
Citation: Fabris, G.; Scalera, L.;

Gasparetto, A. Playing Checkers with

an Intelligent and Collaborative

Robotic System. Robotics 2024, 13, 4.

https://doi.org/10.3390/

robotics13010004

Academic Editor: Chee-Kong Chui

Received: 22 October 2023

Revised: 13 December 2023

Accepted: 20 December 2023

Published: 21 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Playing Checkers with an Intelligent and Collaborative
Robotic System †

Giuliano Fabris, Lorenzo Scalera * and Alessandro Gasparetto

Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy;
giuliano.fabris@uniud.it (G.F.); alessandro.gasparetto@uniud.it (A.G.)
* Correspondence: lorenzo.scalera@uniud.it
† This paper is an extended version of our paper published in Fabris, G.; Scalera, L.; Gasparetto, A. An Interactive

Collaborative Robotic System to Play Italian Checkers. In Proceedings of the IFToMM World Congress on
Mechanism and Machine Science, Tokyo, Japan, 5-10 November 2023; pp. 74–84.

Abstract: Collaborative robotics represents a modern and efficient framework in which machines
can safely interact with humans. Coupled with artificial intelligence (AI) systems, collaborative
robots can solve problems that require a certain degree of intelligence not only in industry but also in
the entertainment and educational fields. Board games like chess or checkers are a good example.
When playing these games, a robotic system has to recognize the board and pieces and estimate
their position in the robot reference frame, decide autonomously which is the best move to make
(respecting the game rules), and physically execute it. In this paper, an intelligent and collaborative
robotic system is presented to play Italian checkers. The system is able to acquire the game state using
a camera, select the best move among all the possible ones through a decision-making algorithm,
and physically manipulate the game pieces on the board, performing pick-and-place operations.
Minimum-time trajectories are optimized online for each pick-and-place operation of the robot so
as to make the game more fluent and interactive while meeting the kinematic constraints of the
manipulator. The developed system is tested in a real-world setup using a Franka Emika arm with
seven degrees of freedom. The experimental results demonstrate the feasibility and performance of
the proposed approach.

Keywords: collaborative robotics; computer vision; trajectory planning; manipulation; Italian checkers

1. Introduction

In recent years, collaborative robotics has been increasingly adopted in the manufac-
turing industry to allow machines and humans to work and interact in a shared space for
a common task while still ensuring human safety [1,2]. However, collaborative robotics
is not a privilege of the industrial sector but has also been applied for entertainment
purposes thanks to the development of proper AI algorithms. Several examples of enter-
tainment robotic systems can be found in the literature, demonstrating that robots can
safely cooperate with humans while playing board games (such as Tic Tac Toe [3] and
Connect 4 [4]), painting [5], or playing music [6], just to mention a few applications of
collaborative robotics in this field. Particularly, the possibility of playing chess and checkers
against an artificial player has been widely investigated, developing several solutions in
order to accomplish this purpose [7–9].

Developing a robot that autonomously plays checkers or chess is a complex
multidisciplinary problem since it involves elements from different technical fields, like
computer science, electronics, and mechanics, which have to be combined for executing
a real-world task. This problem is relevant not only for entertainment reasons but also
for educational purposes because playing board games helps to develop brain functions
and logical thinking. Furthermore, the techniques and methodologies developed for
robotic systems in the field of board games can be easily applied in the industry, such

Robotics 2024, 13, 4. https://doi.org/10.3390/robotics13010004 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics13010004
https://doi.org/10.3390/robotics13010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://doi.org/10.3390/robotics13010004
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics13010004?type=check_update&version=3

Robotics 2024, 13, 4 2 of 17

as vision systems for recognizing objects or trajectory planning approaches for pick-
and-place tasks. Essentially, the main requirements of a robotic system for playing
checkers or chess are three:

1. the recognition of the board and positions of pieces with respect to the robot, piece
color, and type, as well as the human player move;

2. the decision of which is the optimal move to perform among all the possible ones
according to a proper game strategy;

3. the trajectory planning and control of the robot in order to physically execute the
chosen move.

In this work, we pursued the goal to develop a collaborative robotic system for
interactively playing Italian checkers using a Franka Emika robot with seven degrees of
freedom (DOFs) as a piece manipulator and a vision system for game state acquisition
(Figure 1). The robotic system is able to identify the current game state, employ a
developed decision-making algorithm to determine the best move, and physically
manipulate the game pieces on the board through pick-and-place actions. This work
extends our previous conference paper [10] by minimizing the motion time online of the
robot during each pick-and-place operation while meeting its kinematics constraints.
In this way, minimum-time trajectories are optimized on the fly for each move of the
robot so as to avoid long waiting times for the human player and make the game more
fluent and interactive.

Camera

Franka Emika armFranka Hand

Black piece Black square

White square

White piece

Box for
captured pieces

x

x y

zy

z

zy
x

Figure 1. Experimental setup.

This paper is organized as follows: Section 2 describes the related works, whereas
the materials and methods are illustrated in Section 3. In more detail, Section 3.1
outlines the rules of Italian checkers, Section 3.2 describes the computer vision ap-
proach, and Section 3.3 illustrates the game logic for the selection of the optimal move.
Furthermore, the trajectory planning approach is illustrated in Section 3.4, whereas
Section 3.5 presents the experimental setup. In Section 4, the experimental results are
reported. Finally, Section 5 provides the conclusions and possible future developments
of this work.

2. Related Works

The recognition of the board and pieces is usually challenging since it occurs mainly
through computer vision, which can be influenced by lighting conditions. The board is

Robotics 2024, 13, 4 3 of 17

usually less problematic to be recognized since computer vision libraries, like the open-
source OpenCV, provide many tested and robust algorithms based on model recognition
suitable to fulfill this purpose. Examples are Harris corner detection [11,12], Canny edge
detection, and Hough Line Transform [13,14]. These algorithms are suitable when the
relative position between the robot and board can change since they find the board position
fairly accurately and quickly. However, they require a proper calibration process that has
to be performed before the game starts, and they increase the total computational time.
Differently, piece position and color are often more difficult to obtain. There are different
solutions to reduce this issue, such as using colored pieces (they are normally black and
white) in order to increase the contrast with squares (also usually black and white) [15,16],
adopting a dedicated lighting system [17], or implementing strategies to compensate for
distortions and lighting variations [13,18].

