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Abstract: The paper presents a novel offline programming (OLP) method based on programming
by demonstration (PbD), which has been validated through user study. PbD is a programming
method that involves physical interaction with robots, and kinesthetic teaching (KT) is a commonly
used online programming method in industry. However, online programming methods consume
significant robot resources, limiting the speed advantages of PbD and emphasizing the need for an
offline approach. The method presented here, based on KT, uses a virtual representation instead of
a physical robot, allowing independent programming regardless of the working environment. It
employs haptic input devices to teach a simulated robot in augmented reality and uses automatic path
planning. A benchmarking test was conducted to standardize equipment, procedures, and evaluation
techniques to compare different PbD approaches. The results indicate a 47% decrease in programming
time when compared to traditional KT methods in established industrial systems. Although the
accuracy is not yet at the level of industrial systems, users have shown rapid improvement, confirming
the learnability of the system. User feedback on the perceived workload and the ease of use was
positive. In conclusion, this method has potential for industrial use due to its learnability, reduction
in robot downtime, and applicability across different robot sizes and types.

Keywords: robot programming; programming by demonstration; motion capture; augmented reality;
performance evaluation; user study

1. Introduction

The global shift towards high-mix, low-volume products is a result of recent market
transformations that have created a buyer’s market, due to a shift in consumer mentality [1,2].
The trend towards mass customization poses new challenges for traditional robotic automa-
tion. Robots often need to be reprogrammed, making the cost of using robots prohibitive
for small- and medium-sized enterprises (SMEs) [3].

Businesses, especially SMEs, rely on common programming methods, like using a
teach pendant in the form of lead-through or walk-through programming, which falls
under the category of online programming methods [3]. Online programming is very
popular in this context because it does not require any actual programming knowledge, but
it can use up a significant amount of robot resources over a prolonged period, resulting in a
low cycle time. Realigning the robot with the teach pendant is a time-consuming process,
but it is essential for welding tasks, for example, to avoid thermal deformation [4].

Fortunately, offline programming approaches can minimize downtime and singu-
larity issues by predefining and simulating every movement of the robot arm. Offline
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programming has some limitations when used in small-scale productions. Capturing the
environment and aligning the virtual components as they are positioned in the real world is
a common issue. Furthermore, performing pure offline programming requires specialized
training and programming skills to create all movements in an abstract virtual environment,
possibly with code, and to later transfer them to the actual cell on the shop floor [5].

To summarize, online programming using walk-through or lead-through methods
with a teach pendant is highly immersive, since it occurs in the actual cell, requiring
minimal programming skills and no additional calibration steps. Offline methods, in
contrast, usually enable the early identification of singularities through simulation. This
allows for the optimization of the program without using a robot, ultimately reducing
downtime. What is needed is a method that combines these features, works offline to
minimize downtime, is easy to learn due to its high degree of immersion, and does not
increase the effort required for the digital model. Possible answers to this question could
be methods that are summarized under the terms programming by demonstration (PbD)
or learning from demonstration (LfD). These methods allow for the rapid creation of
robot programs without the need for extensive specialized knowledge. The objective is
to develop a PbD method that does not require the robot during the programming phase
while still providing a high level of immersion. Augmented reality may be the solution
to achieve immersion in an offline PbD method. However, finding solutions that address
spatial separation between real and virtual content is important. For instance, how to
capture trajectories without an accurate computer-aided design (CAD) model of the cell,
how to make all target frames accessible, and how to avoid collisions with real objects.
In addition to spatial calibration of real and virtual content, creating suitable interfaces
between humans and simulations is crucial.

To address this research gap, an Augmented Reality (AR)-based offline programming
method has been developed that separates the robot in time and space from its working
environment during the programming process and is called Virtual Kinesthetic Teaching
(VKT). VKT uses an augmented reality AR simulation to generate the process steps in
the robot program. It is independent of the physical robot hardware and enables the
teaching process in an environment separate from the production area. To capture the
necessary trajectories and commands for the robot using VKT, only the workpiece that
will be processed by the robot is required. This allows the real robot to work on another
workpiece simultaneously with the programming process, reducing downtimes. This
efficient separation of the teaching process from the robot hardware also offers significant
potential for safe learning when working with collaborative robots. It enables the training
of complex tasks without the risk of injury and facilitates the integration of human–robot
interactions into the production process.

To evaluate the VKT and various conventional kinaesthetic teach-in methods, a user
study was conducted. The study considered application-specific performance measures,
such as frame placement accuracy and programming time, as well as subjective factors like
user-friendliness and learnability of the process. As part of the user study, the researchers
used the same collaborative robot for both VKT and the conventional kinaesthetic teach-
in method.

2. Related Work

This section discusses programming methods for industrial robots and how to evaluate
their efficiency. It starts with a summary of current programming techniques, followed
by an overview of approaches to compare and validate different programming methods.
Lastly, an overview of current intuitive programming methods from research is given. Used
keywords and databases can be found in the Appendix A. The objective of this work is to
identify the challenges that must be overcome to make robot programming accessible to
non-experienced operators.
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2.1. Overview of Modern Programming Methods

There are different ways to subdivide the programming methods. For example, one
can make a subdivision according to the components involved in programming a robot
system. This results in various so-called centerings, such as robot-centered, task-centered,
and guidance-centered [6].

One of the most common classifications is based on the interaction between the robot
and the user during the programming process. This classification divides the methods
into three groups: online, offline, and hybrid, which includes elements of both. The term
online means that the robot is directly involved in the programming process and, therefore,
production is interrupted. In offline programming, the actual programming process can
be carried out independently and is usually software-supported. Offline methods are
preferable when it comes to the efficient use of robot resources. However, a hybrid method
is often used, where the control flow is determined offline and certain parameters are
set online. Robot programming with augmented reality (RPAR) occurs in a semi-virtual
environment with a simulated robot on the factory floor. Prior to executing the actual
operation, the virtual robot synchronizes with the real robot [7–9].

2.2. Validation of Programming Methods

As shown in the previous section, the number of methods and approaches of
demonstration-based programming methods is quite diverse. The variety makes it difficult
to compare the methods with each other. Various researchers, such as [10], attempt to
determine insights into the ease of use, physical and mental load on participants, and time
requirements of their method through user studies. Table A1 lists the different validation
methods and measurement parameters of various papers.

In [3], a user study was conducted with 20 participants and two test applications. The
participants were tasked with creating a welding and a pick and place application using
the developed prototype. To determine the method’s intuitiveness, programming time
and subjective evaluations in six different areas were measured through a straightforward
questionnaire. Unfortunately, the questions were highly specific to the method described
in [3] and cannot be applied to similar methods. Additionally, the survey did not include
any general questions about physical or mental load, and there was no mention of the
accuracy attained by the participants using the method.

This underlines the statement of [11] that there is no common benchmark test to evalu-
ate the resulting trajectory accuracy, the probability of completing an assembly task, and the
intuitiveness of the programming interface. A standard for measuring the achievable path
accuracy with a programming method does not yet exist. However, the general standard
for recording the performance characteristics of robots can be adapted for this purpose [12].
The standard can be used, for example, to determine the accuracy of individual points that
were previously programmed with the method to be tested.

To include humans in the validation of programming, other areas of research should
also be considered. Certain approaches have been developed to collect data on human–
machine interaction. Worth mentioning is the questionnaire for the subjective consequences
of intuitive use (QUESI), which was developed for interaction with mobile devices such as
cell phones or tablets [13].

However, the QUESI questionnaire does not refer to the mental or physical load
experienced by the user. For this, the NASA task load index [14,15] can be used. Here, the
user must describe their load in the areas of mental load, physical load, time demands,
performance, effort, and frustration on a scale from low to high, representing, respectively,
from good to bad.

The works of [3,10,16–18] demonstrate that a user study is an effective means of
evaluating a programming method while considering both subjective and objective factors.
To conduct the study, a suitable test scenario must be created. Ong et al. evaluate the
performance of their method not only with a robotic welding application but also with a
pick-and-place application, a preference shared by [17,18]. A clear distinction should be
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made between objective and subjective parameters when defining test parameters. Usability
has been identified as a suitable subjective parameter, as demonstrated by Steinmetz et al.
This parameter can be measured using a questionnaire such as the QUESI [13]. The NASA
Task Load Index is a suitable instrument for measuring the physical and mental stress
experienced by test subjects. Zuh et al., Steinmetz et al., Ong et al., and Quintero et al. use
the time allotted for completing the task as an objective parameter. Another parameter for
validating the method is the success rate, as used by [17,19,20]. To ensure a more accurate
evaluation, measuring accuracy in the form of geometric deviation from the ideal position
is a useful tool. A summary of the evaluation methods and associated parameters can be
found in Table A1.

2.3. Programming Methods Based on Demonstration

A notable class of online methods is programming by demonstration (PbD) or learning
by demonstration (LfD), which in both types is based on learning complex skills after
an abstract demonstration phase. LfD tends to require programming at a higher level of
abstraction than PbD (with some cases used as a synonym) and the basic requirement for
learning new skills is the adaptation of human skills through observation.

