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Abstract: The landscape of neurorehabilitation is undergoing a profound transformation with the
integration of artificial intelligence (AI)-driven robotics. This review addresses the pressing need
for advancements in pediatric neurorehabilitation and underscores the pivotal role of AI-driven
robotics in addressing existing gaps. By leveraging AI technologies, robotic systems can transcend
the limitations of preprogrammed guidelines and adapt to individual patient needs, thereby fostering
patient-centric care. This review explores recent strides in social and diagnostic robotics, physical
therapy, assistive robotics, smart interfaces, and cognitive training within the context of pediatric
neurorehabilitation. Furthermore, it examines the impact of emerging AI techniques, including
artificial emotional intelligence, interactive reinforcement learning, and natural language processing,
on enhancing cooperative neurorehabilitation outcomes. Importantly, the review underscores the
imperative of responsible AI deployment and emphasizes the significance of unbiased, explainable,
and interpretable models in fostering adaptability and effectiveness in pediatric neurorehabilitation
settings. In conclusion, this review provides a comprehensive overview of the evolving landscape
of AI-driven robotics in pediatric neurorehabilitation and offers valuable insights for clinicians,
researchers, and policymakers.

Keywords: intelligent robotics; neurorehabilitation; artificial intelligence (AI); pediatric neuroreha-
bilitation; assistive robotics; personalized rehabilitation; cognitive training; social robotics; adaptive
behavior; responsible AI

1. Introduction

Neurorehabilitation is a multidimensional profession revolving around the physical,
cognitive, psychological, and social aspects of human disabilities. It usually involves a
multidisciplinary team providing personalized physical therapy, occupational therapy,
nursing, neuropsychological support, nutrition guidance, speech–language therapy, and
education [1]. Pediatric neurorehabilitation is a multifaceted trans-discipline that aims to
support the needs arising from neural deficiencies and irregularities in the population under
the age of 18. Pediatric neural deficiencies are commonly associated with neuromuscular
diseases such as cerebral palsy, spina bifida, and muscular dystrophy, as well as with autism
spectrum disorders, brain tumors and strokes, autoimmune brain and neuromuscular
diseases, and traumatic brain injuries (TBIs) including spinal cord injuries [2].

Robotics is currently experiencing a Cambrian explosion [3], as they have proven to be
immensely useful in and outside the medical field [4]. However, the introduction of robots
into pediatric neurorehabilitation is still faced with numerous challenges [5]:

1. The starting point for rehabilitative care covers an extremely wide spectrum of condi-
tions. For example, following moderate-to-severe TBIs, the disability spectrum ranges
from mild cognitive and physical impairments to deep coma.
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2. Although neurorehabilitation programs exist, protocols vary across rehabilitation
centers and across patients since there are currently no standard protocols, but rather
general guidelines. Moreover, neurorehabilitation is often personalized to each pa-
tient’s injury and symptom profile.

3. Cognizant of the limited scope of their ability to help, specialized neurorehabilitation
centers define their admission criteria based on the likelihood of a successful outcome.
Traditionally, clinical stability has been a key requirement for initiating rehabilitation;
however, emerging trends advocate for early intervention without the necessity for
prior stability. Therefore, centers may no longer strictly mandate clinical stability as a
prerequisite for admission, emphasizing the importance of early intervention. Instead,
they may focus on criteria such as the patient’s ability to actively participate in a
daily rehabilitation program, demonstrate potential for progress, possess a support
network (family and friends), and have the means to finance a prolonged stay at the
center. Wide-ranging assessment and progress monitoring remain essential. However,
since medical diagnostic tools (e.g., imaging) often cannot fully predict functional
disruption or the rehabilitation outcome, assessments often involve comprehensive
expert-led neuropsychological, pedagogical, and emotional testing.

4. The efficiency of neurorehabilitation programs is hard to evaluate. While there is a
consensus as to the importance of early-onset rehabilitation, an increasing number
of studies have begun to confirm the effectiveness of such programs. However, it
remains challenging to conduct evidence-based studies due to ethical considerations
surrounding the feasibility of randomized controlled trials in the context of neurore-
habilitation. Consequently, determining the most suitable treatment for each patient
over the long term remains a complex and intractable task [6].

5. The disciplines comprising neurorehabilitation care generally require practitioners
who evidence conscious emotional intelligence to provide optimal treatment in con-
junction with the provision of empathy and psychological containment. One of
the most important qualities of successful treatment is clinicians’ ability to harness
patients’ intrinsic motivation to change [7].