Nevertheless, computer vision is not the only way to obtain board position and
configuration; other methods to solve this problem exist, such as those that exploit electro-
magnetic phenomena. An example is reported in [19], where the authors installed light-
dependent resistors (LDRs) under squares. LDRs are sensors that exhibit a high resistance
when they do not receive light (occupied square), whereas their resistance decreases when
they are enlightened (empty square). Therefore, by applying LDRs, whether a square is
occupied or not can be known, but not the type and color of the piece. This issue is easily
solved by knowing the starting board configuration and tracking the game state. Another
example is described in [20], where the authors propose to place Hall sensors under squares
for detecting the pieces on the board. Hall sensors recognize the presence and magnitude
of a magnetic field. Using magnetic pieces, this system can detect only the presence or
absence of a piece in a certain square. Similar to the previous case, the actual configuration
is known by the initial one and tracking the game state. Finally, in order to know if the
human player has made a move, detecting a change in the board configuration can be
sufficient [18].

The second element of autonomous robot players is the game engine, which first aims
at finding all the possible available moves that the artificial player can make. Furthermore,
its purpose is to select the best one among all according to a chosen game strategy. Moreover,
the development of such algorithms is not a simple task, especially if the aim is to develop
an efficient and competitive system. To easily solve this problem, some authors preferred
to implement an open-source game engine like Stockfish [14,21] for chess and Raven [16]
for checkers. Instead, other researchers tried to develop a game engine by themselves. An
example is the development of a checkers-playing GUI based on a minimax algorithm,
presented in [22]. It consists of a game tree search algorithm that aims to find the path that
leads to the most favorable configuration, but its calculation time increases exponentially
with the tree depth. In order to decrease it, an alpha–beta pruning algorithm can also
be considered [23]. This algorithm “prunes” the branches that definitely cannot lead to
a better situation with respect to another previously evaluated, thus reducing the tree
breadth. Another method to reduce computation time is illustrated in [24], where the
authors develop a hybrid tree search algorithm on parallel CPU and GPU in order to
exploit the full potential of the computer. A method different from the tree search is to
adopt a neural network, as outlined in [20].

The last component of these systems has the purpose of driving the robot for physically
executing the selected move. This part has a certain importance because, although checkers
and chess do not necessarily need a physical implementation of a robotic player (a GUI
interface can be sufficient), it is proved that this improves the user experience and the game
attractiveness to human players, making the game more realistic [25,26]. Nevertheless,
pieces are often arbitrarily shaped (especially in chess), so their manipulation is not always
straightforward. The manipulation of the pieces on the board can be performed by adopting
custom grippers that adapt to piece shape [26], pneumatic grippers [27], or electro-magnetic
grippers [28]. However, the last two solutions require custom pieces in order to successfully
grasp them.

Robotics 2024, 13, 4 4 of 17

Another challenge regarding the physical implementation of a robotic player is
correctly driving the robot to move the pieces and remove them in the case of capture.
The accuracy of the vision system has a particular influence in this context since it has
to detect as accurately as possible the pieces’ positions. In this manner, the gripper can
correctly reach and grasp the pieces. As robotic agents, robotic arms are mainly used
[12,14,18] thanks to their dexterity and manipulation capability. Cartesian mechanisms
are also used [19,26] due to their easy control, but their structure is often large and
bulky. Moreover, there has been an exploration of the potential to improve the user
experience by enabling the robot to engage with the human player using sounds and
facial expressions. One instance of this can be seen in Baxter, a two-armed robot
equipped with a display that reflects facial expressions corresponding to its game
status [13,16]. Another example is NAO, a humanoid robot that mimics real person
movements, making the game more realistic [11,15].

Table 1 reports an overview on the state of the art of robotic systems for playing
checkers or chess. In the table, a comparison of the proposed approach with similar works
is also illustrated.

Table 1. State of the art on robotic systems for playing checkers of chess.

First Author Year Ref. Robot Game Game State Estimation Game Engine

Barakova 2018 [15] Humanoid (NAO) Checkers

Camera, computer vision,
based on relation between

the coordinate systems
of camera and board

Minimax
+

alpha–beta pruning

Bernbaum 2018 [9] Franka Emika robot Chess Camera, computer vision,
based on model recognition Sunfish chess engine

Brooks 2015 [16] Baxter robot Checkers Camera, computer vision,
based on model recognition Raven Checkers

Carrera 2017 [26] Cartesian robot Chess Camera, computer vision,
pieces recognition Not specified

Chen 2019 [13] Baxter robot Chess Camera, computer vision,
based on model recognition Stockfish

Del Toro 2019 [14] Custom robot with
four DOFs Chess Camera, computer vision,

based on model recognition Stockfish

Elnaggar 2014 [24] Lynxmotion AL5D Checkers Camera, computer vision,
based on color information Negamax

Gupta 2015 [19] Cartesian robot Chess LDR sensors under squares
for pieces detection

Minimax
+

alpha–beta pruning

Juang 2022 [11] Humanoid (NAO) Chess Camera, computer vision,
based on model recognition Not implemented

Kołosowski 2020 [12] UR5 robot Chess Camera, computer vision,
based on model recognition

Minimax
+

alpha–beta pruning

Kopets 2020 [20] Custom robot with
three DOFs

Russian
checkers

Hall sensors under black
squares detect magnetic pieces

Neural network
based on AlphaZero

Larregay 2018 [17] ABB model IRB120 Chess Camera, computer vision,
dedicated lighting system GNU Chess