Generally, these methods do not require writing manual code or creating complex
CAD models of the work environment. During the programming process, a significant
reduction in programming time is achieved by having a human demonstrate a step of the
process and then having the robot attempt to replicate it. This human demonstration can
range from a general posture to a demonstration of finger skills [8,11,21,22].

PbD or LfD methods are effective in streamlining the programming process, even
when the CAD models required for traditional offline programming (OLP) are unavailable.
Using PbD and LfD techniques, the robot can learn complex sequences of operations by
physically demonstrating the task. This learning process takes place on three abstract levels.
First, the movements of the human are captured using appropriate tools, depending on
the LfD category. These data are analyzed and systematized in the second step, to learn
or generalize the robot’s capabilities. The representation of capabilities has a significant
impact on the performance of robot capability learning and adaptation. The approaches to
capability representation can have different characteristics, such as the dynamical systems
method or the probability and statistics method. In the third step, the data are abstracted
and adapted to the robot [23–25].

Most PbD or LfD approaches fall into the categories of kinesthetic teaching, teleopera-
tion, or passive observation. Kinesthetic teaching is characterized by the learning process
being performed with the robot performing the task itself [26,27].

Many PbD or LfD approaches are confronted with the so-called correspondence
problem. The problem is that human and robot bodies differ in their kinematic structure
and dynamic behavior, which leads to mapping challenges. For example, in observational
learning, the human pose must be recognized by cameras, adapted, and transferred to the
robot with possible inaccuracies. The advantage of KT is that the robot’s manipulator is
physically moved by pushing and pulling and at the same time the pose is detected by the
internal force-torque sensors. This eliminates the calibration problem AX = YB described
in [28], which defines the relative transformations between hand–eye (X) and robot world
(Y). The disadvantage is that KT can only be used to learn scenarios that are physically
possible for humans. For example, teaching a robot to palletize heavy objects would require
significant additional effort [22,29].

The presented work utilizes a range of technologies, including augmented reality and
neural networks. The work is categorized into three categories. The first category describes
experimental methods at a higher level of abstraction, followed by the more traditional
industrial division into online and offline approaches. The authors’ methods and metrics
for validating and evaluating their programming methods are presented in each case.
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2.4. Experimental Programming Methods

As stated in the introduction, the goal of this work is to develop a PbD method that
does not require the robot during the programming phase while still providing a high level
of immersion to allow non-experts to participate in the programming process. To achieve
this, we will examine various research approaches in more detail below.

In [19], a high-level approach of LfD using a neural network was developed. Both
passive observations and active interactions were used to train the network and to create a
model. The model was validated by a robotic task. In this task, the robot learned how to use
a tool to move an object by passively observing a human. Passive observation comprised
1000 videos of a human pushing objects with different tools. As active interaction, the
model had random robot trajectories as well as 1200 kinesthetic demonstrations of pushing
tasks. The model had a higher accuracy than the stochastic adversarial video prediction
(SAVP) [30] base model.

Schmeckpeper et al. presented a very abstract form of robot programming that is still
in an early stage of research. An attempt was considered successful if the distance between
the pushed object and the target point was less than 10 cm, which makes the use of this
method impractical.

In [20], a PbD method based on kinesthetic teaching was presented. The method
promised to be non-posture controlled. A peg-in-hole task was learned by means of a
demonstration by a human. For this purpose, the workspace was scanned for objects
using a wrist camera on the robot and identified using scale-invariant feature transform
(SIFT) [31] features. The human labeled the recognized object by a specific name and
performed the grasping process using kinesthetic teaching. Then, the software linked the
object, the features, the labels, and the movements of the gripping process. The robot could
then independently perform the demonstrated gripping task after a successful identification
of the object. The method made it possible to automatically execute previously learned
grasping strategies after automatic object recognition.

2.5. Online Programming Methods

Researchers continue to improve these methods by combining different approaches.
Steinmetz et al. combined task-level programming, as implemented in the Robot Pro-
gramming Suite (RPS) from ArtiMinds [32], with kinesthetic PbD and called it Task-Level
Programming by Demonstration (TLPbD). The user demonstrated the task through kines-
thetic teaching (KT), and the software recognized one of several predefined intentions
based on the movement. As a result of the detected intent, a pre-parameterized skill was re-
trieved. Intention recognition saves the user from having to subsequently assign individual
commands (e.g., close or open gripper) to specific points within the trajectory [10].

The work of Steinmetz et al. shows that intention recognition can speed up program-
ming, but it is more error-prone than manual assignment. For an industrial use case, we
would recommend using manual mapping, by pressing an input key during trajectory
recording. It is important to note that the online TLPbD method consumes more robot
resources than the offline method, which offsets the time advantage gained. In the field
of observational learning, motion capture systems are frequently utilized, and sophisti-
cated human machine interfaces (HMI), such as augmented reality, offer great potential for
simplifying the programming of industrial robots.

Ong et al. presented a programming method for welding robots that projected the
robot into the real robot cell via an AR interface. A PC mouse equipped with motion
capture markers was used to display the tool center point of the AR robot. Programming
was carried out by tracing the target points in the robot cell on the real workpiece with
the modified PC mouse. The movements of the AR robot were then calculated by a Robot
Operating System (ROS) https://www.ros.org/ (accessed on 14 February 2024) software
module based on the tool center point (TCP). In a validation experiment with six test
subjects, a virtual weld was drawn on a quarter-circular sheet metal joint [16].

https://www.ros.org/
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In [3], the aforementioned prototype was used for a welding application, using addi-
tional information from a parameterized CAD model. Welds were delineated by selecting
particular workpiece features with the modified PC mouse. The actual workpieces were
marked with reference points to identify and correspond with the CAD model. Using the
additional CAD data, it was expected that the weld would not only be easier to create, but
also more accurate.

Schwandt et al. aimed to develop a new, intuitive human–robot interface (HRI) that
utilizes AR to reduce the programming phase required for commissioning robot cells in the
production line. This is an online programming method where an operator teaches the robot
using an AR interface. The method can be applicable to various use cases. Firstly, the robot
program was visualized sequentially by an AR trajectory that consisted of connected 3D
points and lines. To achieve this, the target point coordinates from the robot program were
utilized to display AR objects through a Vufine+ wearable display. To perform calibration,
a planar QR code was attached to the end effector to serve as a reference coordinate
system for projection tasks in the AR module. It could be recognized by the head-mounted
camera. The second use case involved performing a virtual motion simulation of the robot
executing the program. In this scenario, only a 3D model of the gripper was moved along
the previously described trajectory. The authors aimed to offer visual collision control by
projecting the scaled model of the robot end-effector at any point along the trajectory into
the AR environment. Programming the industrial robot with a stylus was another use case.
Transferring the 6D-coordinate of the stylus’s tip to the controller would replace the need
for the teach pendant. A reachability check was performed on the measured point, and if it
passed, the point was added to the robot program. A scaled 3D model of the end effector
was projected into the image plane instead of using the AR-Stylus [33].

2.6. Offline Programming Methods

Quintero et al. introduced a method for the offline programming of industrial robots,
using an augmented reality interface with a Microsoft HoloLens. Holographic images
of a Barrett seven-degrees-of-freedom full-arm robot and its trajectory were projected as
individual waypoints in the real workspace. To teach a waypoint, users had to aim their
head so that a virtual pointer pointed to the desired target. Waypoints could be taught
and modified using voice or gesture commands. Calibration involved manually aligning a
real reference feature with a virtual one (e.g., visually positioning two nested cubes). In
a user study, the authors instructed participants to record a surface path and a free space
path using both the developed AR interface and a seven-degrees-of-freedom (DOF) Barrett
whole-arm manipulator in gravity compensation mode. Overall, the AR interface expedited
the programming process and attained similar results to the surface path task. However,
in the free space pick and place activity, the AR interface experienced significantly more
unsuccessful attempts. The NASA TLX analysis demonstrated greater cognitive load on
the participants and reduced physical load whilst interacting with the AR interface [17].

Bambusek et al. aimed to reduce the user workload and speed up the programming
process compared to kinesthetic teaching. They developed an AR application that enables
the offline programming of collaborative robots using a Microsoft HoloLens and a table with
Spatial Augmented Reality (SAR) projections. The AR application projected a hologram of
the robot gripper centrally, at a fixed distance of 30 cm in front of the user’s field of view. On
the SAR table, instructions for the programming process were displayed. The user guided
the gripper to the desired target point by adjusting the head position and orientation.
Gripper rotation was adjusted using HoloLens Air Tap gestures on an AR sphere, and the
gripper’s ability to reach the target points was indicated by changes in color. The robot
program generated offline in this manner could later be executed by the real robot, a PR2
(Willow Garage, Menlo Park, CA, USA), after calibration via an AR object and the table
edge. In an experiment, the authors of the study compared the programming concept with
another concept they had developed in a previous paper, in which they programmed the
PR2 through kinesthetic learning with the support of SAR projections on the table [18].
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The programming methods presented above are listed in Table A1 for better clarity,
with the aspects of the technology used, the type of programming method and its validation
concept detailed.