At first glance, this set of challenges may seem inapplicable to robotic systems, which
are traditionally preprogrammed to follow specific guidelines, defined under known operat-
ing conditions. However, advances at the intersection of robotics, artificial intelligence (AI),
and control theory over the past two decades clearly point to the yet-to-be-realized poten-
tial for the integration of intelligent robots into pediatric neurorehabilitation. AI-powered
robots, or intelligent robotics, can enhance neurorehabilitation care and, importantly, de-
centralize and democratize quality care. Intelligent robots, driven by machine learning
(ML), have many advantages including utilizing historically and instantaneously obtained
patient data to provide heuristic-driven personalized continuing cognitive care, social
interactions, and powered assistance, as well as suggesting treatment strategies.

Numerous rehabilitation AI-powered technologies have been proposed in pediatric
neurorehabilitation, including virtual reality and intelligent games [8,9]. AI has even been
used to power-optimize the mechanical designs of neurorehabilitation robotics [10]. In this
review, we examine the state of the art in intelligent robotics by focusing on key aspects of
personalized pediatric neurorehabilitation: (1) social interaction; (2) rehabilitation outcome
prediction and condition assessment; (3) physical therapy; (4) assistive robotics; (5) smart
interfaces; and (6) cognitive training. While most available reviews have tackled one or two
of these frontiers, here, we aim to provide a bird’s-eye view of intelligent robotics in pedi-
atric neurorehabilitation to enable an integrated grasp of the field’s potential. The current
review highlights the key developments in intelligent robotics that are crucial for pediatric
neurorehabilitation. These include advances in artificial emotional intelligence (AEI), inter-
active reinforcement learning (IRL), probabilistic models, policy learning, natural language
processing (NLP), facial expression analysis with computer vision, real-time learning for
adaptive behavior, classifiers for the identification of intended behavior, and learning by
demonstration (LbD). Other important developments in unbiased AI, explainable AI, and
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interpretable AI will also be briefly discussed since they are likely to contribute to the
adaptability of AI-powered neurorehabilitation. Finally, because many neurorehabilitation
robots are embedded in energy-constrained environments (e.g., translational robots), edge
AI, where AI models are deployed on microprocessors, will be overviewed as well. The
AI-driven neurorehabilitation ecosystem is illustrated in Figure 1. In the following section,
the role and potential impact of intelligent robotics in pediatric neurorehabilitation will be
discussed. Then, we concisely address the common algorithmic approaches underlying ML
before moving to a description of their contribution to advances in intelligent robotics for
neurorehabilitation. This is followed by projections and hopes for the future development
of the field.
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Figure 1. The ecosystem of AI-driven robotic neurorehabilitation. At the innermost circle are the
people facing neural deficiencies. Their immediate treatment areas (e.g., cognitive training and
physical therapy) are described in their surrounding circles. Those are supported by AI-driven
technologies (e.g., computer vision and adaptive behavior). At the outermost circle are the research
areas in which those AI-driven technologies are commonly developed (e.g., robotics and edge AI).

2. Methods

The literature review was conducted in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) methodology, which is described
in length in [11]. Eligibility criteria included published manuscripts that were written
in English, published between 2016 and 2022 (older references were used only to high-
light specific topics such as deep learning and the importance of neurorehabilitation), and
that reported the use of (1) artificial emotional intelligence, (2) interactive reinforcement
learning, (3) probabilistic models, (4) policy learning, (5) natural language processing,
(6) facial expression analysis, (7) real-time learning for adaptive behavior, (8) classifiers,
(9) learning by demonstration, (10) unbiased AI, (11) explainable AI, and (12) interpretable
AI for (1) social interaction, (2) rehabilitation outcome prediction and condition assessment,
(3) physical therapy, (4) assistive robotics, (5) smart interfaces, (6) cognitive training, and
(7) identification of intended behavior. All papers were searched in the fields of (1) engineer-
ing, (2) computer science, or (3) medicine. All manuscripts were published as (1) regular
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research papers or (2) reviews in (1) academic journals or (2) conference proceedings with
full-text availability. The literature search was carried out in Scopus, IEEE Xplore, Web
of Science, Google Scholar, and PubMed databases. Search queries were formulated with
multiple keywords falling within the topics described above as eligibility criteria, and
the search covered the title, abstract, or keyword fields. All retrieved manuscripts were
manually screened against the eligibility criteria.