Luqman 2016 [18] Custom robot with
four DOFs Chess Camera, computer vision,

based on color information Not specified

Manurung 2023 [28] Gantry robot Checkers Camera, computer vision,
based on color information

Minimax
+

alpha–beta pruning

Matuszek 2011 [29] Gambit robot Chess
Camera, computer vision,

based on model recognition
and point cloud information

Not specified

Rath 2019 [21] Cartesian robot Chess Camera, computer vision,
based on model recognition Stockfish

Rodriguez-
Sedano 2016 [25] Baxter robot Checkers

The operator sees the
board configuration

through a camera
Not implemented

Proposed
approach

Franka Emika robot
(minimum-time trajectories)

Italian
checkers

Camera, computer vision
based on color information Minimax

Robotics 2024, 13, 4 5 of 17

3. Materials and Methods
3.1. Italian Checkers Rules

In the following, the rules of Italian checkers are recalled [30]. In this game, the board
consists of an eight-by-eight grid of alternating light and dark squares, typically white
and black. Players use the dark squares for their moves, and each player begins with
twelve pieces, one set in light color and the other set in dark color, also usually white and
black. The player with the light pieces makes the first move. There are two types of pieces
in the game: men and kings. Each player begins with only men (each composed of one
piece), and these can be promoted to kings when they reach the opposite side of the board.
Kings are recognized by stacking two men on top of each other. The distinction between
these two types of pieces lies in their movement capabilities. Men can move one square
diagonally only forward, whereas kings have the possibility to move one square diagonally
both forward and backward.

When a player piece, be it a man or a king, encounters an opponent piece with an
empty square behind it (in a direction in which it can move), it must capture it. The capture
is performed by jumping over the opponent piece to the empty square. The captured piece
is then removed from the game board. If there are additional opportunities to capture
opponent pieces from the target position, the capturing piece will continue until it reaches
a position where no further captures are possible. A man can capture only other men,
while a king has the ability to capture both men and kings. In scenarios where there are
multiple capture possibilities, a specific order of priority must be followed: capturing
the greatest number of pieces takes precedence, followed by capturing with a king, and
then capturing the higher-value pieces (kings). If multiple capture opportunities still exist,
priority is assigned to capture where the higher-value pieces are encountered first. Finally,
the objective of each player is to either capture or block all their opponent’s pieces so that
the opponent has no more possible moves. If a player succeeds, the game is won; otherwise,
the game ends in a draw.

3.2. Game State Evaluation

In the following, we describe the proposed computer vision algorithm, which is the
first part of the system. This algorithm aims at identifying the positions and types of pieces
starting from the image of the board, received as an input. First, the image analysis process
is described. Then, we outline how the matrix that represents the board is built.

To obtain a 2D image that just contains the game board, the initial procedure is to
switch from the plane of the camera photo to that of the board. To accomplish this, the input
image is modified through a function called homography, obtaining the desired board
image. This process requires the contribution of the user, who has to manually point the
position of the board corners in the image. This operation does not demand high precision
since, even if the user fails to indicate the corners perfectly, possible imprecision can be
corrected thanks to the regularity of square divisions.

The next step is to distinguish and classify the different elements of the board. First, the
setup of the colors is executed, assuming that there are only four categories of objects on the
board: white/black pieces and white/black squares. Therefore, it is important to manage
the board illumination carefully in order to minimize the impact of shadows and reflections
on color recognition. This issue can be mitigated by increasing the image resolution and
implementing a dedicated lighting system. All the pixels of the board image are arranged
into a list where each entry contains the corresponding RGB value. These values are then
analyzed to generate another list in which each original RGB value is replaced with the
closest of the four predominant colors (corresponding to the four categories of objects
present on the board), represented by a value from 1 to 4. Then, to obtain a black and
white image, each pixel is assigned a shade of gray based on the values derived from the
previously obtained list.

Robotics 2024, 13, 4 6 of 17

After having recognized the four main colors, the setup of the types is performed.
It is needed since the assignment of the shades of gray to each color is random. It
means that a lighter shade may not necessarily correspond to white and a darker shade
to black. For the setup of the types, the algorithm asks the user to select the position
of a white square, black square, white piece, and black piece in sequential order. This
information allows the program to identify the location of an element for each type
of the four present on the board. For each selected element, an image of its square is
cropped and analyzed to generate a histogram depicting the frequency of each color
within it (Figure 2). Finally, the color with the highest occurrence in the histogram is
determined. This process enables the program to link the user-indicated real colors to
the initially randomly assigned color classes.

(a) (b)

(c) (d)
Figure 2. Examples of the histograms representing the frequency of each color class within selected
elements: white square (a), black square (b), white piece (c), and black piece (d).

In order to develop the gaming algorithm, it is useful to represent the board configu-
ration as a matrix since, in this manner, every square and its content can be identified by
a couple of coordinates and an identifier. For this purpose, once the association between
each color and its corresponding element is established, the location of the center of the
pieces needs to be determined. This can be accomplished by first considering the pixels
corresponding to the white pieces, then the ones of the black pieces. For each color, filters
are applied to the respective pixels with the aim of removing imperfections and enhancing
the accuracy of identifying the actual centers of the pieces. Through this process, the devel-
oped computer vision algorithm can locate the real centers of the pieces with a maximum
error in the order of a few millimeters. These positions are then recorded using x and y
coordinates in the board reference system, normalized between 0 and 1. These coordinates
are also employed for robot control.

Finally, the process of constructing the matrix that contains the positions and types of
the pieces can be executed. Then, each piece has to be associated with the corresponding
square. For this process, the software computes the distance between the center of each
piece and the centers of closer black squares, associating each piece to the closest one.
However, from only the current image, it is possible to establish the color of the piece but
not its type (man or king) since only the colors are considered. To solve this problem and
determine piece types, it is sufficient to compare the current board image with the previous
one, keeping in mind that, if a man reaches the opposite side of the board, it becomes a
king. Then, identification numbers are assigned accordingly (0 for an empty square, 3 for a
white man, 4 for a black man, 5 for a white king, and 6 for a black king), resulting in the

Robotics 2024, 13, 4 7 of 17

final matrix. Figure 3 provides an overview of the key steps that compose the computer
vision algorithm and depicts their main outputs.

