanoFLANN, a derivative of FLANN, is a C++ library
based on kd-Trees. It is designed to approximate the neighbors around a point in a two-
dimensional or three-dimensional point cloud. It is invoked within the nearest neighbor
function to expedite the computation speed of FeatureAffine and Strain. GICP [39], building
upon the standard ICP algorithm, extends the matching approach by utilizing the surface
covariance matrix of the point cloud to construct the cost function, as follows:

We use Gaussian distributions to define the previously matched point cloud clusters,
where ai ∼ N

(
âi, CA

i

)
, bi ∼ N

(
b̂i, CB

i

)
is the covariance matrix for each corresponding

point. We combine the estimates obtained from Quatro to define the rigid transformation
matrix T. Thus, the matching error can be defined in the following form:

d̂i = b̂i − Tâi (19)

Due to the translational invariance property of the Gaussian distribution, the registration
error in (18) can be expressed as:

di ∼ N
(

b̂i − Tâi, CB
i + TCA

i TT
)

= N
(

0, CB
i + TCA

i TT
) (20)



Robotics 2024, 13, 2 10 of 21

Therefore, the cost function in the standard ICP process is replaced by:

T = arg min
T

∑
i

dT
i

(
CB

i + TCA
i TT

)−1
di (21)

In the selection of the optimizer, we adhered to the choice of the Gauss–Newton
optimizer used in VGICP [39]. This has been validated to demonstrate superior speed and
accuracy compared to the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimizer in the
PCL library.

3.3. Factor Graph Optimization

Concurrently, we utilize the optimized odometry information and local point cloud
map information from the other two modules as inputs to construct an incremental graph.
This graph has states as nodes, and frame-to-frame pose relations along with loop closure
detections as factors. The update process of this graph is computationally lightweight:
when only frame-to-frame pose relations are present as factors, the incremental graph will
not trigger an optimization process. The iSAM2 optimizer [19] updates the entire graph
only when the point cloud registration result is added as a loop closure factor to the graph.

In a filter-based reasoning SLAM system faced with inputs of lower quality, noticeable
cumulative errors may occur. For our loop closure system, factor graph optimization
is employed to store and build relationships among sparse historical keyframes. This
enables us to eliminate accumulated errors resulting from degradation and misalignment
by leveraging both loop closure constraints and inter-frame pose change constraints when
a loop is detected.

4. Experiments and Results

In this section, we will validate the proposed method using both open and pri-
vate datasets.

4.1. Benchmark Dataset

In this segment, quantitative experiments have been systematically conducted on the
complete set of nine sequences encompassed within the NTU-VIRAL open dataset [35].
This dataset incorporates data from the left camera, the horizontal 16-channel OS1 gen14
Light Detection and Ranging (LIDAR) sensor, and its internal Inertial Measurement Unit
(IMU). For these, we measured fundamental information such as time and distance, and
the results are presented in Table 1.

Table 1. Details of all benchmark datasets.

Name Distance (m) Duration (s) Remark

eee_01 237.01 m 398.7 s Collected at the School of EEE’s central carpark
eee_02 171.08 m 321.1 s Collected at the School of EEE’s central carpark
eee_03 127.83 m 181.4 s Collected at the School of EEE’s central carpark
sbs_01 202.87 m 354.2 s Collected at the School of Bio. Science’s front square
sbs_02 183.57 m 373.3 s Collected at the School of Bio. Science’s front square
sbs_03 198.54 m 389.3 s Collected at the School of Bio. Science’s front square
nya_01 160.24 m 396.3 s Collected inside the Nanyang Auditorium
nya_02 249.10 m 428.7 s Collected inside the Nanyang Auditorium
nya_03 315.47 m 411.2 s Collected inside the Nanyang Auditorium

The evaluative framework involves a comparative analysis of our proposed method-
ology against several open-source odometry systems, which include FAST-LIVO [29]—a
tightly coupled LIDAR-inertial-visual odometry employing a direct method. Addition-
ally, R2LIVE [34], characterized by feature-based full LIDAR-inertial-visual odometry,
SVO2.0 [40], a semi-direct visual-inertial odometry, and DVL-SLAM [41], a direct LIDAR-



Robotics 2024, 13, 2 11 of 21

visual SLAM system, are included in the comparative assessment. All systems were
downloaded from their GitHub repositories. R2LIVE and DVL-SLAM used the recom-
mended outdoor parameters. SVO2.0 parameters were tuned for optimal results. The
control experiment used the same DVL-SLAM version as FAST-LIVO, maintaining sliding
window optimization for accuracy. Our reason for not discussing the excellent multi-sensor
solution LVI-SAM in this paper is that it requires a nine-axis IMU as a data input.

4.1.1. Algorithmic Analysis Tool

In this study, all algorithm-derived odometry data were stored in TUM format, and
comparative experiments were conducted using the evo tool, which is a widely utilized
toolkit for processing, evaluating, and comparing the trajectory outputs of odometry ob-
tained through SLAM algorithms. The odometry and the ground truth of the dataset
were initially filtered based on ROS timestamps under the TUM format. Subsequently,
spatial registration was conducted using the Umeyama method [42], and evaluation met-
rics such as the absolute translational error (APE), relative translational error (RPE), and
root mean squared error (RSME) over the entire time domain were employed to assess
trajectory accuracy.

4.1.2. Numerical Comparison

The RMSE results of the APE obtained through evo across the entire sequence are pre-
sented in Table 2, with each method employing consistent parameters across all sequences.
Our method demonstrated the superior accuracy in most sequences, except for the “sbs
02” and “sbs 03” sequences, where it only falls below FAST-LIVO. We attribute this to
the challenges in the loop closure detection process, wherein rapid changes in the UAV’s
orientation hindered the low-frequency loop module from obtaining sufficient positional
information. Benefiting from the tight coupling of multi-sensor information, our approach
outperforms traditional visual/LIDAR SLAM methods that rely solely on the IMU for
auxiliary information.