To summarize, Zhu et al. [20] showed that kinaesthetic teaching was a method with
a high success rate for successfully teaching the robot specific grasping actions. This is
supported by the NASA TLX results of [18], which showed that the cognitive load of the
method with KT was lower than the gesture control of the simulated robot gripper used
in the work. However, this is an online approach, and, in order to combine the efficient
resource utilization of OLP with the fast programming speed of PbD, an alternative form
of physical demonstration is required.

Observational learning, despite having increased calibration overhead due to the cor-
respondence problem, can provide a solution in this context. This is due to the involvement
of several temporally independent steps. These include the observation of demonstrations,
often with the aid of visual systems, the extraction of an abstract feature representation,
and the performance of the demonstrated task [22,34].

The concept of Bambusek et al. to create a program offline with an AR hologram at
a free robot workstation does not use observational learning, but has great potential for
human–robot interaction, as it simultaneously uses the advantages of resource-efficient
offline programming. The offline programming method in [17], in combination with the
low threshold, has the ability to simplify the programming process for certain robot tasks.
According to the article, a limiting factor is the calibration and gesture-based control
concept, which results in inaccuracy in the placement of waypoints. Quintero et al. mention
that shifting the position of the test subjects can lead to an offset of up to 50 mm between the
virtual and the real object, which would severely limit the benefits of AR technology. In their
work, Quintero et al. point out that it is not always necessary to create a comprehensive
3D model of the robot cell in a simulation environment. Instead, the recommendation
of Bambusek et al. can be followed to carry out the programming process at adjustable
and mobile robot workstations in order to keep robot downtime to a minimum. A mobile
robot workstation is a flexible workplace that resembles an industrial table on castors, for
example, and is equipped with various mounting options or small load carriers.

Using such a mobile robot workstation and not using the real robot requires a re-
alistic simulation. To make this offline programming process feel intuitive for the user,
it is important to use not only the gripper, as in [18,33], but also a complete augmented
reality simulation of the robot’s structure and kinematics. The work of Ong et al. [3,16]
show such an advanced AR simulation. The generation of virtual weld seams with a 3D
pointing device in the form of a mouse stretched by a motion capture are also very intuitive.
Unfortunately, the online nature of the approach increases robot downtimes.

An intuitive teaching concept that places as little cognitive burden as possible on the
user is crucial for simple programming. It is therefore more advantageous to use a physical
teaching concept, as in [3], than a teaching concept based on the orientation of the head, as
in [17,18]. A physical teaching approach, e.g., with a pen-like device, such as [33], enables
the precise creation of points by direct touch, eliminating the need to determine them by
the intersection of orientation vectors and objects.

In order to consider all aspects of AR robot programming, a reliable calibration of the
real robot with the simulation must be developed. Both the purely optical calibration via
a QR code, as in Ong et al. and Schwandt et al., as well as the manual placement of AR
objects on real objects, as in Quintero et al., have potential for improvement.

In summary, it is clear that a new programming method needs to be developed
that can, in principle, be executed offline in order to save robot resources and, at the
same time, has a teaching concept that is independent of the cell. For this reason, classic
kinesthetic teaching was ruled out, even though it enables a very intuitive and immersive
programming process. A largely immersive replacement for the real robot is a realistic AR
robot simulation. As [17,18] show, a physical teaching concept gives better feedback to
the user than a purely visual or verbal teaching concept and, at the same time, helps to



Robotics 2024, 13, 35 8 of 32

avoid the correspondence problem. To combine a physical teaching concept with offline
programming and a sufficiently accurate calibration procedure, an adjustable and mobile
robot workstation is required.

Since the combination of all the above-mentioned aspects has not yet been united
in a programming method for industrial robots, a new programming method has been
developed in this work, which is presented in the following.

3. Offline Programming by Virtual Kinesthetic Teaching

This section describes an offline programming method based on KT with a augmented
reality representation of a robot. For more information on specific solutions, such as the
hierarchy of object coordination systems or perception of components, see [35]. First, the
functional principle of the method and the process flow are described. Subsequently, the
realized method is presented in combination with a physical prototype.

3.1. Concept of the Method

The programming method for industrial robots presented here claims to keep both the
duration of the programming process and the robot downtime as low as possible. For this
purpose, the method is divided into two stages, which take place in two real rooms and are
extended by virtual objects (see Figure 1).

Programming Environment Production Environment

Stage I Stage II

Pointing 
Device

Virtual 
Robot

Flexible 
Workplace

Flexible 
Workplace

Virtual 
Robot

Real Robot *1

*1: Real robot is not depicted congruently for display reasons

Figure 1. Superordinate diagram for a simplified representation of the overall process. The illustration
has been reduced to the two stages including the corresponding necessary environments and objects.

The two rooms do not have to be identical, as long as they have a similar size ratio,
which excludes a miniature replica of the real cell. The relevant commonality of the rooms
is only the workpieces to be machined and their material carriers or fixtures. One or several
workpieces, along with all material supports and fasteners, are hereafter referred to as the
flexible workplace (FXW).

During the first stage, the programming process is initiated, where a digital robot
replica can be positioned in any desired location and manually controlled by the user with a
pointing device (PD). The second stage involves setting up the robot cell by referencing the
robot with the FXW and performing physical processing or manipulation. The following
section will explain both stages and their respective processes in detail. Figure 2 serves for
the graphical illustration of the process flow.

Stage I takes place in a room separate from the shop floor and represents the program-
ming environment. In this context, the term environment is considered to be everything
that a person can perceive with their senses. In this example, there are three main objects
in the programming environment (see Figure 2, stage I, hexagonal boxes). It contains the
FXW, which is to be processed or manipulated by the robot. In addition, there is a virtual
image of the physical robot (the virtual robot), which imitates its visual appearance and
properties. The last initial main object is a pointing device, which can be used to manually
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guide the virtual robot in 3D space. All these objects are involved in processes and create
further virtual objects, data, and, finally, a template of the application.

• Spatial alignment of real and virtual objects
• Alignment in position and orientation in 6DOF
• Solving correspondence problem by reducing 

robot to the end-effector
• Using pointing device as physical connection to 

virtual robot

• Recording 6DOF points as frames
• Link frames with robot commands
• Order frames in trajectories

• Create smooth robot movement
• Chose reference object for frames in real world
• Define movement type for trajectory

• Check program flow by simulation
• Identify errors (visually, automatically)
• Pre-calculate joint angle for robot

• Determine model deviation between stage I 
and II

• Determine relative spatial position of robot and 
processing objects  by physically align 
end-effector and object

• Align virtual robot base to real robot 
base-coordination system 

• Create final robot movement 
• Control process flow in robot cell

• Change object position or modify parameters 
by errors 

• Creation of specific robot source code
• Load on robot controller 

• Execute program in robot cell
• Repeat Set-up process by the number of pieces Application 

Execution Process

Stage I: Programming Environment

Start

Flexible 
Workplace

Pointing Device 
(motion captured)

Virtual
 Robot

Object Matching 
Process

Frame Creation 
Process

Path Planning 
Process

Control Process

Error 
free

Stage II: Production  Environment

Set-up Processes

Flexible 
Workplace

Real 
Robot

Virtual
 Robot

Transmission 
Process

Calibration 
Process

Adaption and 
Control Process

Error 
free

Export Process

End

Remaining 
pieces

Preparatory Process

Programming Processes

Manufacturing Processes

no

yes

no

no

yes

yes

Objects:

Objects:

• Move progressing object to robot cell
• Transfer application blueprint

Figure 2. Programming method with two real environments and a superimposed virtual environment.
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Initially, preparatory processes are necessary to perform the actual programming.
To address the correspondence problem of offline programming discussed in Section 2.4,
a new approach of kinesthetic teaching focusing on the robot’s end effector is used. A
physical pointing device controls the virtual robot and interacts with real-world objects on
the flexible workplace. The PD serves as an end effector for the virtual robot and provides a
physical connection to the virtual robot. To align the objects, the pointer must be calibrated
to the FXW first.

This process involves the coordination of all real and virtual objects in the program-
ming environment through spatial coordination. First, a global coordinate system (G-
CS) is defined in real space, to which the coordinate systems of the real (see Calibration
Element (CE), FXW, PD, and Sensor (S) in Figure 3) objects are referenced. There is a
corresponding coordinate system in virtual space for each real object. By using geomet-
ric calibration elements (CE) and visual motion capture sensors (S), the transformation
vG−CSTvCE =G−CS TCE can be determined (see Section 3.2). Using this transformation, the
pose of the pointing device can be mapped to the end effector of the virtual robot. This
allows all poses of the objects to be completely represented as an element of the special
Euclidean group SE(3) with (p, R) ∈ SE(3) with p ∈ R3, R ∈ SO(3) at the end of the process.