Input image

Board image

Black and
white image

Types setup

Pieces center
detection

Board matrix

HomographyUser corners
selection

Pixels
analysis

Squares
analysis

User types
selection

Filters
application

Comparison with
previous board

Piece-to-square
association

Figure 3. Workflow diagram of the developed computer vision algorithm with examples of the main
stages’ outputs.

3.3. Game Engine

After obtaining the matrix that represents the board, it is necessary to choose the
move to perform, which must respect the Italian checkers rules described in Section 3.1. In
the following, we present the structure of the developed gaming algorithm to select the
best move.

The gaming algorithm, built upon AI principles, has been designed as a minimax
algorithm. This is a recursive algorithm frequently employed in decision-making
processes and zero-sum games, like Italian checkers. It enables the artificial player
to select the optimal move when facing a human opponent, who is expected to make
optimal moves as well [22,31]. The algorithm implemented in this work relies on the
recursive optimization of an evaluation function that considers rewards and penalties
derived from the game strategy.

Evaluation Function (1) is employed to assess the current board configuration, associ-
ating it with a score (i.e., the outcome of the evaluation function). This function considers
the number of one’s own pieces (Nm and Nk, respectively, for men and kings) and of the
opponent’s ones (Nom and Nok, respectively). It is specified that, for notation convenience,
the contributions for the four types of pieces are indicated with proper subscripts, respec-
tively m for own men, k for own kings, om for opponent men, and ok for opponent kings.
The board configuration is also taken into account in the score computation. For instance,
the closer an own man is to becoming a king (i.e., with high linem), the higher the score.
Conversely, the closer an opponent man is to becoming a king (i.e., with high lineom), the
lower the score. The symbols linem and lineom mean the row of the square occupied by
a man from its point of view. It means that, if a man is in the nearest row to its starting

Robotics 2024, 13, 4 8 of 17

side, its line value is equal to 0; instead, if it occupies a square in the row corresponding
to its opposite side of the board, its line value its equal to 7; intermediate positions have
line values between 0 and 7. The score is also influenced by the men that are protected
from a possible capture (i.e., that do not have an empty square behind them in one or more
directions, indicated by prm and prom). Moreover, king position is considered in the score
definition, favoring configurations in which the kings occupy the most central squares of
the board (ck and cok) in order to have a greater chance of movement. A weight is assigned
to each factor contributing to the score (ωm weights the number of men, ωk the number
of kings, ωm,pos the man position, ωm,pr the man protection, and ωk,pos the king position).
By varying them, the different contributions can be taken into account differently, thus
allowing the game strategy to be modified.

score = ωm · (Nm − Nom) + ωk · (Nk − Nok)+

ωm,pos ·
[Nm

∑
m=1

line2
m −

Nom

∑
om=1

line2
om

]
+

ωm,pr ·
[Nm

∑
m=1

prm −
Nom

∑
om=1

prom

]
+

ωk,pos ·
[Nk

∑
k=1

c2
k −

Nok

∑
ok=1

c2
ok

]
(1)

The algorithm considers only the top five moves out of all the possible ones that lead
to board configurations with higher scores. This restriction is imposed to limit the breadth
of the search tree and reduce the computation time, under the assumption that other moves
do not result in favorable conditions. For each of these selected moves, the algorithm is
then applied from the perspective of the human player, determining their available and
better moves. This process is iteratively repeated up to a specified depth, constructing the
search tree. Increasing the search depth enhances the artificial player performance, but at
the cost of longer computation times, as shown in Section 4.

The proposed gaming algorithm aims to identify the move leading to more favorable
game situations, i.e., those where the chance of victory is greatest. This search process
involves traversing the tree in a backward manner, starting from the leaf nodes and assum-
ing that the opponent is also making optimal moves from his point of view, as illustrated
in Figure 4. When the algorithm encounters a parent node during a turn corresponding
to the human player, it assigns a value equal to the minimum among the values of its
child nodes (MIN). Differently, if the parent node corresponds to an artificial player turn, it
assigns a value equal to the maximum of the values associated with its children (MAX).
Finally, the developed gaming algorithm determines the best move to be executed by the
robotic manipulator.

15 8 12 17 23 19 22 18 14 10 9 11 15 16 19 13 14 10 7 11

8 12 17 19 22 14 10 9 11 15 16 13 14 7 11

17 19 22 14 10 11 16 14 11

17 14 10 16 11

17 MAX

MIN

MAX

MIN

MAX

Best move

Figure 4. Illustration of structure and operation of the developed gaming algorithm. The light blue
color indicates the robot turn, the green color the human turn, the red a not considered move, whereas
the numbers correspond to the score values.

Robotics 2024, 13, 4 9 of 17

3.4. Trajectory Planning

The trajectories for the robot are planned as point-to-point motion in the joint space of
the robot using five-degree polynomials with zero velocity and acceleration at the initial
and final joint state. The orientation of the end-effector of the robot is maintained constant
during each trajectory. The time duration of each point-to-point motion of the robot is
minimized online so as to avoid long waiting times for the human player and make the
game more fluent and interactive. The optimization problem that computes the minimum
time duration online t for each trajectory q(t) for the robot is defined as follows:

min
t

w0 t (2)

subject to
qi,min ≤ qi ≤ qi,max

|q̇i| ≤ q̇i,max

|q̈i| ≤ q̈i,max

| ...q i| ≤
...
q i,max

i = 1, ..., N

(3)

where w0 is a positive weight, qi,min and qi,max are the position limits at the i-th joint,
whereas q̇i,max, q̈i,max, and

...
q i,max are the velocity, acceleration, and jerk limits, respectively.