3. Theoretical Background: AI Techniques in a Nutshell

ML-powered AI comprises a vast spectrum of approaches. Here, we briefly describe
some of the most common methodologies associated with ML to give readers a better
understanding of the following sections. This is by no means a comprehensive description
of ML but rather a concise definition of the computational rationale behind different
techniques underlying it, limited by the breadth of the discussion below.

3.1. Classification and Feature Selection

Classification is one of the key objectives of AI. A classifier is a predictive model that
categorizes an item into one of several classes (Figure 2A). One popular representation of a
classifier is the decision tree, a flow chart that mimics a tree structure in which the nodes
represent decisions for which the edges represent possible consequences [12] (Figure 2B).
Classification is made with respect to features, which represent important aspects of the
classified data (Figure 2C). When compared to an ideal categorization, classifiers are prone
to bias and/or variance (Figure 2D). When the model is ideal (truth), both the training
and test datasets have a low error. When the bias is high, the model is referred to as
“underfitted”, i.e., it is not robust enough to fit or represent the required categorization.
When the variance is high, the model is referred to as “overfitted”, a scenario in which
the model fits the training data with high accuracy while failing to do so for the test data.
A model can also be characterized by both high bias and variance. Supervised learning
(see next section) is therefore inherently limited to the availability, quality, and nature of
the training data, as well as to the model’s expressivity, trainability, and generalizability.
Feature selection is one of the prime challenges, especially when the examined dataset is
vast and is governed by numerous variables (Figure 2E). Features can be useless as well
as redundant (highly correlated). It is therefore important to choose the right (hopefully
minimal) subset of features, with which the data can be accurately classified. There are
numerous manual and algorithmic approaches to feature selection. For example, a classifier
was trained to identify children with autism using EEG and eye-tracking data [13]. To train
the classifier, the researchers used the minimum redundancy maximum relevance (MRMR)
feature selection algorithm. MRMR identifies a minimal and optimal subset of features,
with which a predictive classification model can be designed. The algorithm identifies
features that have high relevance to a target variable while retaining low redundancy with
other features [14]. In this case, these features included eye fixation time in the areas of
interest (e.g., mouth, body, etc.) and the relative power of delta, theta, alpha, beta, and
gamma bands over the chosen EEG electrodes. Support vector machine (SVM) is another
central classification technique used in numerous supervised AI-driven applications and
is used to discriminate non-linearly separable data by projecting the data into a higher
dimensional feature space, where it becomes either linearly (hard margin) or non-linearly
(soft margin) separable [15]. Given a series of vectorized labeled data points x, the SVM
strives to identify a hyperplane that separates x into its labeled categories, such that the
distance between that hyperplane to the nearest data point is maximized. For example,
the SVM is routinely used to discriminate a subset of features from electromyography
(EMG) recordings taken from various muscle groups to accurately identify patients’ motion
intentions and is used in assistive robotics [16,17].
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3.2. Unsupervised, Supervised, and Reinforcement Learning

Unsupervised learning refers to the task of identifying patterns in unlabeled data
(where the data entries are not defined as related to a particular category or label of interest)
(Figure 3A). Unsupervised algorithms try to elucidate patterns by relating them to proba-
bility densities. For example, to monitor the progression of neurodegeneration processes
through the continuous monitoring of a patient’s lower and upper limb activity, wearable
sensing systems have been developed [18]. In this study, the researchers used unsuper-
vised learning algorithms to group motor performance; classify them into performance
measures; and identify mild, moderate, and severe motor deficiencies. The system pro-
vides an objective, personalized, and unattended neuro-assessment of motor performance
through motion analysis. In supervised learning, labeled data are used to discover the
underlying patterns and relationships between the data and labels (Figure 3B). A trained
model can potentially predict accurate labeling results when presented with unlabeled
data. For example, the EEG and eye fixation-based autistic/non-autistic discrimination
model described above was developed using supervised learning [13]. The researchers
built a labeled dataset containing data recorded from 97 children, of whom 49 were diag-
nosed with ASD, and used it to build an SVM-based classification model. Reinforcement
learning is another important paradigm in ML, in which an AI-driven robot (agent) learns
to improve its performance (measured by some reward function) by interacting with the
environment (Figure 3C). Reinforcement learning differs from supervised learning in that
it does not rely on labeled data but rather on the agent’s earned reward when choosing
to implement a particular behavior. An agent follows a policy that guides its behavior.
An optimal policy maximizes the agent’s expected reward. In reinforcement learning,
the agent interacts with the environment and uses its collected rewards (or outcomes) to
improve its policy predominantly through Markov decision processes (MDPs) [19]. In
reinforcement learning, the agent uses observable rewards rather than having a complete
model of the world, thus allowing context-dependent personalization. An MDP can be
specified by a set of states S, a set of actions A, a transition function T that specifies the
transition probability P( s̀|a, s) of reaching a state s̀ from state s by taking action a, a reward
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function R(s, s̀, a) specifying the reward obtained by taking an action a in state s, and a
discount factor γ that reflects the agent’s preference to favor immediate over longer-term
rewards. The guiding principle in reinforcement learning is exploration. Based on the
exploration guideline, the agent needs to experience the environment as much as possible,
such that an optimal policy π∗(s) specifies for each s the best choice for an action a. An
amazingly diverse body of research has been devoted to finding the optimal policy π∗