Table 2. Absolute translational errors (RMSE, METERS) in NTU-VIRAL datasets with good ground
truth.

eee_01 eee_02 eee_03 sbs_01 sbs_02 sbs_03 nya_01 nya_02 nya_03

Ours 0.22 0.20 0.25 0.25 0.24 0.22 0.23 0.23 0.25
FAST-LIVO 0.24 0.27 0.27 0.24 0.23 0.3 0.24 0.25 0.28

R2LIVE 0.62 0.44 0.97 0.67 0.31 0.48 0.31 0.63 0.31
SVO2.0 Fail Fail 5.25 8.88 Fail Fail 2.49 3.56 4.49

DVL-SLAM 2.96 2.56 5.22 2.04 2.58 2.55 3.58 2.34 3.33

Due to the inadequate prior information caused by the rapid rotation of the UAV and
strong image blurring, SVO 2.0 fails in some sequences. In contrast, DVL-SLAM, utilizing
LIDAR measurements in its VO module, survived in these sequences. R2LIVE, employing
point cloud features for matching, encounters reduced data availability when a non-solid-
state radar is used. FAST-LIVO, lacking a loop closure module, exhibits noticeable odometer
accuracy deviations in long-duration, long-distance scenarios. However, excessive loop
closure detection optimization in regions of minor UAV positional changes may lead to
reduced accuracy.

4.1.3. Visual Comparison

The visualization trajectory tool in the evo toolkit offers a more intuitive and clear presen-
tation of data comparison and error distribution among different algorithms. Figures 4 and 5
illustrates the trajectory comparison distribution and independent deviations in the x, y,
and z directions for FAST-LIVO, SVO 2.0, and our algorithm on sequences “eee_03” and
“nya_01”. It is evident that our algorithm achieved the best results in both scenarios. During



Robotics 2024, 13, 2 12 of 21

our analysis, we observed that FAST-LIVO and SVO, when subjected to time-matched
filtering through evo, exhibited significantly fewer fundamental matching points compared
to our approach. This discrepancy resulted in non-smooth trajectories in the figures. In
comparison, while FAST-LIVO obtained results closer to the ground truth trajectory, it
exhibited noticeable jitter in certain rotations in the “eee_03” sequence. In the “nya_01”
sequence, characterized by a narrower overall range of motion, our algorithm maintained
its accuracy, similar to FAST-LIVO.

Robotics 2024, 13, x FOR PEER REVIEW 12 of 22 
 

 

4.1.3. Visual Comparison 
The visualization trajectory tool in the evo toolkit offers a more intuitive and clear 

presentation of data comparison and error distribution among different algorithms. Fig-
ures 4 and 5 illustrates the trajectory comparison distribution and independent deviations 
in the x, y, and z directions for FAST-LIVO, SVO 2.0, and our algorithm on sequences 
“eee_03” and “nya_01”. It is evident that our algorithm achieved the best results in both 
scenarios. During our analysis, we observed that FAST-LIVO and SVO, when subjected to 
time-matched filtering through evo, exhibited significantly fewer fundamental matching 
points compared to our approach. This discrepancy resulted in non-smooth trajectories in 
the figures. In comparison, while FAST-LIVO obtained results closer to the ground truth 
trajectory, it exhibited noticeable jitter in certain rotations in the “eee_03” sequence. In the 
“nya_01” sequence, characterized by a narrower overall range of motion, our algorithm 
maintained its accuracy, similar to FAST-LIVO. 

 

 

(a) (b) 

Figure 4. The left graph (a) illustrates distinct trajectories in the “eee_03” sequences, while the right 
graphs (b) display independent errors along the three axes. 

 

(a) (b) 

Figure 5. The left graph (a) illustrates distinct trajectories in the “nya_01” sequences, while the right 
graphs (b) display independent errors along the three axes. 

Figure 4. The left graph (a) illustrates distinct trajectories in the “eee_03” sequences, while the right
graphs (b) display independent errors along the three axes.

Robotics 2024, 13, x FOR PEER REVIEW 12 of 22 
 

 

4.1.3. Visual Comparison 
The visualization trajectory tool in the evo toolkit offers a more intuitive and clear 

presentation of data comparison and error distribution among different algorithms. Fig-
ures 4 and 5 illustrates the trajectory comparison distribution and independent deviations 
in the x, y, and z directions for FAST-LIVO, SVO 2.0, and our algorithm on sequences 
“eee_03” and “nya_01”. It is evident that our algorithm achieved the best results in both 
scenarios. During our analysis, we observed that FAST-LIVO and SVO, when subjected to 
time-matched filtering through evo, exhibited significantly fewer fundamental matching 
points compared to our approach. This discrepancy resulted in non-smooth trajectories in 
the figures. In comparison, while FAST-LIVO obtained results closer to the ground truth 
trajectory, it exhibited noticeable jitter in certain rotations in the “eee_03” sequence. In the 
“nya_01” sequence, characterized by a narrower overall range of motion, our algorithm 
maintained its accuracy, similar to FAST-LIVO. 

 

 

(a) (b) 

Figure 4. The left graph (a) illustrates distinct trajectories in the “eee_03” sequences, while the right 
graphs (b) display independent errors along the three axes. 

 

(a) (b) 

Figure 5. The left graph (a) illustrates distinct trajectories in the “nya_01” sequences, while the right 
graphs (b) display independent errors along the three axes. 
Figure 5. The left graph (a) illustrates distinct trajectories in the “nya_01” sequences, while the right
graphs (b) display independent errors along the three axes.

In Figure 6, we present a comparative error distribution between our algorithm and
FAST-LIVO. Error calculations were conducted by comparing the trajectories obtained
by both algorithms with the ground truth trajectory in the “nya_03” sequence, utilizing
various calculation methods for result analyses. The error distributions for both algorithms
are similar in their APE values, with our algorithm slightly outperforming FAST-LIVO,
particularly in trajectories near the edges. Regarding RPE distribution, our algorithm
significantly outperforms FAST-LIVO, achieving errors below the median in the majority
of trajectories.