Finally, N represents the number of the degrees of freedom of the robot.
During a typical move, the robot moves from the homing configuration and grasps

the piece that has to be moved. Subsequent moves depend on the specific kind of play to
be executed:

• in the case of a simple movement, the robot positions the piece in the target square
and then returns to the neutral pose;

• if a capture (including multiple ones) has to be made, the robot, after placing its piece
in the target square, proceeds to eliminate from the board the opponent piece (or
pieces) captured;

• when a move results in a man becoming a king, the robot avoids stacking pieces to
make king by itself; instead, it removes the man from the board and takes the king,
which is prepared in a reference position outside the board.

An example of a simulation of a pick-and-place operation is shown in Figure 5.

Figure 5. Exemplary robot path in the operational space to pick and place a piece.

Robotics 2024, 13, 4 10 of 17

3.5. Experimental Setup

The checkers-playing robotic system presented in this paper consists of the following
main components:

• robotic arm;
• computer and control system;
• camera;
• board and pieces.

As pieces manipulator, a Franka Emika robotic arm with seven degrees of freedom
is used. This robot exhibits an industrial-grade pose repeatability of ±0.1 mm, a payload
capacity of 3 kg, and an operational reach of 855 mm. A Franka hand is adopted as robot
end-effector, a two-finger gripper needed for grasping and manipulating pieces. This
gripper has a travel range of 80 mm and a maximum force of 70 N. The computer used
to implement the whole system runs Ubuntu 18.04 with an Intel Core i5-10600K CPU @
4.10 GHz and 31.2 GB of RAM. Python 3 and ROS (Robot Operating System) Melodic
are used to control and drive the manipulator. Particularly, the MoveIt motion planning
framework is used to send the control values to the robot. The gaming algorithm is
implemented using Python 3, whereas the developed computer vision algorithm is written
in GNU Octave. Through the oct2py library, these Octave functions can be conveniently
invoked from the main Python program.

The optimization problem in Equations (2) and (3) is implemented using the IPOPT
algorithm of the open-source tool for nonlinear optimization CasADi [32]. The maximum
number of iterations of the optimization is set equal to 7, whereas the lower and upper
bounds for the time duration of each robot trajectory are 0.2 s and 1.5 s, respectively. For
the sake of simplicity, in this work, the dynamics of the robot are not considered so as
to minimize the solution time of the optimization problem. However, in case the torque
constraints of the robot need to be verified, the dynamics parameters of the Franka Emika
arm identified in [33] can be used.

To implement the computer vision system and capture the board image, we
employed an Intel RealSense D435 depth camera, equipped with a maximum resolution
of 1920× 1080 pixels. The camera is mounted on a tripod and placed above the board
in order to clearly distinguish the different squares and their content in a position that
does not obstruct the robot and human moves.

The relative positioning of the robot and the board is held constant. This approach
avoids the need for continuous detection and tracking of the board position, allowing to
streamline the algorithms, particularly the computer vision one, and to decrease the total
computational time. Additionally, we have opted for the use of a commercial checkerboard
and game pieces with standard colors and shapes. The checkerboard has dimensions equal
to 256× 256 mm, and each square equal to 32× 32 mm, whereas the pieces have a diameter
of 25 mm and a height of 8 mm. This choice is made to maintain the authenticity of the
game and avoid any alterations to the traditional appearance and characteristics of the
board and pieces. Additionally, a box for depositing the captured pieces and a reference
where to go to pick up the prepared kings is added to the system. The experimental setup
is illustrated in Figure 1, whereas Figure 6 depicts how the different sections of the system
work together during a game. Table 2 summarizes the main characteristics of the hardware
and software components.

A calibration procedure is required for the robot before the game start. This process
allows the algorithm to determine the board position relative to the robot base reference
frame. For the calibration, it is sufficient to acquire the position of the four corners of the
board in the robot base reference frame. This is accomplished using a custom calibration
tip as robot end-effector, printed in 3D using an Ultimaker S5 Pro Bundle. Touching the
four corners with the tip, as illustrated in Figure 7a, their location in the Cartesian space
is determined using the direct kinematics of the manipulator. The procedure starts from
the corner to the left of the robot and continues in a counterclockwise direction (Figure 7b).

Robotics 2024, 13, 4 11 of 17

However, it should be noted that the position of only three corners is strictly required for
the robot calibration, as outlined in the following; the fourth corner position is acquired
only to ease the computation of the coordinates of the board center.

Camera
CV Game

Human

Franka Robot

algorithm

Image
acquisition

engine

move
Keyboard
signal

Board
Emika

Recognition
of board

configuration

Best
move
selection

Trajectory
computation

Robot move
execution

control
Ubuntu 18.04

ROS Melodic

Python 3

Python 3GNU Octave

Figure 6. Workflow diagram of the developed system.

Table 2. Specifications of the hardware and software components.

Component Main Features

Computer
• Operating system: Ubuntu 18.04
• CPU: Intel Core i5-10600K @ 4.10 GHz
• RAM: 31.2 GB

Vision system
• Camera: Intel RealSense D435
• Resolution: 1920× 1080 pixels
• Programming language: GNU Octave

Game engine • Structure: minimax algorithm
• Programming language: Python 3

Robotic player

•Manipulator: Franka Emika arm
• Gripper: Franka hand
• Control framework: ROS Melodic
• Programming language: Python 3

Checkerboard • Total dimensions: 256× 256 mm
• Square dimensions: 32× 32 mm

Pieces • Diameter: 25 mm
• Height: 8 mm

3D printed
calibration tip

(a)

xpiece

Robot

P3P4

P1 P2

ypiece
(xpiece, ypiece)

P⃗4 − P⃗1

P⃗2 − P⃗1

P⃗1

(b)
Figure 7. The robot touches one of the board corners with the calibration tip as end-effector (a);
representation of the change in coordinates from board to robot reference system (b).