Cali. Object {CE}

Flex. Workplace {FXW}

{G-CS}
G-CSTCE

CETFXW

Pointing Device {PD}

Sensor {S}

STPD

CETS

CETPD

Element {CE}

(a)

{vG-CS}

vG-CSTvCE = 
G-CSTCE

virtual End-Effector: {vE}

virtual
Robot
Base: {vB}    

vKTvE = KTZ 

(vBTvE)-1 : IK

virtual
Coupling Elements: {vCE}

vCETvB

Frames: {Fn}
vETFn= E

*1

*1: Frame not overlaid with end effector for display reasons 

(b)

Figure 3. Transfer of transformations from the real to the virtual space within the programming
environment in the course of the object matching process. (a) Coordinate systems and transformations
of all real objects; (b) coordinate systems and transformations of all virtual objects and inverse
kinematics (IK) of the virtual robot.

The programming processes start with the frame creation process. Here, points with
six degrees of freedom (6-DOF) are initially generated. They are subsequently paired with
commands and now referred to as frames. Thanks to the object matching process, the
end-effector of the virtual robot moves synchronously with the PD. The positions of the
remaining robot links result from the inverse kinematics (IK) algorithm used and the pre-
vailing transformation between the TCP and the robot’s base reference coordinate system.
If the robot takes up a non-ideal overall position, the user must initiate a recalculation. This
process is called virtual kinesthetic teaching. The PD can now be used to approach target
points in real space, and command buttons can be used to create frames. These buttons are
used to assign certain properties to the frames that affect the robot’s path planning. These
properties are used to organize the frames hierarchically in trajectories, as well as to initiate
a gripping process or similar.

The trajectories created are the foundation for the path planning process. The goal
of this process is to generate a continuous robot motion for efficient motion planning.
User input is used to define the motion types of the trajectories, and then the necessary
data is generated. A distinction is made between simple waypoints, which are used for
regular manipulation movements with a start and end point, and complex splines, which
can represent, for example, a welded seam. Due to the different types of trajectories, it
is necessary to specify the reference coordinate system that the respective trajectory uses.
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Trajectories that describe the approach and manipulation of a workpiece are referenced to
the global coordinate system. Complex splines, on the other hand, which describe how
to machine a part, use the workpiece pose as the reference system. This creates the first
version of the application template.

The aim of the control process is to identify errors in the application template. The
inverse kinematics of the virtual robot are constantly computed in real time in order to
execute the entire trajectory with the TCP. Possible errors in the program sequence and
collisions with objects can be identified by visually examining the overall robot motion.
The robot’s joint angles are discretely recorded and analyzed over time for the application
template to automatically verify the reachability of each target point. Through analysis,
discontinuities in the joint angle trajectory can be detected, indicating singularities.

If any errors emerge during the control process, it is essential to revert back to the
frame creation process. During this process, it is possible to delete frames, to move them, or
to link them to other commands. It is also possible to add auxiliary points to the trajectory
or components and to reposition virtual robots. A complete re-recording of all robot joint
angles is required for robot repositioning. Once stage I is completed without further errors,
the FXW is introduced into the production environment. All the generated data is then
transferred to stage II.

The manufacturing environment now contains the FXW, the real robot, and the virtual
robot. The setup process involves performing a calibration process to determine the actual
geometric parameters within the robot cell, which helps identify the model deviations be-
tween stage I and stage II. It should be noted that the trajectories recorded in the application
template are based on the base reference coordinate system of the virtual robot in stage I,
which makes them invalid in the event of model deviations in stage II. To adjust a change in
relative position, a measurement run must first be conducted within the real cell. To deter-
mine the coordinated transformation, the real robot’s end effector is coupled temporarily to
a measuring object at the flexible workstation. This transformation between the robot’s base
reference coordinate system and the FXWs coordinate system allows the virtual robot to be
adapted to the pose of the real robot. The repositioning results in the need to recalculate
all joint angles for the robot program. Through the adaptation and control process, in
a similar way to the control process in stage I, a check of reachability and singularity is
performed. The user visually monitors the process to detect any errors. If errors arise, the
objects require repositioning, or the environment necessitates slight adjustments. Once a
flawless run is achieved, the export process can commence. The export process is used
to convert the application template into an executable robot application. A source code
file is created using a special export format. This source code can be transferred to the
respective programming language of the real robot used by means of a converter. Finally,
the application is loaded onto the robot’s controller and the program can be executed. If
several objects are manipulated or processed in a similar way, it is necessary to jump back
to the calibration process.

3.2. Prototypical System and Environment Implementation

In the following section, the prototypical implementation of the method described
above is explained and the most important hardware and software components are shown.
Figure 4 illustrates how the components interact with each other and in which way data is
exchanged. The description does not represent a chronological process flow like in Figure 2
and the spatial allocation of the components is also not shown in Figure 4.
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Figure 4. Representation of all hardware and software components of the prototype, including
mechanical coupling and data flow.

The central hardware component is the workpiece, which is, in this case, permanently
connected to the FXW. A setup with several independent workpieces or small load carriers
is also possible (see Figure 5a). In this case, all objects must be permanently tracked in
position. The FXW is equipped with an optical target and a calibration block. In addition,
an AR system consisting of an HTC Vive Pro (HTC Corporation, Xindian District, New
Taipei City, Taiwan), a controller and associated tracking system is used. A smart pointing
device (SmartPd) is used as a representation of the robot’s end-effector, which can be
tracked using an optical target and serves as an input device for additional commands. In
addition, the SmartPd can be used to detect contact forces and grip objects. With a motion
capture system consisting of six Flex 13 cameras (OptiTrack, Portland, OR, USA), the optical
targets can be tracked with sub-millimeter accuracy. A Kuka iiwa LBR R800 (KUKA AG,
Augsburg, Bavaria, Germany) is used to execute the tasks in the cell.

(a) (b)

Figure 5. This figure shows an example application of the method using the prototype. It shows both
the real representation and the mixed reality representation, which the operator perceives via the
modified Virtual Reality (VR) headset, which was converted into AR glasses using a special SDK.
The robot is visually present for the operator and can be controlled by them via the pointing device.
Interaction with physical objects is also facilitated by the pointing device. (a) Frame creation process
real view; (b) Frame generation process in head-mounted display view with GuideARob-Teach.
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The most important software component is the GuideARob-Teach software, developed
in Unity 2019.4.20f1 (Unity Technologies, San Francisco, CA, USA), which serves as the
central control unit. The software GuideARob-Ex, written in C#, serves as the interface
to the Kuka iiwa. For the control of the SmartPd and the wireless communication with
GuideARob-Teach the SmartPd-OS is used, which runs on the microcontroller Particle
Photon (Particle, Boulder, CO, USA). Commercial tools are utilized for communication
with the OptiTrack MoCap system and its software Motive 2.2.3 (OptiTrack, Portland, OR,
USA), as well as the AR system from OpenVR (Valve Corporation, Bellevue, Washington,
DC, USA).

The AR system consists of modified Virtual Reality (VR) glasses (HTC Vive Pro) with
two associated tracking sensors (Base Station 2.0) and a modified HTC Vive controller. With
the help of the developed software GuideARob-Teach and the VIVE SRWorks SDK [36], the
full potential of the VIVE VR system could be utilized and the glasses could be used in the
context of AR pass-through technology.

Object matching takes place via the MoCap system and the various optical targets
fixed at the FXW (see Figure 6a), as well as via the calibration block (see Figure 6a,b) and
the AR system. Since the AR system has its own tracking system and the controller can be
connected temporarily to the calibration block, it is possible to link the real objects (video
feed) and the virtual content. Once the AR system is calibrated, the virtual robot’s TCP
and the SmartPd’s TCP must be matched. To do this, the SmartPd’s calibration tip (see
Figure 6c) is inserted into the calibration block and the virtual robot assumes its calibration
pose. In this configuration, a transformation can be performed to adjust both TCPs.

(a) (b) (c)

Figure 6. Illustration of the various calibration elements of the prototype. (a) Calibration plate of the
FXW with a MoCap calibration cross (bottom left) and the calibration block attached to it (bottom
right) and the associated calibration tip for the real robot; (b) illustration of the calibration process
within the robot cell (stage II). The robot has the calibration element on the flange and is inserted into
the calibration block using a hand guide mode; (c) SmartPd with calibration tip that can be inserted
into the calibration block for the calibration process.

The workpiece can be detected by attaching it to the FXW or by using a separate
optical target. The target’s six mechanical degrees of freedom can be determined using a
camera system. The SmartPd is used to specify the destination point for the TCP of the
virtual robot. At the same time, the robot base reference coordinate system is defined in
the software via a fixed relative position to the FXW. From this, the inverse kinematics
solver can be used to compute the joint angles of the virtual robot. The multi-objective IK
solver used here is called Bio-IK and internally uses a hybrid evolutionary algorithm [37].
In conjunction with a corresponding CAD model of the Kuka iiwa, a realistic simulation of
the robot can be achieved (see Figure 5b). As the virtual robot follows the SmartPd, the
user can set individual frames, including additional commands, at the push of a button.