Robotics 2024, 13, 2 13 of 21

Robotics 2024, 13, x FOR PEER REVIEW 13 of 22 
 

 

In Figure 6, we present a comparative error distribution between our algorithm and 
FAST-LIVO. Error calculations were conducted by comparing the trajectories obtained by 
both algorithms with the ground truth trajectory in the “nya_03” sequence, utilizing var-
ious calculation methods for result analyses. The error distributions for both algorithms 
are similar in their APE values, with our algorithm slightly outperforming FAST-LIVO, 
particularly in trajectories near the edges. Regarding RPE distribution, our algorithm sig-
nificantly outperforms FAST-LIVO, achieving errors below the median in the majority of 
trajectories. 

 
Figure 6. Error distribution along the trajectory, depicting (a) our method (APE), (b) FAST-LIVO 
(APE), (c) our method (RPE), and (d) FAST-LIVO (RPE). 

4.2. Private Dataset 
4.2.1. Handheld Device Dataset 

Our data acquisition setup, illustrated in Figure 7, comprises a VLP-16 LIDAR(Velo-
dyne, San Jose, Silicon Valley, CA, USA), an D455 camera (Intel, Santa Clara, CA, USA), 
and a MicroStrain 3DM-GX5-25 IMU(Parker Hannifin, Cleveland, OH, USA). These de-
vices can be affixed to a compact vehicle platform through connectors or operated manu-
ally. The sensors, characterized by distinct frequencies, undergo time-soft synchroniza-
tion via ports in a Precision Time Protocol (PTP) mode, ensuring uniform timestamps 
within the Robot Operating System (ROS) framework. 

 
Figure 7. Our platform setup with software synchronization for data collection. (a) Composition of 
our hardware components, (b) schematic diagram of software time synchronization based on PTP. 

Figure 6. Error distribution along the trajectory, depicting (a) our method (APE), (b) FAST-LIVO
(APE), (c) our method (RPE), and (d) FAST-LIVO (RPE).

4.2. Private Dataset
4.2.1. Handheld Device Dataset

Our data acquisition setup, illustrated in Figure 7, comprises a VLP-16 LIDAR(Velodyne,
San Jose, Silicon Valley, CA, USA), an D455 camera (Intel, Santa Clara, CA, USA), and a
MicroStrain 3DM-GX5-25 IMU(Parker Hannifin, Cleveland, OH, USA). These devices can
be affixed to a compact vehicle platform through connectors or operated manually. The
sensors, characterized by distinct frequencies, undergo time-soft synchronization via ports
in a Precision Time Protocol (PTP) mode, ensuring uniform timestamps within the Robot
Operating System (ROS) framework.

Robotics 2024, 13, x FOR PEER REVIEW 13 of 22 
 

 

In Figure 6, we present a comparative error distribution between our algorithm and 
FAST-LIVO. Error calculations were conducted by comparing the trajectories obtained by 
both algorithms with the ground truth trajectory in the “nya_03” sequence, utilizing var-
ious calculation methods for result analyses. The error distributions for both algorithms 
are similar in their APE values, with our algorithm slightly outperforming FAST-LIVO, 
particularly in trajectories near the edges. Regarding RPE distribution, our algorithm sig-
nificantly outperforms FAST-LIVO, achieving errors below the median in the majority of 
trajectories. 

 
Figure 6. Error distribution along the trajectory, depicting (a) our method (APE), (b) FAST-LIVO 
(APE), (c) our method (RPE), and (d) FAST-LIVO (RPE). 

4.2. Private Dataset 
4.2.1. Handheld Device Dataset 

Our data acquisition setup, illustrated in Figure 7, comprises a VLP-16 LIDAR(Velo-
dyne, San Jose, Silicon Valley, CA, USA), an D455 camera (Intel, Santa Clara, CA, USA), 
and a MicroStrain 3DM-GX5-25 IMU(Parker Hannifin, Cleveland, OH, USA). These de-
vices can be affixed to a compact vehicle platform through connectors or operated manu-
ally. The sensors, characterized by distinct frequencies, undergo time-soft synchroniza-
tion via ports in a Precision Time Protocol (PTP) mode, ensuring uniform timestamps 
within the Robot Operating System (ROS) framework. 

 
Figure 7. Our platform setup with software synchronization for data collection. (a) Composition of 
our hardware components, (b) schematic diagram of software time synchronization based on PTP. 
Figure 7. Our platform setup with software synchronization for data collection. (a) Composition of
our hardware components, (b) schematic diagram of software time synchronization based on PTP.

In the delineated dataset, the entire data collection process was conducted by an
operator holding the device. The scenes encompass a wide range of dynamic objects,
structural and non-structural point clouds, as well as variations in brightness within small
tunnels. Figure 8 illustrates the trajectory schematic and angular velocity changes. For
testing the loop closure module, the recorded routes include identifiable similar scenes
in both forward and reverse directions. Unlike scenarios involving vehicles or UAVs, the
system’s motion process is slower, introducing numerous small disturbances caused by
shaking and oscillations, amplifying measurement noise in the IMU. The dataset also in-
cludes significant variations in lighting conditions, transformations between structured and



Robotics 2024, 13, 2 14 of 21

unstructured environments, and some dynamic interferences, including moving crowds
and nearby cycling motion. Overall, this presents a relatively challenging scenario for
comprehensive assessment.

Robotics 2024, 13, x FOR PEER REVIEW 14 of 22 
 

 

In the delineated dataset, the entire data collection process was conducted by an op-
erator holding the device. The scenes encompass a wide range of dynamic objects, struc-
tural and non-structural point clouds, as well as variations in brightness within small tun-
nels. Figure 8 illustrates the trajectory schematic and angular velocity changes. For testing 
the loop closure module, the recorded routes include identifiable similar scenes in both 
forward and reverse directions. Unlike scenarios involving vehicles or UAVs, the system’s 
motion process is slower, introducing numerous small disturbances caused by shaking 
and oscillations, amplifying measurement noise in the IMU. The dataset also includes sig-
nificant variations in lighting conditions, transformations between structured and un-
structured environments, and some dynamic interferences, including moving crowds and 
nearby cycling motion. Overall, this presents a relatively challenging scenario for compre-
hensive assessment. 