Robotics 2024, 13, 4 12 of 17

Knowing the location of the board with respect to the robot, the position of the pieces
can be easily determined since the vision algorithm records the positions of the pieces in the
board coordinate system using coordinates normalized between 0 and 1. These coordinates
can be transformed in the robot system as shown in Figure 7b. This transformation is
achieved by multiplying the x coordinate of the pieces by vector ~P2 − ~P1 and their y
coordinate by vector ~P4 − ~P1 and then adding vector ~P1. Vectors ~Pi with i = 1, . . . , 4
represent the coordinates of the four corners in the robot system. Moreover, a homing
configuration is established from which the robot begins its movement and returns to after
a move is made (Figure 1). Care must be taken to ensure that this configuration does not
occlude the view of the camera.

Through the previous procedure, the system knows the position of the board with
respect to the robot, but the board position in the camera reference frame is still unknown,
so a camera calibration process is needed. Since the position of the camera can be varied
until a suitable position is found, a board-camera calibration is chosen, which is faster and
simpler than a robot-camera calibration. The positions of the board corners are manually
identified on the image taken by the camera, maintaining the same order as used during
the robot calibration. This step ensures the alignment of the real-world corners with their
counterparts in the image. Next, the user assesses whether the homography and the black
and white image are acceptable. In that case, the user proceeds to indicate the positions of
a white square, black square, white piece, and black piece within the image. Alternatively,
if the homography or black and white image quality is deemed unsatisfactory, the camera
setup process is restarted, involving adjustments to lighting and/or camera position until
acceptable results are achieved. This camera-board calibration process will need to be
repeated only when the camera position is altered.

Once this setup is completed, the game can start. For safety reasons, the robot does
not start its movements right after the human player moves; instead, it waits for an input
signal from the keyboard.

4. Results

The principal operations executed during a game are illustrated in Figure 8. In
particular, Figure 8a,b show a piece that is been picked, Figure 8c,d depict the moving of
a piece, and in Figure 8e,f the placing of a piece can be seen. Figure 8g shows a captured
piece that is been grasped, whereas, in Figure 8h, a captured piece being removed from
the board is depicted. Finally, a prepared king picked up from the reference point can
be seen in Figure 8i. The system functionality and performance are also illustrated in a
video available online (https://www.youtube.com/watch?v=KiR5qAI5S2M, accessed on
12 December 2023).

In the following, the performance of the entire algorithm in terms of computational
time and success rate, from image acquisition to selection and execution of the move, is
analyzed. The run time of the developed computer vision algorithm remains relatively
constant, typically about 1 s. This stability is due to the fact that the operations performed
by the algorithm are practically always the same for each image to be analyzed. Moreover, it
can be noted that eliminating board detection from the algorithm results in a low calculation
time, thus reducing the total execution time of the move.

Regarding its success rate, it is important to note that the algorithm is sensitive to
lighting conditions, particularly with regard to the presence of shadows and reflections on
the board. To solve these issues, the system is illuminated with a light source placed directly
above the board. This setup ensures a consistent and controlled lighting environment,
thus significantly reducing the impact of lighting variations. As a result, under standard
lighting conditions, the developed computer vision algorithm demonstrates a good degree
of accuracy in the piece detection.

As outlined in Section 3.3, the gaming algorithm is developed on the basis of a minimax
algorithm. The run time of this algorithm is influenced by both the chosen search depth
and the maximum number of moves taken into account (which affects the breadth of

https://www.youtube.com/watch?v=KiR5qAI5S2M

Robotics 2024, 13, 4 13 of 17

the decision tree). Figure 9 provides an overview of the average time required varying
these two parameters. A duration of approximately 1–2 s can be deemed suitable for a
smooth gaming experience. Choosing, for example, six levels for the search depth and five
considered moves, the computational times for the gaming algorithm are below one second.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 8. Main actions executed during a game: pick a piece (a,b), move a piece (c,d), place a piece
(e,f), pick a captured opponent piece for removing it (g), remove a captured opponent piece from
board (h), and pick a king from the reference point (i).

Furthermore, based on several games played, we observed that, against players who
are not highly skilled, a search depth of four is often sufficient to provide a sufficiently
challenging game. This is due to the fact that, in such games, most nonprofessional human
players typically plan only two or three moves ahead at most [13].

Figure 9. Average execution time of the developed gaming algorithm by varying the search depth
and the maximum number of considered moves.

Robotics 2024, 13, 4 14 of 17

By considering the approach for trajectory planning, the optimization of the time
duration of each point-to-point motion of the robot guarantees a maximum execution time
equal to 1.5 s while meeting the joint position, velocity, acceleration, and jerk limits of the
manipulator. An exemplary pick-and-place trajectory is shown in Figure 10, where the
joints and gripper positions, joints velocities, and joints torques over time are reported. This
trajectory corresponds to the motion of the robot in the Cartesian space shown in Figure 5.
In particular, from Figure 10, it can be seen that the total duration of this exemplary pick-
and-place trajectory for a single piece of the board is equal to 8.5 s. This time comprises
the computational time for the optimization of each trajectory segment (usually below
10 ms for each point-to-point motion), as well as the time to open and close the gripper for
picking and releasing the piece on the board.

(a)

(b)

(c)
Figure 10. Exemplary pick-and-place trajectory: joints and gripper positions (a), joints velocities
(b), and joints torques (c) over time, corresponding to the motion in the Cartesian space shown in
Figure 5.

Robotics 2024, 13, 4 15 of 17

Finally, we can state that the computer vision algorithm for identifying the position of
the pieces and the use of the Franka hand for grasping and moving them on the gaming
board provide high performance without failures. Indeed, no episodes of loss of pieces on
the board during the game have been recorded and no necessity of customizing the gripper
fingers has been raised.

5. Conclusions

This paper introduced an intelligent and collaborative robotic system designed for
playing Italian checkers. The system is capable of perceiving the game state through
a camera, assessing the optimal moves, and physically manipulating the game pieces.
Minimum-time trajectories are optimized online for pick-and-place operation of the robot
so as to make the game more fluent and interactive while meeting the kinematic constraints
of the manipulator.