If the TCP is in the correct position during frame creation, but the position of the
remaining robot links is not optimal, which can happen with a 7-DOF robot, a recalculation
of the IK can be triggered by pressing a button on the SmartPd. The individual frames
are hierarchically assigned to specific trajectories. The reference coordinate system of the
trajectories is linked to an optical target, which is permanently connected to the FXW
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or the workpiece. This allows the FXW or workpiece to be moved in space without the
frames changing in relation to their reference object. The trajectories can be either simple
movement types, like point to point (PTP), or complex spline movement types. Command
keys on the SmartPd can be used to link additional parameters to them. This results in the
application template, which shows the entire movement of the robot TCP relative to the
reference object. To avoid errors, the application template is permanently synchronized
with the virtual robot. This means that frames can only be created if they are reachable by
the robot. In addition, the user receives a permanent AR visualization of the robot and the
frames set via the AR module and the HTC Vive.

To set up the Kuka iiwa in the cell, its TCP can be temporarily connected to the
calibration block, and the position of the coordinate system can be calculated using the
joint angles. The virtual robot will now be automatically moved to the position of the real
robot for adaptation. Subsequently, the application template is simulated again with the
virtual robot and the final application is created. If there are no singularities or collisions
and all points are reachable, an offline data package is created using the export module,
which is then converted to Kuka iiwa source code using GuideARob-Ex. GuideARob-Ex
enables the adjustment of individual frames or trajectory parameters, such as TCP speed,
when necessary. Finally, the source code is loaded to the controller of the Kuka iiwa, and
the application can be executed.

The prototype, and, in particular, the SmartPd haptic input device, are subject to
various limitations in terms of the type of application, component handling, and accuracy.
The range of possible applications depends on the interchangeable tip selected. Currently,
there is a probe tip for creating welding, gluing, grinding, and handling applications. There
is also a gripping tip that can be used to handle and assemble small parts in the range of
400 g and 4 × 7× 10 cm. The user must compensate for the weight of the SmartPd and the
part during the learning process. In conventional KT, the robot’s own weight and, when
appropriate, the weight of the component, can be compensated. Thus, KT offers certain
advantages. However, an initial torque in the joints must be overcome in order for the robot
to move, which can lead to overshoot for very fine tasks. For larger, heavier components,
the gripping position can also be specified using the probe tip of the SmartPd. With this
method, the limiting factor is the payload and opening width of the robot and gripper
used later. The same applies to the size of the usable workspace. The SmartPd can operate
in the field of view of the MoCap cameras in a radius of up to 5 m, but the actual usable
workspace is limited by the robot selected later. The accuracy of the system is studied in
Section 5 and is also limited by the robot.

4. Study-Based Validation for Programming by Demonstration Methods

The objective of this section is to develop a benchmarking test on programming meth-
ods based on demonstration. This test validates the applicability of robot programming
methods for industrial applications through a study with a number of independent subjects.

4.1. Study Objective

The method from Section 3.1 is subjected to this benchmarking test to prove or dis-
prove the following hypotheses:

The method allows inexperienced users with no robot programming knowledge to create a
complex robot program without significantly decreasing the maximum achievable accuracy of frame
placement or increasing the programming time.

To confirm or refute the hypothesis, various data must be collected. First, the max-
imum achievable accuracy of frame placement is measured. In addition, the required
programming time must be recorded. Furthermore, the subjective impression of the test
persons regarding the programming process is determined. This impression is examined
with regard to the ease of use and how quickly the application of the method can be learned.
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4.2. Study Design

As mentioned in [11], there is no standard method for measuring the performance
of PbD or LfD methods. Accordingly, there is no established study design as there is for
clinical trials. In the following section, an attempt is made to provide a design for studies
of this type.

A total of 16 subjects of different gender, age, and knowledge participated in the study.
Detailed information about all subjects, including who did which test how often, can be
found in the Appendix B.1. Subjects were divided into three different user groups, based on
their experience with the test application and prototype. User group one were experiencing
the trial for the first time and were referred to as inexperienced users. User group two were
subjects who were undertaking the trial for the third time and were referred to as advanced
users. User group three consisted of users with a lot of experience using the prototype from
Section 3.2 and who had run the test application multiple times.

The study consisted of 25 trials, each containing Task A and B, performed by each
subject once or multiple times. The participants who completed the test multiple times
were selected at random. Table A2 contains a list of these participants. The subjects
had to assemble a simplified table using the prototype from Section 3.2 in an office-like
environment. The template of the table is from Zeylikman et al. and the assembled object
can be seen in [38] Figure 4a. A list of all components can be found in [38] Table II. In the
initial phase of the test, the composite T-Type elements (T1, T2, T3, and T4) and the foot
F-Type elements (F1, F2, F3, and F4) were stored in a small load carrier. The four table legs
D-Type elements (D1, D2, D3, and D4) were placed in a horizontal fixture and the tabletop
in a customized fixture (see Figure 7). The subjects had to pick up and place the different
parts with the haptic device and the gripper tip (see Figure 7b). The user had to be aware,
not only in order to perform the assembly correctly, but also to perform it in a way that was
feasible for the robot without singularity or reachability problems. The individual process
steps for Task A and B are listed in Table A4).

(a) (b)

Figure 7. Representation of a test run in which various parts are gripped with the pointing device
(SmartPd). The objects are transported from their fixtures to the assembly position. (a) Top view of the
table with all test objects and associated fixtures attached to the flexible workplace. Representation of
the measuring tracks A1 to A4 in red color; (b) the gripping process of the T-type object with SmartPd.

To quantify the results, the assembly process described above was repeated by a control
group, using a conventional kinesthetic teaching method. In this case, the prototype was
substituted by a Kuka LBR iiwa R800 with a 2-jaw parallel gripper, while the experimental
set-up, such as the objects used and the small load carriers, were otherwise identical. For
the conventional kinesthetic teaching, we utilized the Kuka hand-guiding teaching. The
robot was put into hand-guiding teaching by pressing the release button on the robot flange.
By pressing the confirm button on the robot wrist, the frames were saved and the grasping
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process was initiated. The experiment comprised five test series, with both task A and task
B were performed in each series. The control group consisted of one experienced operator
per test series with knowledge of the Kuka iiwa and the hand-guide gauge, who carried out
each test series. No subjective evaluations were considered in the control group, since the
test group was already well acquainted with the Kuka iiwa and the hand-guiding teaching.
Therefore, only the measured values for required programming time and the maximum
achievable accuracy of frame placement were recorded. Each test run included all steps for
Task A and B from Table A4.

4.3. Measured Values to Be Collected

The following section describes the measurement procedures and methods used to
obtain the data described above.

4.3.1. Time Effort

For each subject, the time ttotal required for test task A and test task B was measured
at the first participation in the study. To determine the time per frame TpF, the number
of frames nF generated was divided by the total time needed (TpF = ttotal

nF
). This time

effort was then compared with conventional online programming methods in total and
per frame.

4.3.2. Positioning Accuracy

Positioning accuracy was determined in conjunction with A at all eight target points
(Pn.m with n ∈ [1; 2; 3; 4] and m ∈ [0; 1], see Figure 7) and across all user groups (inexperi-
enced, advanced, and professional). When gripping T-objects on their cylindrical shafts
with the SmartPd, the spatial information was acquired with GuideArob-Teach and the
MoCap system at the specific process steps (see Appendix B.2).The positioning accuracy
used here gave the deviation of the reached position and the barycentre (mean position over
all measurements) for the respective target point (Pn.m with n ∈ [1; 2; 3; 4] and m ∈ [0; 1])
and was calculated according to the Formulas (1) and (2).

In order to determine whether there was a significant difference between the position-
ing accuracy at the different target points, a one-way analysis of variance (ANOVA) was
performed. For this, the data of the positioning accuracy had to first be tested for normal
distribution using a quantile–quantile plot and a Kolmogorov–Smirnov test.

PDn.m =
√
(xn.m − xi)2 + (yn.m − yi)2 + (zn.m − zi)2 (1)

xn.m =
1
i ∑ xn.m,i yn.m =

1
i ∑ yn.m,i zn.m =

1
i ∑ zn.m,i (2)

4.3.3. Distance Accuracy

The distance accuracy was used to compare the VKT to a conventional KT in terms
of accuracy. This measurement procedure from [12] (Section 7.3.2) was actually intended
for determining the performance parameters of industrial robots. In this work, it is used
to determine the accuracy of teaching frames within a grasping task trial. The distance
accuracy ADP is the difference between the mean measured distance D and the command
distance De (see Equation (5)). The measurement of the four different tracks (A1, A2, A3,
and A4) between the pickup and drop of the T-objects (Pn.0 to Pn.1 at n ∈ [1; 2; 3; 4]) is used.
This measurement method was chosen because the T-objects have fixed starting positions
on the workpiece supports, but can be gripped at different points on the cylindrical shaft.
Therefore, the sole measurement of the absolute gripping points is an insufficient indicator
of the quality of the experiment. For this reason, the measurement of the relative distances
of the gripping process is also part of this study. To reduce the effect that the errors
of two measuring points cancel each other out, D is not formed from a single pair of
measuring points, but from the mean of all measurements of the respective traces A1 to
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A4. To determine the command distance De for all four tracks, a measurement is made
using a Platinum measuring arm and a Laser LineProbe LLP V3 (FARO Technologies,
Lake Mary, FL, USA), which has an accuracy of 25 µm. By additionally determining the
distance accuracy, the teaching process with the two systems (the prototype and Kuka LBR
iiwa) can be tested with respect to an absolute command value (De) using a standardized
procedure [12] and an established measuring medium (FARO Platinum).