 
Figure 8. The upper panel illustrates a trajectory schematic of our proprietary dataset, while the 
lower panel depicts the corresponding gyroscope-measured angular velocity over time. 

The camera–IMU calibration was accomplished by determining the extrinsic param-
eters through the stereo version of VINS-FUSION. The resultant obtained parameters be-
tween the IMU and the left camera were utilized for calibration. For the LIDAR–IMU cal-
ibration, the online calibration method from FAST-LIO2 [22] was employed, optimizing 
the calibration in standard structured scenes. 

4.2.2. Mapping with Normal Point Cloud 
Our proposed method successfully generated highly detailed point cloud maps on a 

private dataset. The projection of the results onto real satellite images are illustrated in 
Figure 9. Particularly when viewed from a top angle, the mapping performance is out-
standing, showcasing detailed representations of buildings and roads. There is no notice-
able z-axis offset in the planar view. When observed from a third perspective, the point 
cloud maps exhibit a high level of fidelity with no evident trailing or noise issues. 

Figure 8. The upper panel illustrates a trajectory schematic of our proprietary dataset, while the
lower panel depicts the corresponding gyroscope-measured angular velocity over time.

The camera–IMU calibration was accomplished by determining the extrinsic param-
eters through the stereo version of VINS-FUSION. The resultant obtained parameters
between the IMU and the left camera were utilized for calibration. For the LIDAR–IMU
calibration, the online calibration method from FAST-LIO2 [22] was employed, optimizing
the calibration in standard structured scenes.

4.2.2. Mapping with Normal Point Cloud

Our proposed method successfully generated highly detailed point cloud maps on
a private dataset. The projection of the results onto real satellite images are illustrated
in Figure 9. Particularly when viewed from a top angle, the mapping performance is
outstanding, showcasing detailed representations of buildings and roads. There is no
noticeable z-axis offset in the planar view. When observed from a third perspective, the
point cloud maps exhibit a high level of fidelity with no evident trailing or noise issues.

We compared the results obtained in this study with some exemplary radar-based
SLAM solutions, and the outcomes of this comparison are presented in Figure 10. Initially,
the performance of FAST-LIO2 exhibited a commendable mapping quality in the early
stages, but experienced degradation when navigating through a challenging narrow tunnel,
resulting in a decline in the initially high-precision mapping performance. Both LIO-
SAM and our proposed method produced point cloud maps with comparable effects;
however, our algorithm demonstrated superior accuracy at specific locations, such as road
and building boundaries, manifesting a slight overall angular offset. In the case of LVI-
SAM, utilizing identical sensor extrinsics, the system failed to successfully complete the
mapping task, experiencing degradation within the initial 20 s of the dataset and leading to
irreversible drift (whether employing real-time extrinsic optimization or fixed extrinsics).



Robotics 2024, 13, 2 15 of 21Robotics 2024, 13, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 9. Visualization of our point cloud mapping results. (a) Merged intensity-colored map and 
real satellite imagery; (b) buildings from a top view perspective; (c) roads and trees from a third-
person perspective; (d) front view of the scene. The white boxes on the map show a narrow tunnel 
scene and some scenes with dynamic objects including pedestrians and bicycles. 

We compared the results obtained in this study with some exemplary radar-based 
SLAM solutions, and the outcomes of this comparison are presented in Figure 10. Initially, 
the performance of FAST-LIO2 exhibited a commendable mapping quality in the early 
stages, but experienced degradation when navigating through a challenging narrow tun-
nel, resulting in a decline in the initially high-precision mapping performance. Both LIO-
SAM and our proposed method produced point cloud maps with comparable effects; 
however, our algorithm demonstrated superior accuracy at specific locations, such as road 
and building boundaries, manifesting a slight overall angular offset. In the case of LVI-
SAM, utilizing identical sensor extrinsics, the system failed to successfully complete the 
mapping task, experiencing degradation within the initial 20 s of the dataset and leading 
to irreversible drift (whether employing real-time extrinsic optimization or fixed extrin-
sics). 

Figure 9. Visualization of our point cloud mapping results. (a) Merged intensity-colored map and real
satellite imagery; (b) buildings from a top view perspective; (c) roads and trees from a third-person
perspective; (d) front view of the scene. The white boxes on the map show a narrow tunnel scene and
some scenes with dynamic objects including pedestrians and bicycles.

Robotics 2024, 13, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 10. (a) The 3D mapping results of our method, FAST-LIO2 (b), LIO-SAM (c), and LVI-SAM 
(d) mapped onto our dataset. The point clouds are colored based on intensity. 

In the context of point cloud details, we conducted an exhaustive comparative anal-
ysis between our algorithm and FAST-LIO2 across various categories of point cloud de-
tails, as elucidated in Figure 11. In Figure 11a,b, depicting structured scenes at the edges 
and center, our algorithm captures detailed features, while FAST-LIO2 exhibits incorrect 
artifacts due to rotational scale drift, particularly evident around the depicted vehicle. Fig-
ure 11c highlights clearer boundaries in our algorithm with fewer point clouds, despite 
noise introduced by dynamic objects. Nonetheless, the presence of dynamic elements such 
as people and bicycles introduces some noise points, particularly noticeable around the 
image center. In Figure 11d, the central display highlights the point cloud corresponding 
to the canopy of a tree within the scene. A comparative assessment underscores that our 
algorithm’s point cloud map distinctly delineates the boundaries between the tree trunk 
and the canopy. Even from a top view, the discernibility of the tree and surrounding struc-
tures is evident. 

Figure 10. (a) The 3D mapping results of our method, FAST-LIO2 (b), LIO-SAM (c), and LVI-SAM
(d) mapped onto our dataset. The point clouds are colored based on intensity.