Extensive experimental tests have been successfully performed, completing full games
without errors and demonstrating the viability of the proposed approach. The three mod-
ules that compose the described system, i.e., game state evaluation, game engine, and
robot control, are distinct and independent of each other. This modular approach offers
flexibility for future improvements and developments in all three parts as each module can
be modified independently of the others and without affecting their functionality.

In future works, we plan to further improve all the algorithm modules of our intelligent
and collaborative robotic system for playing Italian checkers. In more detail, to provide a
pathway for subsequent studies, we will consider the following aspects:

• Vision system: the robustness and reliability of the computer vision algorithm will be
improved through the implementation of an approach based on model recognition,
which is more robust with respect to illumination, and an ad hoc illumination system;

• Computational times: the alpha–beta pruning algorithm will be implemented to speed
up the execution times of the gaming algorithm and enhance its overall performance;

• Safety of the human player: safety strategies will be implemented to track the human
position in real time and stop the robot in the case of a potential collision, as in [2].
Furthermore, the safety of the gripper will also be considered to avoid accidents,
such as the one in 2022, when a chess robot broke a finger of 7-year-old boy during a
tournament in Moscow [34].

Author Contributions: G.F., L.S. and A.G. contributed to the study conception and design. Material
preparation, data collection, and analysis were performed by G.F. and L.S. The first draft of the
manuscript was written by G.F. and L.S. All authors read and approved the final manuscript.

Funding: This work has been partially supported by iNEST-Interconnected NordEst Innovation
Ecosystem, funded by PNRR (Mission 4.2, Investment 1.5), NextGeneration EU—Project ID: ECS
00000043, and developed within the Laboratory for Big Data, IoT, Cyber Security (LABIC), funded
by Friuli Venezia Giulia region, and the Laboratory for Artificial Intelligence for Human–Robot
Collaboration (AI4HRC), funded by Fondazione Friuli.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank Diego Masotti, Jacopo Foltran, Alberto Ragaz-
zon, and Federico Lozer for their help in the experimental setup.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Vicentini, F. Collaborative robotics: A survey. J. Mech. Des. 2021, 143, 040802. [CrossRef]
2. Scalera, L.; Giusti, A.; Vidoni, R.; Gasparetto, A. Enhancing fluency and productivity in human-robot collaboration through

online scaling of dynamic safety zones. Int. J. Adv. Manuf. Technol. 2022, 121, 6783–6798. [CrossRef]
3. Dell’Ariccia, A.; Bremers, A.W.; Lee, W.-Y.; Ju, W. “Ah! he wants to win!”: Social responses to playing Tic-Tac-Toe against a

physical drawing robot. In Proceedings of the 16th International Conference on Tangible, Embedded, and Embodied Interaction,
Daejeon, Republic of Korea, 13–16 February 2022 ; pp. 1–6.

http://doi.org/10.1115/1.4046238
http://dx.doi.org/10.1007/s00170-022-09781-1

Robotics 2024, 13, 4 16 of 17

4. Carbonari, L.; Forlini, M.; Scoccia, C.; Costa, D.; Palpacelli, M.-C. Disseminating Collaborative Robotics and Artificial Intelligence
Through a Board Game Demo. In Proceedings of the 18th IEEE/ASME International Conference on Mechatronic and Embedded
Systems and Applications (MESA), Taipei, Taiwan, 28–30 November 2022; pp. 1–5.

5. Karimov, A.; Kopets, E.; Leonov, S.; Scalera, L.; Butusov, D. A Robot for Artistic Painting in Authentic Colors. J. Intell. Robot. Syst.
2023, 107, 34. [CrossRef]

6. Lin, J.-Y.; Kawai, M.; Nishio, Y.; Cosentino, S.; Takanishi, A. Development of performance system with musical dynamics
expression on humanoid saxophonist robot. IEEE Robot. Autom. Lett. 2019, 4, 1684–1690. [CrossRef]

7. Samuel, A. L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229. [CrossRef]
8. Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.; Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.; Graepel, T.;

et al. Mastering atari, go, chess and shogi by planning with a learned model. Nature 2020, 588, 604–609. [CrossRef] [PubMed]
9. Bernbaum, A.; Greenberg, B.; Latreille, J.; Mistry, S.; Pattison, L.; Ruegg, P.; Zhang, S. De3-rob1 Chess Group Documentation,

Chess Project for the Robotics 1 Module in Design Engineering, Imperial College London. 2018. Available online: https:
//de3-rob1-chess.readthedocs.io/en/latest/ (accessed on 5 December 2023).

10. Fabris, G.; Scalera, L.; Gasparetto, A. An interactive collaborative robotic system to play Italian checkers. In IFToMM World
Congress on Mechanism and Machine Science; Springer: Berlin/Heidelberg, Germany, 2023; pp. 74–84.

11. Juang, L.-H. Humanoid robots play chess using visual control. Multimed. Tools Appl. 2022, 81, 1545–1566. [CrossRef]
12. Kołosowski, P.; Wolniakowski, A.; Miatliuk, K. Collaborative robot system for playing chess. In Proceedings of the International

Conference Mechatronic Systems and Materials (MSM), Bialystok, Poland, 1–3 July 2020; pp. 1–6.
13. Chen, A.T.-Y.; Wang, K.I.-K. Robust computer vision chess analysis and interaction with a humanoid robot. Computers 2019, 8, 14.