ADP =D − De (3)

D =
1
n

n

∑
j=1

|P1J − P2J | (4)

De =|Pe1 − Pe2| (5)

4.3.4. Measuring the Ease of Use

The subjects received a questionnaire to determine the ease of use of the method in
combination with the current prototype. The questionnaire contained questions in three
categories. The first category related to programming methods in general and was partly
based on QUESI [13], the second to the task load perceived by the subjects, and the third to
specific characteristics of the respective programming method. The task load assessment
was based on the NASA task load index [14,15] and was extended by additional questions.
The questionnaire aimed to gather the subject’s unbiased subjective impression of the
programming method after using the prototype for the first time. The original questionnaire
can be found in the Appendix B.3. All method-related questions were worded positively
and subjects could express their agreement with the question with one (no agreement) to
ten points (total agreement). For the evaluation of the questionnaire, the mean value over
all subjects was calculated for each question and category. The overall evaluation of the
ease of use of the method was conducted using the mean point score of the three categories.

4.3.5. Learning Progress

It is assumed that the more often the task from Section 4.2 is repeated by a subject,
the higher the achievable positioning accuracy. This assumption is based on the principle
of learning by reinforcement. This basic principle of motor learning states that the degree
of performance improvement depends on the number of exercises. Motor learning in
a cognitive approach means the stabilization of an efficient movement sequence on the
basis of specific processing information. It is assumed that each execution of a movement
leaves its traces in the human central nervous system. With repeated successful execution
of the movement, these traces are deepened. This increases the probability that further
movements will follow this trace and be more successful. The repetition of movements is
considered one of the most effective methods for improving motor performance [39–43].

A proven model of motor learning includes a total of three stages. They are called the
early learning phase (stage 1), the consolidation phase (stage 2), and the retention phase of
motor sequence learning (stage 3). It should be noted that the transition between stage 2
and 3 is very fluid, making it difficult to distinguish [44].

In this study, it was assumed that the inexperienced user group experienced stage 1.
The subjects quickly learned the basics of the movement through the short practice, and the
process could be fully performed by them. The advanced user group was at stage 2, having
developed their fine coordination through repeated use of the system. Their performance
improved through training and they became more resistant to interference. During each
trial, users received tactile feedback from manipulating the parts with the SmartPd, while
also obtaining visual feedback from the simulation. The simulation permanently checked
the reachability of the robot and let the user create only suitable frames. The professional
user group showed stabilization of fine coordination due to a high repetition rate; they
undertook through the process very smoothly. Performance optimization occurred at a
slower learning rate. On the other hand, they could perform the task with decreasing
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attention. As a result, the increase in accuracy per repetition was an indicator of the
learning process.

This study assumes that the more frequently the test is carried out or the application
is used, the greater the accuracy achieved. This increases the probability of learning
success. To prove this, the inexperienced group performed Task A once, the advanced
group performed it three times, and the professional group performed it at least ten times.
The positioning accuracy at the different pick-up and drop-off points (see Figure 7, P n.0
and P n.1) was evaluated separately for each user group. The positional accuracy was
calculated as in Section 4.3.3, and the median of each user group was used as the reference
value for learning success.

An analysis of variance was required to determine whether there was a significant
difference between the three user groups (categorical variables) with respect to positioning
accuracy (metric variables). The normal distribution test was conducted in a similar
fashion to the discussion in Section 4.3.2. Since an ANOVA needs to be performed with
independent samples, each test person may only appear once in the statistics, which is
why the user groups were filtered and reduced accordingly. After performing the ANOVA
with significance level α = 0.05, the groups were tested against each other with a multiple
comparison test [45].

5. Results

This section shows the results of the user study, including the parameters time effort,
ease of use, distance accuracy, and learning process.

5.1. Time Effort

For all subjects who participated in the study for the first time (see heading of
Tables 1 and A3), the average time required and the average number of frames were cal-
culated (see Table 1). The subjects needed an average of 5 min for task A and placed an
average of 41.3 frames (including grab and move commands). For task B, they needed
9 min and 16 s and placed 61.6 frames. Overall, the average time per frame for task A and
B was 9.1 s/F. This corresponded to a time saving of 46.8%, compared to the control group
with the conventional programming method using Kuka hand-guiding.

Table 1. Recorded time effort of inexperienced user group; average time over trial V03 to V06, V08 to
V11, and V13 to V16 and 24.

Virtual KT Conventional KT

Test ttotal (s) TpF (s/n) ttotal (s) TpF (s/n)

A 300 7.4 652 15.4
B 556 10.4 1333 17.7

A + B 428 9.1 993 17.1

5.2. Positioning Accuracy

The results of the positioning accuracy are summarized in Figure 8. All recorded
frames across all user groups were assigned to the individual target points. The median
of the target points was very close, whereby the most accurate placement of the frames
was PD4.1 = 2.6 mm and the most inaccurate PD3.0 = 3.4 mm. The quantile–quantile plot
(see Figure A1) and the one-sample Kolmogorov–Smirnov test showed that the positional
accuracy data were normally distributed. The ANOVA showed that there was no significant
difference between the categorical variable position and the variable positioning accuracy
with F = 0.71, p = 0.663 at a significance level of α = 0.05.
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Figure 8. Box plot of positioning accuracy for all pickup and deposit points.

5.3. Distance Accuracy

The determined average absolute distance error over all trials (V03 to V24) and over
all four tracks (A1 to A4) was ADall,VKT = 3.31 mm. The averaged distance deviation error
related to the respective track showed considerable fluctuations (see Table 2). Within the
control group, there were noticeable variations between the individual traces. Nonetheless,
it can be noted that the control group showed less distance error when using the Kuka
hand-guiding (ADall,Conv.KT = 1.37 mm).

Table 2. The table displays the mean absolute distance accuracy for the four tracks in task part A. It
presents a comparison between the prototype introduced in Section 3.2 via the VKT method and the
commercial robot Kuka LBR iiwa R800 through the conventional kinesthetic teaching method, the
Kuka hand guidance method.

Track Virtual KT (mm) Conventional KT (mm)

A1 3.92 1.10
A2 4.43 2.72
A3 1.62 0.77
A4 3.27 0.90

AAll 3.31 1.37

A comparison of VKT usage among the three distinct user groups revealed significant
discrepancies in both the scatter and the maximum and mean values (see Figure 9). The
inexperienced users, who performed the trial (Task A and B) for the first time, recorded the
largest scatter, with a deviation of up to 10 mm. The advanced user group repeated the trial
three times and showed significantly lower scatter values compared to the inexperienced
users. The interquartile range used here to quantify the scatter was IQRine = 3.61 for
inexperienced, IQRadv = 3.04 for advanced, and IQRpro = 0.912 for the professional
user group.

The advanced group achieved a lower mean error in distance accuracy than the
inexperienced group. The group of professional users had used the prototype at least ten
times and achieved the best values for the mean distance accuracy with ADadv = 2.24 mm.
Moreover, the scatter of the values in the conducted experiments was extraordinarily low.
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Figure 9. Box plot of distance accuracy absolute error corresponding to track and the user groups.
(a) Inexperienced; (b) advanced; (c) professional.

5.4. Ease of Use

The ease of use of the method was rated as 7.9 out of 10 possible points (see Table 3).
The method was generally regarded as positive, and the evaluation of the individual
functions was also very positive. Only the physical and psychological load of the test
persons was in the midfield, with 4.94 points (see Table A5). The free text questions on
positive and negative aspects of the method, as well as on suggestions for changes, were
rated as follows, according to the frequency of responses. About 38% of the respondents
perceived the programming method’s ease of use to be positive. The simulation of the
robot and its movements was mentioned positively by 31% of the subjects. A quarter of
the subjects noted the short training period or the quick learning of the method as positive.
In response to the question “What did you notice negatively about the method?”, half of
the respondents said that they disliked the poor image quality provided by the VR head-
mounted display. Around 31% of the respondents found using the SmartPd physically
demanding and criticized the ergonomics of overhead gripping tasks. One eighth of the
respondents criticized the poor pressure sensitivity of the input buttons on the SmartPd.
The subjects made various suggestions for improving the method and the prototype. About
19% of the subjects wanted a visualization showing the order of the frames already set.
Connecting the individual frames with a straight line as well as sequential numbering of
the individual frames were suggested. A proportion of 12.25% of the subjects suggested
a visualization with a higher resolution VR or AR head-mounted display (HMD), or by
means of a handheld or stationary external screen. All free text answers can be viewed in
Appendix B.3.4.

Table 3. Results of the evaluation of the ease of use by means of a questionnaire.