Robotics 2024, 13, 2 16 of 21

In the context of point cloud details, we conducted an exhaustive comparative analysis
between our algorithm and FAST-LIO2 across various categories of point cloud details, as
elucidated in Figure 11. In Figure 11a,b, depicting structured scenes at the edges and center,
our algorithm captures detailed features, while FAST-LIO2 exhibits incorrect artifacts due to
rotational scale drift, particularly evident around the depicted vehicle. Figure 11c highlights
clearer boundaries in our algorithm with fewer point clouds, despite noise introduced
by dynamic objects. Nonetheless, the presence of dynamic elements such as people and
bicycles introduces some noise points, particularly noticeable around the image center. In
Figure 11d, the central display highlights the point cloud corresponding to the canopy of a
tree within the scene. A comparative assessment underscores that our algorithm’s point
cloud map distinctly delineates the boundaries between the tree trunk and the canopy.
Even from a top view, the discernibility of the tree and surrounding structures is evident.

Robotics 2024, 13, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 11. Detailed comparison of the intensity-colored point clouds generated by our algorithm 
and FAST-LIO2 mapped onto our proprietary dataset. 

4.2.3. Mapping with RGB Point Cloud 
The color point cloud mapping scheme proposed in FAST-LIVO is specifically de-

signed for AVIA solid-state LIDAR and does not have compatibility with traditional me-
chanical LIDAR in a multi-sensor setup. This paper extends that groundwork and refines 
this approach, rectifying the inaccurate point cloud mapping relationships for mechanical 
LIDAR. The outcome is a mapping relationship aligned with the camera’s field of view 
(FOV), facilitating the generation of an RGB point cloud map. 

The real-time reconstructed RGB point cloud map using our algorithm is illustrated 
in Figure 12. In comparison to conventional point cloud maps, color-coded based on in-
tensity or position, the colored point cloud distinctly emphasizes object boundaries, 
thereby enhancing scene fidelity and improving the interpretability of the mapping pro-
cess. 

 
Figure 12. Illustration of RGB-colored point cloud maps based on non-solid-state LIDAR. (a) Origi-
nal incorrect projection method in FAST-LIVO. (b) Corrected projection method after our modifica-
tion. (c) Comparison between intensity-colored and RGB-colored point clouds, the red box shows 
the real picture, and the white box shows the corresponding point cloud details. 

Figure 11. Detailed comparison of the intensity-colored point clouds generated by our algorithm and
FAST-LIO2 mapped onto our proprietary dataset.

4.2.3. Mapping with RGB Point Cloud

The color point cloud mapping scheme proposed in FAST-LIVO is specifically designed
for AVIA solid-state LIDAR and does not have compatibility with traditional mechanical
LIDAR in a multi-sensor setup. This paper extends that groundwork and refines this
approach, rectifying the inaccurate point cloud mapping relationships for mechanical
LIDAR. The outcome is a mapping relationship aligned with the camera’s field of view
(FOV), facilitating the generation of an RGB point cloud map.

The real-time reconstructed RGB point cloud map using our algorithm is illustrated in
Figure 12. In comparison to conventional point cloud maps, color-coded based on intensity
or position, the colored point cloud distinctly emphasizes object boundaries, thereby
enhancing scene fidelity and improving the interpretability of the mapping process.

4.3. Time Analysis

In this section, we evaluated module time consumption on our eight-core Intel Core
i7-10875 notebook PC, as shown in Table 3. The LIO module processed frames at the fastest
rate, averaging at 18.02 ms. While the VIO module initially matched this rate, it stabilized
at around three times the LIO module’s consumption as the map size increased. The loop
closure module, based on optimization, followed a similar trend to the VIO module. By
employing a faster point cloud matching tool and optimizing execution timing, the graph
optimization per frame was reduced to 25.24 ms, resulting in an overall time consumption
of 39.80 ms. It is evident that, by employing a faster point cloud matching tool and a



Robotics 2024, 13, 2 17 of 21

low-frequency graph optimization design, we achieved real-time loop closure estimation
with only a modest increase in time consumption.

Robotics 2024, 13, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 11. Detailed comparison of the intensity-colored point clouds generated by our algorithm 
and FAST-LIO2 mapped onto our proprietary dataset. 

4.2.3. Mapping with RGB Point Cloud 
The color point cloud mapping scheme proposed in FAST-LIVO is specifically de-

signed for AVIA solid-state LIDAR and does not have compatibility with traditional me-
chanical LIDAR in a multi-sensor setup. This paper extends that groundwork and refines 
this approach, rectifying the inaccurate point cloud mapping relationships for mechanical 
LIDAR. The outcome is a mapping relationship aligned with the camera’s field of view 
(FOV), facilitating the generation of an RGB point cloud map. 

The real-time reconstructed RGB point cloud map using our algorithm is illustrated 
in Figure 12. In comparison to conventional point cloud maps, color-coded based on in-
tensity or position, the colored point cloud distinctly emphasizes object boundaries, 
thereby enhancing scene fidelity and improving the interpretability of the mapping pro-
cess. 

 
Figure 12. Illustration of RGB-colored point cloud maps based on non-solid-state LIDAR. (a) Origi-
nal incorrect projection method in FAST-LIVO. (b) Corrected projection method after our modifica-
tion. (c) Comparison between intensity-colored and RGB-colored point clouds, the red box shows 
the real picture, and the white box shows the corresponding point cloud details. 

Figure 12. Illustration of RGB-colored point cloud maps based on non-solid-state LIDAR. (a) Original
incorrect projection method in FAST-LIVO. (b) Corrected projection method after our modification.
(c) Comparison between intensity-colored and RGB-colored point clouds, the red box shows the real
picture, and the white box shows the corresponding point cloud details.

Table 3. Mean time consumption of different process steps in military seconds.