over all existing fixed, unobservable, or stochastic policies in various environments [12].
Reinforcement learning is predominantly used in functional electrical stimulation (FES) for
neuroprostheses, in which electrical stimulation patterns govern the actuation of desired
actions. Reinforcement learning can be employed as a control strategy where a “human
in the loop” provides reward signals as inputs, thus allowing controller adaptation to the
users’ specific physiological characteristics, reaching range, and preferences [20].
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3.3. Deep, Convolutional, and Recurrent Neural Networks

Deep neural networks (DNNs) have become a stepping stone in ML due to their
superior performance on various pattern recognition tasks. In a neural network, neurons,
which are simple computing elements, are interconnected through adjustable weighted
connections to create a network through which signals can propagate (Figure 3D). The
network’s weights can be optimized via weight updates (training) to create a predictive
model (inference). In a fully connected DNN, the neurons are organized in layers, where
each neuron in one layer is connected to every other neuron in the successive layer. DNNs
have been shown to be extremely useful in a wide variety of neurorehabilitation appli-
cations. For example, a DNN was used to automate the quality assessment of physical
rehabilitation exercises by providing a numerical score for movement performance [21].
In convolutional neural networks (CNNs), convolution and sampling layers followed by
a DNN-like feed-forward classifier are concatenated to support image or vision-related
tasks (Figure 3E). A convolutional layer comprises several neuronal maps, each detecting a
specific spatial pattern (e.g., edge) at different places across the input. CNNs are often used
for vision-based applications, such as the recognition of human behavior [22]. However,
CNNs are not limited to conventional frame-based visual scenes. For example, a CNN was
used to correctly identify hand gestures from a surface EMG spectrogram, thus enabling a
gesture-based interface for assistive robotics [23]. Recurrent neural networks (RNNs) are
DNNs with feedback connections, where neurons are recurrently connected to themselves
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or to other neurons. Recurrently connected neurons can change the network’s state given
input data and the network’s previous states, thus allowing the network to be sensitive to
sequential patterns. RNNs are therefore widely used for sequential pattern recognition in
text, audio, and video. While RNNs can efficiently handle temporally short sequences, they
often fail to relate distant data. To predict patterns over longer periods of time, long short-
term memory (LSTM) networks were developed. LSTMs have proved to be very powerful
models and are at the core of most state-of-the-art temporal models (e.g., sentiment analysis
in artificial emotional intelligence [24]). Well-rounded guides to artificial neural networks
are available [25,26]. More recently, attention-based RNNs were shown to be exceptionally
relevant for applications ranging from handwriting synthesis to speech recognition [27].
Attention-based models iteratively spotlight parts of the incoming data while decreasing
the “focus” on other less important parts of the data parts. Attention models were shown to
significantly improve RNNs’ capacity to derive long-range dependencies. A key innovative
step in sequential modeling is data preprocessing, where vector-embedding techniques
take place. Vector embedding enables parts of a sequence (e.g., words) to be encoded along
with their appropriate context, where each entity is represented in a conceptual space,
thus allowing for context-dependent understanding [28]. All of these models have been
considerably enhanced by the advent of transfer learning. In transfer learning, a pretrained
model is used as an initial configuration and then retrained to perform a related task [29].