Category Question Score (One to Ten Points)

General evaluation Q01–Q04 7.90
Load of subjects Q05–Q12 4.94

Special properties Q13–Q17 8.34
Overall rating All 7.06
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5.5. Learning Progress

Differences in positional accuracy were found between the inexperienced, advanced,
and professional user groups. The user groups differed in the number of uses and achieved
median positioning accuracy scores of PDmean,in = 4.03 mm, PDmean,ad = 2.98 mm, and
PDmean,pr = 2.29 mm when the test was performed once, three times, and at least ten times,
respectively. The ANOVA in combination with the normal distribution test from Section 5.2
showed that there was a significant difference between the categorical variable number of
uses and the variable positioning accuracy with F = 12.91, p = 8.6 · 10−6 (see Table 4 and
Figure A3). The multiple comparison test [45] based on the ANOVA showed that there was
a significant difference between all groups. A statistically significant positive correlation
between the number of uses and the achievable positional accuracy could be proven.

Table 4. Results of the one-way ANOVA for the group-variable number of uses (represented by
the different user groups Inexperienced, advanced and professional) over the dependent variable
positioning accuracy.

Sum of
Squares

Degree of
Freedom

Mean
Squared F p

Between Groups 47.174 2 23.587 12.91 8.6 × 10−6

Within Groups 213.84 117 1.8277
Total 261.014 119

6. Conclusions

The results of the user study confirm the hypothesis from Section 4.1 and show that
the presented method enables a wide range of users to create a complex robot application.
The data show that the VKT in combination with the current prototype can compete with
a conventional KT method. For the user study conducted, the assembly of a small table
was simulated with the help of an industrial robot. By using this complex assembly task,
which involves many individual steps, the method could be examined for various aspects.
Unfortunately, the experimental setup created for this purpose had certain weaknesses
when it came to determining the exact accuracy. The low stiffness of the components and the
user-selectable gripping point of the components caused a variety of disturbances that were
difficult to quantify. Therefore, the position and distance accuracy determined in this study
serves as a first indication and for the first estimation of possible fields of application of the
method. The mean positioning accuracy over all groups and target points to be approached
is 3.4 mm. This value can be understood as a kind of three-dimensional standard deviation,
since it refers to the common center of gravity of all created frames and thus provides an
indication of the dispersion. Furthermore, no dependence of the positioning accuracy on the
target points to be approached could be determined. For distance accuracy, a comparison
was made between VKT and conventional KT. The prototype presented in Section 3.2 and
the commercial robot system Kuka LBR iiwa R800 in hand-guiding mode were used. The
results show that components can be moved from point A to point B with the VKT by
skilled operators with an accuracy of ADper = 2.2 mm. In contrast, it was shown that
the same process can be performed with the commercial system with an average absolute
distance accuracy of ADiiwa = 1.4 mm. The SmartPd’s external tracking method provides
reproducible and reliable results, although it falls behind conventional systems. When
compared to AR techniques like that of [17], which utilize the HoloLens’ built-in sensors
for tracking, VKT avoids significant offsets of several centimeters, even when the user’s
field of vision is impaired.

To test usability, a questionnaire was created, consisting of a combination of specific
questions and questions from [13,14]. The procedure’s ease of use received a rating of 7.9
out of 10 points. The positively phrased test questions were widely agreed upon by the
users. The physical and mental stress of the subjects was rated as neutral, which was partly
due to the high weight of the SmartPd and the low image resolution of the HMD, according
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to the free-text questions. To investigate the learning process of the method, the differences
in positioning accuracy of the three user groups were examined. A statistically significant
difference was found. This confirmed the hypothesis that there is a relationship between
the frequency of use of the method and the accuracy achieved. This confirms that there is a
learning success in using the method. VKT shows very high potential in terms of efficient
uses of robot resources. Since the VKT allows the teaching process to occur offline, the
robot’s downtime is minimized, as only a straightforward calibration process is required.
In addition, a savings in pure programming time of 46.8% was achieved during the study,
compared to KT with the commercial system.

In terms of accuracy, the results of the control group of the conventional KT could not
be achieved. This shows certain limitations of the method, which are due to the fact that
only one representative of the robot end effector is used. It can therefore be said that, in
terms of accuracy, the method is more suitable for applications that require accuracy in the
millimeter range or can be actively recalibrated. An example of this would be, for example, a
robotic welding application where an active welding gun corrects the path during execution.
However, prototype-related factors must also be taken into account here, which is why no
fair comparison with an industrial product is possible. The hardware-related low resolution
of the VR goggles and the too-compliant gripper had an influence on the distance accuracy.
Nevertheless, the accuracy that has been achieved so far should already be sufficient for
certain applications in material handling or in the packaging application area. Furthermore,
this method provides significant benefits in terms of downtime, by enabling the quick
offline teaching of a vast number of frames. Additionally, it allows for safe and effortless
teaching, as the robot is not at risk of collision. The method also facilitates the teaching
of very large or insensitive robots, thereby providing new opportunities. Overall, the
first user-based study shows very satisfactory results and indicates a high potential of the
method for industrial use.

7. Outlook

Further studies should be carried out to investigate the general applicability and
further potential of the method for other diverse applications such as welding, bonding,
and grinding. The study suggests that the method could be most valuable in creating
complex trajectories. Therefore, accuracy should be examined in an application that utilizes
the probe tip of the SmartPd. To this end, further improvements should be made to the
prototype based on the user study. First, the visualization should be improved by increasing
the resolution of the HMD and improving the placement of information in the field of view.
For example, trajectories can be tagged with virtual information labels to indicate the flow
of the application. In addition, there is room for improvement for the SmartPd, in terms of
the weight and precision of the gripper tip.
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Abbreviations
The following abbreviations are used in this manuscript:

ANOVA One-factor analysis of variance
AR Augmented reality
BMBF German Federal Ministry of Education and Research
CAD Computer-aided design
CE Calibration elements
FXW Flexible workplace
G-CS Global coordinate system
HMI Human-machine interfaces
HMD Head-mounted display
HRI Human–robot interface
IK Inverse kinematics
KT Kinesthetic teaching
LbD Learning by demonstration
LfD Learning from demonstration
MDPI Multidisciplinary Digital Publishing Institute
MoCap Motion capturing
OLP Offline programming
PD Pointing device
PbD Programming by demonstration
PTP Point to point
QUESI Questionnaire for the Subjective Consequences of Intuitive Use
RPAR Robot programming with augmented reality
RPS Robot programming suite
ROS Robot Operating System
SAVP Stochastic adversarial video prediction
SIFT Scale-invariant feature transform
SMEs Small- and medium-sized enterprises
SmartPd Smart pointing device
SAR Spatial Augmented Reality
TCP Tool center point
TLPbD Task level programming by demonstration
VKT Virtual kinesthetic teaching
VR Virtual Reality

Appendix A. Additional Information for the Related Work Section

Appendix A.1. Used Keywords

Action representations, accuracy, precision, augmented reality, collaborative robotics, co-
ordinate change, cyber-physical system, design for intuitive use, ergonomic design, eval-
uation, flexible programming, full-body motion, head-mounted display, human–robot
interaction, human–robot interface, industrial robot, industrial setup processes, input
device, intelligent and flexible manufacturing, inverse kinematics, kinesthetic teaching,
learning by demonstration, learning from demonstration, machine learning, motion capture,
neural network, offline programming, online programming, path planning, performance
evaluation, programming by demonstration, questionnaire, robotic manipulation, robotic
system, skill-based learning, SME, training, user interface, user study, usability, virtual
reality, and welding.
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Databases Used

Scopus, ScienceDirect, SpringerLink, IEEE Xplore, Google Scholar, and ArXiv.

Table A1. Categorization of the works considered in the related works section, in terms of intuitive
robot programming and the strategy used to validate the approaches.

Work Method Category Used Technology Validation/Evaluation
of Method

Measurement
Parameter Industrial Use-Case Calibration

Technique

[19] Schmeckpeper
et al. (Online) LfD

Neuronal network,
passive observation,

active user
interaction

Experiment: push
object with tool

X–y displacement,
success rate

Experimental,
research only

[20] Zuh et al. (Online) LfD,
kinesthetic teaching

Object recognition,
previously learned

grasping strategy (->
automatic execution

of tasks)

Experiment: object
recognition-and-

picking lego bricks
Time, success rate

Grasping strategy
for assembly tasks,

experimental
Wrist camera

[10] Steinmetz et al. Online PbD,
kinesthetic teaching

Semantic skill
recognition (->

intent recognition
invokes

pre-parameterized
abilities)

User study: QUESI,
NASA TLX

Time, subjective
questionnaire

Human–robot
interaction

Not needed, purely
online

[16] Ong et al. Online PbD

Augmented reality
simulation, motion

capture object
tracking

User study: creating
virtual welds on

sheet metal corners
X–y displacement Welding

Pointing MoCap
marker on QR code

edges

[3] Ong et al.
(augmented) Online PbD

Augmented reality
simulation, motion

capture object
tracking, CAD data

User study: welding,
pick and place

Time, subjective
questionnaire

Welding, pick and
place

Pointing MoCap
marker on QR code

edges

[33] Schwandt et al. Online PbD Augmented reality
simulation N.A. N.A. Pick and place QR code

[17] Quintero et al. Offline PbD

Augmented reality
simulation (MS

HoloLens), gesture
control, speech

control, CAD input

User study: pick
and place task, test

vs. conventional
kinesthetic teaching

Time, success rate Pick and place
Alignment of the
real and virtual

robot images

[18] Bambusek et al. Offline PbD

Augmented reality
simulation (MS
HoloLens), SAR

projector, gesture
control

User study: test vs.
other kinesthetic

teaching approach,
NASA TLX

Subjective
questionnaire Pick and place Block to table edge

Appendix B. Additional Information on the User Study

Appendix B.1. Subjects

Sixteen subjects participated in the study, ten of whom were 18 to 30, two 31 to 40,
two 41 to 50, and one 51 to 65 years old. Two of the subjects were female and 14 were
male. Six of the test persons stated that they had already programmed or operated a robot.
The subjects had a technical or engineering background in 93% of cases. Some subjects
had to perform the test as part of different groups (see Table A2) and had to complete the
corresponding number of practice runs beforehand.