LIO Module VIO Module

Loop Closure Module

Quatro GICP Graph Optimization
(Average per Frame) Total Time

Intel i7-10875 56.46 18.02 1.08 13.48 25.24 39.80

5. Conclusions

This paper presents a fast, robust, sparse direct LIDAR-inertial-visual fusion frame-
work, surpassing the state-of-the-art LIVO algorithm. We integrate LIDAR, inertial, and
camera sensor measurements into an error-state iterative Kalman filter. The real-time
loop closure module provides accuracy corrections for temporally and spatially repetitive
scenes. When tested on open datasets, the experimental results showcase superior over-
all performance and robustness compared to advanced LIO, VIO, and LIVO algorithms.
On private datasets, our system yields improved RGB point cloud mapping results with
non-solid-state LIDAR.

Author Contributions: Conceptualization, W.W.; methodology, C.Y. and H.X.; software, Z.C. and H.X.;
writing—original draft preparation, C.Y.; writing—review and editing, Y.H. and H.X.; supervision,
W.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (grant no. 2021YFC3100705),
the Key Laboratory of Thermal Management and Energy Utilization of Aircraft, Ministry of Industry
and Information Technology (grant no. CEPE2022016), and the State Key Laboratory of Mechanics
and Control for Aerospace Structures (Nanjing University of Aeronautics and Astronautics) (grant
no. MCMS-E-0323Y01).



Robotics 2024, 13, 2 18 of 21

Data Availability Statement: The open-source data presented in this study are openly available at
https://ntu-aris.github.io/ntu_viral_dataset/ (accessed on 6 November 2021) and at https://doi.
org/10.1177/02783649211052312 (accessed on 6 November 2021), reference number [35]. The data
presented in this study are available on request from the corresponding author. The private data are
not publicly available due to some sensitive scenarios involved in the dataset.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

SLAM Simultaneous Localization and Mapping
LIDAR Light Detection and Ranging
IMU Inertial Measurement Unit
ICP Iterative Closest Point
LOAM LIDAR Odometry and Mapping
VIO Visual-Inertial Odometry
LIO LIDAR-Inertial Odometry
LVIO LIDAR-Visual-Inertial Odometry
ESIKF Error-State Iterative Kalman Filter
UAV Unmanned Aerial Vehicles
APE Absolute Pose Error
RPE Relative Pose Error

Appendix A

Initially, within the ESIKF framework, the error terms are depicted by the state esti-
mates xi and their covariance Σδx̂i in the tangent space as follows:

δx̂i ≜ xi ⊟ x̂i

=
[

Gδr̂T
Ii

Gδp̂T
Ii

Iδr̂T
Ci

Iδp̂T
Ci

Gδv̂T
i δb̂

T
gi

δb̂
T
ai

]T

∼ N
(
021×1, Σδx̂i

)
with

Gδr̂Ii = log
(

GR̂T
Ii

GRT
Ii

)
, Iδr̂Ci = log

(
IR̂T

Ci
IRCi

)
Building upon Equations (3) and (5), we can extend Equation (7) to the following:

δx̂i+1 = xi+1 ⊟ x̂i+1
= (xi ⊞ (∆t · f(xi, ui, wi)))⊟ (x̂i ⊞ (∆t · f(x̂i, ui, 0)))

=



log
(( GR̂Ii Exp(ω̂i∆t)

)T ·
( GR̂Ii Exp

( GδrIi

)
Exp(ωi∆t)

))
GδpIi

+ Gδvi∆t + 1
2 ai∆t2 − 1

2 âi∆t2

IδrCi
IδpCi

Gδvi +
( GR̂Ii Exp

( GδrIi

))
ai∆t − GR̂Ii âi∆t

δbωi + nbωi
δbai + nbai


∼ N

(
0, Σδx̂i+1

)
The following approximations of perturbation are employed to streamline the repre-

sentation of error terms:

Exp(r + δr)& ≈ Exp(r)Exp(Jr(r)δr)

Exp(r)Exp(δr)& ≈ Exp
(

r + J−1
r (r)δr

)
R · Exp(δr) · u& ≈ R(I + [δr]× )u = Ru − R[u]×δr

https://ntu-aris.github.io/ntu_viral_dataset/
https://doi.org/10.1177/02783649211052312
https://doi.org/10.1177/02783649211052312


Robotics 2024, 13, 2 19 of 21

so that we have the following three simplifications for the representation.

log
(( GR̂Ii Exp(ω̂i∆t)

)T ·
( GR̂Ii Exp

( GδrIi

)
Exp(ωi∆t)

))
= log

(
Exp(ω̂i∆t)T ·

(
Exp

( GδrIi

)
· Exp(ωi∆t)

))
≈ log

(
Exp(ω̂i∆t)TExp

( GδrIi

)
Exp(ω̂i∆t).

Exp
(
−Jr(ω̂i∆t)

(
δbωi + nbωi

)))
Exp

(
−Jr(ω̂i∆t)

(
δbgi + ngi

)))
≈ Exp(ω̂i∆t) · GδrIi − Jr(ω̂i∆t)Tδbgi

− Jr(ω̂i∆t)Tnbωi( GRIi Exp
( GδrIi

))
ai∆t

≈
(( GRIi

(
I +

[ GδrIi

]
×
))
(âi − δbai − nba)∆t

≈ GRIi âi∆t − GRIi δbai ∆t − GRIi nbai ∆t − GRIi [âi]×
GδrIi

Hence, we can derive a more intricate expression for Fδx̂ and Fw in Equation (8),
as follows:

Fδx̂ =
∂(δx̂i+1)

∂δx̂i

∣∣∣
δx̂i=0,wi=0

=



Exp(−ω̂i∆t) 0 0 0 0 −Jr(ω̂i∆t)T 0
0 I 0 0 I∆t 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0

−GR̂Ii [âi]×∆t 0 0 0 I 0 −GR̂Ii ∆t
0 0 0 0 0 I 0
0 0 0 0 0 0 I


Fw =

∂(δx̂i+1)
∂wi

∣∣∣
δx̂i=0,wi=0

=



−Jr(ω̂i∆t)T 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 − GR̂Ii ∆t 0 0
0 0 I∆t 0
0 0 0 I∆t


References
1. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of

Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]
2. Zhang, J.; Singh, S. LOAM: LIDAR Odometry and Mapping in Real-Time, Robotics: Science and Systems. In Proceedings of the

Robotics: Science and Systems, Berkeley, CA, USA, 12–16 July 2014; Volume 2, pp. 1–9.
3. Low, K.-L. Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration; University of North Carolina: Chapel Hill,

NC, USA, 2004; pp. 2–4.
4. Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized LIDAR Odometry and Mapping on Variable Terrain.