4. Intelligent Robotics in Personalized Pediatric Neurorehabilitation
4.1. Diagnostic Robots

Patients undergoing neurorehabilitation need to be periodically assessed for their
physical, cognitive, and behavioral capacities in a quantitative and reliable manner. When
assessed in a complete manual intervention, the diagnostic intervals, result interpretation,
and procedural reliability are not optimal. Neuro-assessment is a sensitive and important
task as it provides an initial severity evaluation of impaired functions and is used for
monitoring the recovery process and the treatment effectiveness. Diagnostic robots can
therefore play a paramount role in neuro-assessments. The importance of smart digital
neuro-assessments was recently shown to be key for monitoring chronic conditions and
is even more crucial in periods of epidemic-related confinement [30]. In the context of
physical performance, diagnostic robots can accurately measure the user’s body posture
and applied force. By reliably reproducing stress stimuli, the robot can precisely assess
the user’s sensation levels and muscle tone. Diagnostic robots are often designed to allow
the measurement of a range of conditions in a single modular system, which permits the
derivation of a complete functional profile (active workspace; coordination levels; arm
impedance; and movement velocity accuracy, smoothness, and efficacy) [31,32]. For exam-
ple, robots were used to assess the proprioceptive, motor, and sensorimotor impairment of
proximal joints [33] as well as to provide a clinical evaluation of motor paralysis following
strokes [16]. Despite their importance for the accurate assessment of motor functions,
traditional control modules assume predefined conditions because they follow scripted
behaviors. However, when interacting with the assessing robot, the patient interacts with
the device’s dynamics, since the robot needs to adaptively compensate for joint friction,
mass, and inertia, as well as account for backlash to provide an accurate assessment (e.g.,
measuring arm impedance) (Figure 4). These adaptive admittance controllers are crit-
ical for tasks in which a motion trajectory is guided by the robot. The robot needs to
adjust its course of motion to follow the patient’s anomalous muscle tone and range so
that the muscle is not injured [34]. An intelligent adaptive robot could further improve
child–robot alignment by allowing for improved assessment accuracy [35]. This is because
non-adaptive robot controllers provide a distorted assessment, particularly with weak
patients, as is the case in pediatric neuro-assessment. Diagnostic robots have also been
utilized for behavioral assessment. For example, robots have been used to characterize
autistic children’s social behavior by monitoring their eye movements, gestures, voice
variations, and facial expressions [36]. AI-powered algorithms in computer vision and
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video summarization embedded in a responsive robot provide faster diagnoses of ASD
and CP, enabling early therapeutic interventions and monitoring [37]. For example, EEG
and eye-tracking data were used to identify children with ASD via SVM classifier [13] and
logistic regression (LR) [38]. AI-driven computer vision was used to detect abnormal eye
imagery (eye misalignment, e.g., esotropia and hypertropia) in periodic assessments of
children with CP [39].
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4.2. Physical Therapy

Motor impairments are frequent in neurological disorders. To maintain and improve
the motorized functionality of people with neural deficiencies and irregularities, neurore-
habilitation usually comprises physical therapy. Physical therapy is particularly important
for disabled children since mobility at an early age is crucial to avoid “learned helpless-
ness” [40]. Physical therapy is usually guided by an expert physiotherapist who designs a
personalized goal/performance-based rehabilitation plan comprising a physical examina-
tion, diagnosis, prognosis, education, and ultimately, an intervention that usually involves
progressive training schemes (progressive task regulation). Carefully setting a gradual
profile of difficulty is important for effective neurorehabilitation. Using robot-assisted
physical therapy allows for a precise definition of task difficulty, and when enhanced with
neuro-assessment, the difficulty level can be dynamically changed to match the patient’s
capabilities (shared control), thus promoting active participation and motivation [32]. An
adaptive robot can gradually reduce assistance during or after training sessions (motor
synergy relaxation) because it can detect faster, more stable, and smoother movements
that allow for personalized robotic intervention that autonomously provides guided phys-
ical treatment [41] (Figure 4). For example, children with CP showed greatly improved
motor function and development after a 6-week training program with dynamic weight
assistance technology [42]; infants with CP were able to use assistive robots to learn how
to crawl [43], and an adaptive ankle resistance robot (proportional to the ankle moment
during walking) was shown to improve muscle recruitment in children with CP [44]. Recent
advances in probabilistic AI make it possible to achieve intelligent shared control such
that user safety attains increasing control, which can lead to improved user performance.
For example, AI-based LbD was used to learn assistive policies via a probabilistic model
that provided efficient, real-time training strategies [45]. Smart AI-driven control can also
harness classifier or pattern recognition algorithms. For example, SVM and K-nearest
neighbors (KNNs) were used to recognize rehabilitative hand gestures when employing the
Leap Motion sensor (comprising IR cameras and LEDs) [46]. KNNs, logistic regression (LR),
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and decision trees (DTs) were used to elucidate upper body posture in patients wearing
strain sensors [47], and probabilistic (hidden Markov model-based) classifiers were used to
detect walking gait phases in inactive knee orthosis and provided shared control during
training in children with CP [48]. Like diagnostic robots in the physical assessment phase,
personalized robotic care can benefit from advances in real-time learning. An important,
relatively new paradigm for physical therapy is the utilization of wearable robotics, known
as exoskeletons, to provide natural movement patterns, as discussed below.