Table A2. Information about the participants in the user study.

Subject ID Part of Group Robot Programming Experience Age

1 Inexperienced No 31–40
2 Inexperienced No 18–30
3 Inexperienced and Professional Yes 18–30
4 Inexperienced No 41–50
5 Advanced and Professional No 18–0
6 Inexperienced Yes 18–30
7 Inexperienced No 18–30
8 Inexperienced and Professional No 18–30
9 Inexperienced Yes 18–30
10 Inexperienced No 18–30
11 Advanced and Professional Yes 31–40
12 Inexperienced and Advanced Yes 18–30
13 Inexperienced No 18–30
14 Inexperienced and Advanced No 51–65
15 Inexperienced Yes 18–30
16 Advanced and Professional No 41–50
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Appendix B.2. Trials

Information about the different distance accuracies and the corresponding trials can be
found in Table A3. A detailed description of the individual steps that had to be performed
for each test can be found in Table A4.

Table A3. List of the different measured mean distances with the corresponding trials.

Symbol Trials Included Group

Dall V03 to V25 All
Dine V03, V04, V05, V06, V09 to V11, V13 to V16, and V24 1
Dadv V07, V12, V22, V23, and V25 2
Dpro V17 to V21 3

Table A4. Process steps of test application A and B; position marking according to Figure 7; component
designation according to [38] Table II.

Task A

Step Action Places Part

1 Create home point free space -
2 Create approach point P1.0 -
3 Pick up P1.0 T1
4 Create retract point P1.0 T1
5 Move to home point free space T1
6 Create approach point P1.1 T1
7 Place on edge P1.1 T1
8 Create retract point P1.1 -
9 Move to home point free space -
10 Repeat steps 1–9 with T2, T3, and T4 - -

Task B

1 Create home point free space -
2 Create approach point R1.0 -
3 Pick up R1.0 D1
4 Create retract point R1.0 D1
5 Move to home point free space D1
6 Create approach point R1.1 D1
7 Peg in hole R1.1 D1
8 Create retract point R1.1 D1, F1
9 Move to home point free space D1, F1
10 Rotate until the F1 is up free space D1, F1
11 Create approach point P1.1 D1, F1
12 Peg in hole P1.1 D1, F1
13 Create retract point P1.1 -
14 Move to home point free space -
15 Repeat steps 1–14 with D2–D4 and F2–F4 - -
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Figure A1. Quantile–quantile plot of positioning accuracy data vs. standard normal.
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Figure A4. Results questionnaire, rated from 1 to 10 points.

Appendix B.3. Questionnaire

Lists of questions that have been used in the questionnaire, sorted by categories.

Appendix B.3.1. General Questions Regarding the Method

Q1 The programming method used allows even people without knowledge of robot
programming to create applications in a short time.

Q2 Programming the robot using the input device (SmartPd) and the associated software
is, in my opinion, easier than programming with a conventional handheld device.

Q3 Programming the robot using the input device (SmartPd) and the associated software
is, in my opinion, easier than programming with a conventional offline programming
software. (e.g., RoboDK, RoboDK Inc., 1250 Rene Levesque West, Suite 2200, Montreal,
(QC) H3B 4W8, Canada)

Q4 The way of robot programming, using the input device (SmartPd) and its software, is
in my opinion easier than programming by hand guiding.
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Appendix B.3.2. Questions Regarding the Load of the Subjects

Q5 How much mental effort was required to assimilate and process information (e.g.,
thinking, deciding, calculating, remembering, searching, seeking. . . )? Was the task
easy or difficult, simple or complex, did it require high accuracy or was it error
tolerant?

Q6 How much physical effort was required (e.g., pulling, pushing, turning, steering,
activating, . . . )? Was the task easy or hard, simple or strenuous, restful or tiring?

Q7 To what level was your sensory perception engaged (e.g., visual, haptic, auditory, . . . )?
Was the task easy or difficult, easy or strenuous, restful or tedious?

Q8 How much time pressure did you feel in terms of the frequency or pace at which tasks
or task elements occurred? Was the sequence slow and leisurely, or fast and hectic?

Q9 In your opinion, how successfully did you achieve the objectives set by the auditor
(or by yourself)? How satisfied were you with your performance in pursuing these
objectives?

Q10 How hard did you have to work to achieve your level of task completion?
Q11 How insecure, discouraged, irritated, stressed, and upset (versus confident, validated,

satisfied, relaxed, and pleased with yourself) did you feel during the task?
Q12 During the trial, there was discomfort or dizziness.

Appendix B.3.3. Special Questions Regarding the Method

Q13 The virtual arrows representing approach points (frames) help to clarify the already
programmed workflows.

Q14 The haptic feedback provided by the input device (SmartPd) and the associated
interaction with real objects facilitates the programming process.

Q15 The virtual arrows, which represent target points (frames), help to clarify the already
programmed workflows.

Q16 The visualization of the robot movement looks realistic and represents the pro-
grammed sequence in sufficient detail.

Q17 The presentation by means of augmented reality has improved the use of the applica-
tion.

Table A5. Results of the evaluation of the load that the subjects felt during the experiment.

Category Question Score (One to Ten Points)

Mental requirements How much mental effort was required to absorb and
process information? 4.9

Physical demands how much physical activity was required? 5.6

Requirements of perception How much strain was placed on your sensory
perception? 6.1

Time requirements How much time pressure did you feel in terms of the
pace at which tasks occurred? 3.4

Performance How successfully do you think you have achieved
the goals you set? 6.0

Effort How hard did you have to work to achieve your level
of task completion? 4.1

Frustration How insecure, discouraged, irritated, stressed and
angry did you feel during the task? 3.2

Overall rating All 4.94

Appendix B.3.4. Free-Text Questions and Answers

The free-text questions were not personalized. They were not listed in any particular
order after the questions in the following section. Not all participants responded to free
text answers.

Q18 What did you notice positively while working on the task?

• Quick familiarization
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• Simple execution of the programming task
• Smooth movement of the robot
• The AR overlay works well
• Simple operating concept
• Quick to learn and get used to
• No disconnections
• Good recognizability of the buttons
• Relatively few errors due to inaccessible frames
• Very simple handling, few possible errors
• Visual representation of the robot
• Easy/better understanding of the process
• Low complexity
• Representation of the robot + its motion sequence
• Good clarification of the robot’s programmed travel paths
• Robot movement
• By displaying the already learned points, the path planning could be carried out better,

especially if you no longer knew exactly where the previous point was.
• The general procedure is super easy to grasp
• Clear task definition
• After a familiarization phase, very simple and straightforward

Q19 What did you notice negatively while working on the task?

• Partially limited/poor vision due to AR glasses
• Uncomfortable positions when gripping the components or turning the SmartPd
• Wobbly image in the HMD
• SmartPd becomes heavy over time
• Restriction of the field of vision due to red field
• Physical strain due to holding position, difficult to reach around
• Input quality of the buttons
• No error message in the event of incorrect positioning
• Tiring in the long term (arm/strain)
• Left-handed <-> right-handed operation
• Poor image quality
• Turning the SmartPd around
• Optical resolution
• Image quality, interference in the transmission
• The weight of the SmartPd is relatively high and the arm had to be constantly held

upwards. This was a bit tiring after a while.
• The table is too high for me (or I am too short). The working posture was relatively

uncomfortable
• Blurred display in the AR glasses, unfavorable layout of the stations on the test table
• Very unfamiliar and uncomfortable at first. Could be problematic, especially for older

people

Q20 What would you change about the method? Please refer primarily to the concept as
programmed and less to the deficits of the prototype.

• Improve video resolution
• Not specified
• Connecting the individual points with lines
• Larger working area of the robot or smaller workTable . . . Smoother process
• Permanent push button to record the movement continuously
• 180° rotation of the robot at the touch of a button
• Set limits
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• Accessibility of the robot
• Restricted zones
• Indicate the sequence of set points
• The taught-in points were often very close together and could not be kept apart later.

Perhaps a representation with numerical values would help to keep the points apart.
• Nothing at all
• A more ergonomic input device would be better.
• Approaching and operating the approach points would be easier without glasses,

control via (3D) monitor more accessible.
• Operation of the controller (pistol shape) not intuitive enough, abstract input device

(e.g., game console controller-like) easier to operate.
• Find the method very good
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