In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 4758–4765. [CrossRef]

5. Chen, K.; Lopez, B.T.; Agha-Mohammadi, A.A.; Mehta, A. Direct LIDAR Odometry: Fast Localization With Dense Point Clouds.
IEEE Robot. Autom. Lett. 2022, 7, 2000–2007. [CrossRef]

6. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34,
1004–1020. [CrossRef]

7. Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

8. Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual-Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]

9. Zhang, J.; Singh, S. Visual-LIDAR Odometry and Mapping: Low-Drift, Robust, and Fast. In Proceedings of the 2015 IEEE
International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015. [CrossRef]

https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/IROS.2018.8594299
https://doi.org/10.1109/LRA.2022.3142739
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/ICRA.2015.7139486


Robotics 2024, 13, 2 20 of 21

10. Zhang, J.; Singh, S. Laser–Visual–Inertial Odometry and Mapping with High Robustness and Low Drift. J. Field Robot. 2018, 35,
1242–1264. [CrossRef]

11. Wang, Z.; Zhang, J.; Chen, S.; Yuan, C.; Zhang, J.; Zhang, J. Robust High Accuracy Visual-Inertial-Laser SLAM System. In
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 6636–6641. [CrossRef]

12. Lowe, T.; Kim, S.; Cox, M. Complementary Perception for Handheld SLAM. IEEE Robot. Autom. Lett. 2018, 3, 1104–1111.
[CrossRef]

13. Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-
Posteriori Estimation. In Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July 2015; Volume 11. [CrossRef]

14. Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-Manifold Preintegration for Real-Time Visual--Inertial Odometry. IEEE
Trans. Robot. 2017, 33, 1–21. [CrossRef]

15. Geneva, P.; Eckenhoff, K.; Yang, Y.; Huang, G. LIPS: LIDAR-Inertial 3D Plane SLAM. In Proceedings of the 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 123–130. [CrossRef]

16. Gentil, C.L.; Vidal-Calleja, T.; Huang, S. IN2LAMA: INertial LIDAR Localisation And MApping. In Proceedings of the 2019
International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6388–6394. [CrossRef]

17. Ye, H.; Chen, Y.; Liu, M. Tightly Coupled 3D LIDAR Inertial Odometry and Mapping. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [CrossRef]

18. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-Coupled LIDAR Inertial Odometry via Smoothing
and Mapping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV,
USA, 24–30 October 2020. [CrossRef]

19. Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. ISAM2: Incremental Smoothing and Mapping Using the
Bayes Tree. Int. J. Robot. Res. 2012, 31, 216–235. [CrossRef]

20. Qin, C.; Ye, H.; Pranata, C.E.; Han, J.; Zhang, S.; Liu, M. LINS: A LIDAR-Inertial State Estimator for Robust and Efficient
Navigation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France,
31 May–31 August 2020. [CrossRef]

21. Xu, W.; Zhang, F. FAST-LIO: A Fast, Robust LIDAR-Inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter. IEEE
Robot. Autom. Lett. 2021, 6, 3317–3324. [CrossRef]

22. Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. FAST-LIO2: Fast Direct LIDAR-Inertial Odometry. IEEE Trans. Robot. 2022, 38, 2053–2073.
[CrossRef]

23. Wang, T.; Su, Y.; Shao, S.; Yao, C.; Wang, Z. GR-Fusion: Multi-Sensor Fusion SLAM for Ground Robots with High Robustness and
Low Drift. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague,
Czech Republic, 27 September–1 October 2021; pp. 5440–5447. [CrossRef]

24. Jia, Y.; Luo, H.; Zhao, F.; Jiang, G.; Li, Y.; Yan, J.; Jiang, Z.; Wang, Z. Lvio-Fusion: A Self-Adaptive Multi-Sensor Fusion SLAM
Framework Using Actor-Critic Method. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 286–293. [CrossRef]

25. Zheng, T.X.; Huang, S.; Li, Y.F.; Feng, M.C. Key Techniques for Vision Based 3D Reconstruction: A Review. Zidonghua Xuebao/Acta
Autom. Sin. 2020, 46, 631–652. [CrossRef]

26. Theodorou, C.; Velisavljevic, V.; Dyo, V. Visual SLAM for Dynamic Environments Based on Object Detection and Optical Flow for
Dynamic Object Removal. Sensors 2022, 22, 7553. [CrossRef]

27. Shan, T.; Englot, B.; Ratti, C.; Rus, D. LVI-SAM: Tightly-Coupled LIDAR-Visual-Inertial Odometry via Smoothing and Mapping.
In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021.
[CrossRef]

28. Yang, Y.; Geneva, P.; Zuo, X.; Eckenhoff, K.; Liu, Y.; Huang, G. Tightly-Coupled Aided Inertial Navigation with Point and Plane
Features. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24
May 2019; pp. 6094–6100. [CrossRef]

29. Zheng, C.; Zhu, Q.; Xu, W.; Liu, X.; Guo, Q.; Zhang, F. FAST-LIVO: Fast and Tightly-Coupled Sparse-Direct LIDAR-Inertial-Visual
Odometry. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan,
23–27 October 2022; pp. 4003–4009. [CrossRef]

30. Bell, B.M.; Cathey, F.W. The Iterated Kalman Filter Update as a Gauss-Newton Method. IEEE Trans. Autom. Control 1993, 38,
294–297. [CrossRef]