4.3. Assistive Robotics

As described above, supporting the mobility of people with neural deficiencies and
irregularities is important, as it empowers weakened or paralyzed children during activities
of daily living (ADL) [49]. While personal attention is time-consuming and expensive, and
it inhibits the patient’s sense of independence, simple mechanical aids (canes, mechani-
cal prosthetics, etc.) are often limited in functionality. Assistive smart robots were first
developed four decades ago [50]. They represent one of the most important frontiers in
neurorehabilitation by contributing to children’s sense of independence and well-being.
Assistive robots can take the form of robotic walkers, exoskeletons, prostheses, powered
wheelchairs, and wheelchair-mounted robotic arms. Assistive robots provide structure,
support, and energy for ADL. Clearly, shared control plays an important role in assistive
robotics when utilized for ADL. For example, a recently proposed adaptive robotic walker
for disabled children dynamically actuates its base wheels and drives them to correspond
to the child’s walking gait (as deciphered from infra-red (IR) position sensors), thus signifi-
cantly reducing the required energy for walking [51]. Other recent developments involve
utilizing inertial measurement units (IMUs), laser range finders (LRFs), and haptic feed-
back to provide robotic walkers with advanced capabilities such as walking guidance and
autonomous navigation [52–54]. Exoskeletons hold great promise in assistive robotics since
they can provide embodied sensing and actuation that supports natural movements. For
example, lower limb multijoint exoskeletons were shown to improve ankle–knee moving
dynamics [55–57], and higher limb exoskeletons were shown to improve arm–shoulder
and elbow movements in children with CP [58,59]. Advances in AI contribute to powering
the performance of assistive robots and the range of applications they can support [60].
For example, AI-driven gaming agents were used to cooperatively control a lower limb
exoskeleton in a video game, increasing the participation rate [61]. AI for the detection of
motion intentions was used to design an exoskeleton with varying degrees of autonomy
for the lower [62] and upper limbs [63]. As in robot-assisted physical therapy, shared con-
trol can be enhanced with human-in-the-loop optimization, allowing for the personalized
user-driven optimization of the assistance level. Whereas some patients prefer retaining
control during task execution, others may favor task performance [64].

4.4. Smart Interfaces

Conventional interaction apparatuses, which constitute a feedback framework re-
quired to enable shared autonomy (e.g., computer mouse or keyboard), are often inac-
cessible to people with neural deficiencies and irregularities due to impaired mobility.
Their quality of life and the available range of engageable technologies are therefore dra-
matically affected. A smart user–robot interface is therefore an important hallmark in
neurorehabilitation. Countless devices and innovative approaches, ranging from simple
force sensors to brain–computer interfaces, have been suggested to create a robot that can
decipher user intent in real time. Smart interfaces involve data acquisition and an inference
algorithm. A wide range of sensors have been used for data acquisition in the context
of neurorehabilitation, including hand-operated joysticks, eye trackers, tongue-operated
force-sensitive surfaces (tongue–machine interface (TMI)), bend-sensitive optical fibers [65],
voice commands, electromyography (EMG), touch screen displays, Leap Motion, and
IMUs. Brain–computer interfaces have attracted growing interest [66], in association with
technologies such as electrocorticography (ECoG), electroencephalography (EEG), mag-
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netoencephalography (MEG), electrooculography (EOG), the cerebral cortical registration
of neural activity, functional magnetic resonance imaging (fMRI), and functional near-
infrared spectroscopy (fNIRS) and have powered exciting research directions. For example,
EMG [15] and EOG [67], as well as NLP [68], are used extensively to drive wheelchairs.
Advances in AI, in many cases, permit inferences. For example, EEG and physiological data
(blood volume pulse, skin temperature, skin conductance, etc.) have been used to elucidate
emotions via AI-powered algorithms such as gradient boosting machines (GBMs) and
CNNs [69]. Cameras and eye-tracking devices [70], TMIs [71], and neural interfaces [72]
have been used to control an assistive robotic arm using various AI-powered algorithms
such as the linear discriminant classifier and A* graph transversal. Driven by smart inter-
faces, various smart wheelchair designs have been proposed. For example, EMG and IMUs
were utilized to design a smart wheelchair operated by SVM-identified hand gestures [73].