[CrossRef]
14. del Toro, C.; Robles-Algarín, C.; Rodríguez-Álvarez, O. Design and construction of a cost-effective didactic robotic arm for

playing chess, using an artificial vision system. Electronics 2019, 8, 1154. [CrossRef]
15. Barakova, E.I.; De Haas, M.; Kuijpers, W.; Irigoyen, N.; Betancourt, A. Socially grounded game strategy enhances bonding and

perceived smartness of a humanoid robot. Connect. Sci. 2018, 30, 81–98. [CrossRef]
16. Brooks, D.J.; McCann, E.; Allspaw, J.; Medvedev, M.; Yanco, H.A. Sense, plan, triple jump. In Proceedings of the IEEE International

Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA, USA, 11–12 May 2015; pp. 1–6.
17. Larregay, G.; Pinna, F.; Avila, L.; Morán, D. Design and Implementation of a Computer Vision System for an Autonomous

Chess-Playing Robot. J. Comput. Sci. Technol. 2018, 18, 1–11. [CrossRef]
18. Luqman, H.M.; Zaffar, M. Chess brain and autonomous chess playing robotic system. In Proceedings of the International

Conference on Autonomous Robot Systems and Competitions (ICARSC), Bragança, Portugal, 4–6 May 2016; pp. 211–216.
19. Gupta, V.; Kumar, A.; Agrawal, S.; Jaiswal, S. Autonomous Chess Playing Robot. Int. J. Eng. Res. Technol. 2015, 4.
20. Kopets, E.E.; Karimov, A.I.; Kolev, G.Y.; Scalera, L.; Butusov, D.N. Interactive Robot for Playing Russian Checkers. Robotics 2020,

9, 107. [CrossRef]
21. Rath, P.K.; Mahapatro, N.; Nath, P.; Dash, R. Autonomous Chess Playing Robot. In Proceedings of the 28th IEEE International

Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–6.
22. Escandon, E.R.; Campion, J. Minimax checkers playing GUI: A foundation for AI applications. In Proceedings of the XXV

International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 8–10 August 2018;
pp. 1–4.

23. Nasa, R.; Didwania, R.; Maji, S.; Kumar, V. Alpha-Beta Pruning in Mini-Max Algorithm–An Optimized Approach for a Connect-4
Game. Int. Res. J. Eng. Technol. 2018, 5, 1637–1641.

24. Elnaggar, A.A.; Gadallah, M.; Aziem, M.A.; Aldeeb, H. Autonomous checkers robot using enhanced massive parallel game tree
search. In Proceedings of the 2014 9th International Conference on Informatics and Systems, Cairo, Egypt, 15–17 December 2014;
pp. 35–44.

25. Rodrıguez-Sedano, F.J.; Esteban, G.; Inyesto, L.; Blanco, P.; Rodrıguez-Lera, F.J. Strategies for haptic-robotic teleoperation in board
games: Playing checkers with Baxter. Strategies 2016, 31–37.

26. Carrera, L.; Morales, F.; Tobar, J.; Loza, D. MARTI: A robotic chess module with interactive table, for learning purposes.
In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 25–27 October 2017;
pp. 25–27.

27. Lukač, D. Playing chess with the assistance of an industrial robot. In Proceedings of the 3rd International Conference on Control
and Robotics Engineering (ICCRE), Nagoya, Japan, 20–23 April 2018; pp. 1–5.

28. Manurung, E.B. Gantry Robot System Checkers Player. ADI J. Recent Innov. 2023, 5, 9–19. [CrossRef]
29. Matuszek, C.; Mayton, B.; Aimi, R.; Deisenroth, M.P.; Bo, L.; Chu, R.; Kung, M.; LeGrand, L.; Smith, J.R.; Fox, D. Gambit: An

autonomous chess-playing robotic system. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation,
Shanghai, China, 9–13 May 2011; pp. 4291–4297.

30. Italian Checkers Rules. Available online: https://www.boardgamecentral.com/rules/checkers-rules-italian.html (accessed on 2
October 2023).

31. Diez, S.G.; Laforge, J.; Saerens, M. Rminimax: An optimally randomized MINIMAX algorithm. IEEE Trans. Cybern. 2012, 43,
385–393. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10846-023-01831-4
http://dx.doi.org/10.1109/LRA.2019.2897372
http://dx.doi.org/10.1147/rd.33.0210
http://dx.doi.org/10.1038/s41586-020-03051-4
http://www.ncbi.nlm.nih.gov/pubmed/33361790
https://de3-rob1-chess.readthedocs.io/en/latest/
https://de3-rob1-chess.readthedocs.io/en/latest/
http://dx.doi.org/10.1007/s11042-021-11636-y
http://dx.doi.org/10.3390/computers8010014
http://dx.doi.org/10.3390/electronics8101154
http://dx.doi.org/10.1080/09540091.2017.1350938
http://dx.doi.org/10.24215/16666038.18.e01
http://dx.doi.org/10.3390/robotics9040107
http://dx.doi.org/10.34306/ajri.v5i1Sp.911
https://www.boardgamecentral.com/rules/checkers-rules-italian.html
http://dx.doi.org/10.1109/TSMCB.2012.2207951
http://www.ncbi.nlm.nih.gov/pubmed/22893439

Robotics 2024, 13, 4 17 of 17

32. Andersson, J.A.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A software framework for nonlinear optimization and
optimal control. Math. Program. Comput. 2019, 11, 1–36. [CrossRef]

33. Gaz, C.; Cognetti, M.; Oliva, A.; Giordano, P.R.; De Luca, A. Dynamic identification of the franka emika panda robot with retrieval
of feasible parameters using penalty-based optimization. IEEE Robot. Autom. Lett. 2019, 4, 4147–4154. [CrossRef]

34. Chess Robot Grabs and Breaks Finger of Seven-Year-Old Opponent. Available online: https://www.theguardian.com/sport/20
22/jul/24/chess-robot-grabs-and-breaks-finger-of-seven-year-old-opponent-moscow (accessed on 5 December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12532-018-0139-4
http://dx.doi.org/10.1109/LRA.2019.2931248
https://www.theguardian.com/sport/2022/jul/24/chess-robot-grabs-and-breaks-finger-of-seven-year-old-opponent-moscow
https://www.theguardian.com/sport/2022/jul/24/chess-robot-grabs-and-breaks-finger-of-seven-year-old-opponent-moscow

	Introduction
	Related Works
	Materials and Methods
	Italian Checkers Rules
	Game State Evaluation
	Game Engine
	Trajectory Planning
	Experimental Setup

	Results
	Conclusions
	References