31. He, D.; Xu, W.; Zhang, F. Kalman Filters on Differentiable Manifolds. arXiv 2021, arXiv:2102.03804. [CrossRef]
32. Zuo, X.; Geneva, P.; Lee, W.; Liu, Y.; Huang, G. LIC-Fusion: LIDAR-Inertial-Camera Odometry. In Proceedings of the IEEE

International Conference on Intelligent Robots and Systems, Macau, China, 3–8 November 2019. [CrossRef]
33. Zuo, X.; Yang, Y.; Geneva, P.; Lv, J.; Liu, Y.; Huang, G.; Pollefeys, M. LIC-Fusion 2.0: LIDAR-Inertial-Camera Odometry with

Sliding-Window Plane-Feature Tracking. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems,
Las Vegas, NV, USA, 24 October 2020–24 January 2021. [CrossRef]

34. Lin, J.; Zheng, C.; Xu, W.; Zhang, F. R2LIVE: A Robust, Real-Time, LIDAR-Inertial-Visual Tightly-Coupled State Estimator and
Mapping. IEEE Robot. Autom. Lett. 2021, 6, 7469–7476. [CrossRef]

https://doi.org/10.1002/rob.21809
https://doi.org/10.1109/IROS40897.2019.8967702
https://doi.org/10.1109/LRA.2018.2795651
https://doi.org/10.15607/RSS.2015.XI.006
https://doi.org/10.1109/TRO.2016.2597321
https://doi.org/10.1109/IROS.2018.8594463
https://doi.org/10.1109/ICRA.2019.8794429
https://doi.org/10.1109/ICRA.2019.8793511
https://doi.org/10.1109/IROS45743.2020.9341176
https://doi.org/10.1177/0278364911430419
https://doi.org/10.1109/ICRA40945.2020.9197567
https://doi.org/10.1109/LRA.2021.3064227
https://doi.org/10.1109/TRO.2022.3141876
https://doi.org/10.1109/IROS51168.2021.9636232
https://doi.org/10.1109/IROS51168.2021.9635905
https://doi.org/10.16383/j.aas.2017.c170502
https://doi.org/10.3390/s22197553
https://doi.org/10.1109/ICRA48506.2021.9561996
https://doi.org/10.1109/ICRA.2019.8794078
https://doi.org/10.1109/iros47612.2022.9981107
https://doi.org/10.1109/9.250476
https://doi.org/10.48550/arXiv.2102.03804
https://doi.org/10.1109/IROS40897.2019.8967746
https://doi.org/10.1109/IROS45743.2020.9340704
https://doi.org/10.1109/LRA.2021.3095515


Robotics 2024, 13, 2 21 of 21

35. Nguyen, T.-M.; Yuan, S.; Cao, M.; Lyu, Y.; Nguyen, T.H.; Xie, L. NTU VIRAL: A Visual-Inertial-Ranging-LIDAR Dataset, from an
Aerial Vehicle Viewpoint. Int. J. Robot. Res. 2021, 41, 270–280. [CrossRef]

36. Lim, H.; Yeon, S.; Ryu, S.; Lee, Y.; Kim, Y.; Yun, J.; Jung, E.; Lee, D.; Myung, H. A Single Correspondence Is Enough: Robust Global
Registration to Avoid Degeneracy in Urban Environments. In Proceedings of the 2022 International Conference on Robotics and
Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 8010–8017. [CrossRef]

37. Magnusson, M.; Lilienthal, A.; Duckett, T. Scan Registration for Autonomous Mining Vehicles Using 3D-NDT. J. Field Robot. 2007,
24, 803–827. [CrossRef]

38. Rusinkiewicz, S.; Levoy, M. Efficient Variants of the ICP Algorithm. In Proceedings of the Third International Conference on 3-D
Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001. [CrossRef]

39. Koide, K.; Yokozuka, M.; Oishi, S.; Banno, A. Voxelized GICP for Fast and Accurate 3D Point Cloud Registration. In Proceedings of
the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11054–11059.
[CrossRef]

40. Forster, C.; Zhang, Z.; Gassner, M.; Werlberger, M.; Scaramuzza, D. SVO: Semidirect Visual Odometry for Monocular and
Multicamera Systems. IEEE Trans. Robot. 2017, 33, 249–265. [CrossRef]

41. Shin, Y.S.; Park, Y.S.; Kim, A. DVL-SLAM: Sparse Depth Enhanced Direct Visual-LIDAR SLAM. Auton. Robot. 2020, 44, 115–130.
[CrossRef]

42. Umeyama, S. Least-Squares Estimation of Transformation Parameters Between Two Point Patterns. IEEE Trans. Pattern Anal.
Mach. Intell. 1991, 13, 376–380. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/02783649211052312
https://doi.org/10.1109/ICRA46639.2022.9812018
https://doi.org/10.1002/rob.20204
https://doi.org/10.1109/IM.2001.924423
https://doi.org/10.1109/ICRA48506.2021.9560835
https://doi.org/10.1109/TRO.2016.2623335
https://doi.org/10.1007/s10514-019-09881-0
https://doi.org/10.1109/34.88573

	Introduction 
	System Overview 
	Filter-Based Odometry 
	System Definitions 
	The Boxplus “” and Boxminus “” Operator 
	Discrete State Transition Model 

	IMU Forward Propagation 
	Map Management 
	LIDAR Point Cloud Map 
	Point-Patch Cloud Map 
	Colored Point Cloud Map 

	Frame-to-Map Measurement Error Model 
	LIDAR Point-to-Plane Residual Error Model 
	Visual Photometric Error 
	Loop Closure Detection Error Model 

	ESIKF Update 

	QN-C2F-SAM Loop Method 
	Coarse Matching Method 
	Fine Matching Method 
	Factor Graph Optimization 

	Experiments and Results 
	Benchmark Dataset 
	Algorithmic Analysis Tool 
	Numerical Comparison 
	Visual Comparison 

	Private Dataset 
	Handheld Device Dataset 
	Mapping with Normal Point Cloud 
	Mapping with RGB Point Cloud 

	Time Analysis 

	Conclusions 
	Appendix A
	References