4.5. Cognitive Training

People with cognitive impairment have a “hidden disability that often manifests as
a deficient mental capacity to handle conceptualization efficiently and adaptively, includ-
ing symbol manipulation, executive functions, memory, and the interpretation of social
cues” [74]. Cognitive training is a diverse, widely debated field [75]. It includes the enhance-
ment of interpretation and attention via cognitive bias modification (CBM) techniques,
improvement in inhibitory and regulatory behavior via inhibitory training, and memory
sharpening via attentional allocation training [76]. Cognitive training is associated with the
treatment of children with ASD [77] and CP [78]. Cognitive training can be led by a trained
expert. Such intervention, however, is expensive and limited in duration, scope, and avail-
ability. It also heavily relies on the expertise of the caregiver. Interestingly, robot-assisted
cognitive training was shown to improve training efficacy. While 12-week cognitive training
(involving memory, language, calculation, visuospatial function, and executive function)
demonstrated an attenuation of age-related cortical thinning in the frontotemporal associa-
tion cortices, robot-assisted training showed improved results with less cortical thinning in
the anterior cingulate cortices. These improvements have been attributed to instantaneous
feedback, enhanced motivation, and the unique interactive situation [79]. Robot-assisted
cognitive training has proven valuable even when used solely to provide encouragement
and hints while a user is engaged in a cognitive task [80]. Similar to social robotics that
intersects robot-assisted cognitive training on several fronts (discussed below), this tech-
nology is tightly linked to AI since it often entails the development of a model of a person
(e.g., their personality or preferences) to guide the robot’s interaction scheme [81]. Robots
can utilize sensors for low-level data perception (e.g., speech, gestures, and physiological
signals) to infer users’ high-level states (e.g., mood, engagement, and cognitive abilities).
Robots can use the devised state to personalize high-level aspects of the interaction (e.g.,
training adjustments and encouragement) [82]. For example, self-organizing maps, a form
of ANN, were used to identify differential trajectories of change in children who underwent
intensive working memory training. This enabled the derivation of different profiles of
response to training for the optimized process [83]. One AI approach geared to enable
personalized cognitive training is known as IRL or incremental learning [84]. IRL is used to
design interactive robotic games in which the system adjusts its level of difficulty at each
interactive step by dynamically updating the robot’s game strategy (or policy) [85]. For
example, in “nut catcher” games, the user, equipped with a robotic joystick, collects nuts
falling from the trees. The mission gets harder as a function of performance [86]. The rise
of cognitive robotics, fueled by advances in reinforcement learning and computer vision, is
likely to lead to major breakthroughs in supported applications over the next few years [87],
in particular in robot-assisted cognitive training.
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4.6. Social Robots

Neurorehabilitation often involves procedural pain and distress. In pediatric reha-
bilitation, these difficulties are commonly addressed through breathing exercises, social
distractions, cognitive–behavioral interactions, and games, as well as music, animals, and
art therapy [88]. An important aspect of treatment in this space is psychological inter-
vention, which is inherently expert-led, expensive, and often not readily available. Social
robots (SRs) were developed to alleviate distress by providing psychological interventions
during painful interventions through continually available interactions and therapeutic
augmentation. An SR should be able to direct activities while drawing on the child’s perfor-
mance and engagement to improve participatory motivation. Furthermore, SRs can provide
continuing at-home care. SRs have been shown to be useful for children with autism [36]
and CP [89]. SRs have been used with autistic children to improve their social interaction
skills (understanding facial expressions and developing turn-taking skills), maintain focus,
and improve physical gestures and speech (via imitation). SRs have been implemented
with CP-assessed children to improve physical balance (via exercise imitation), emotion
recognition, and participatory motivation. While beneficial, current SRs typically adhere
to scripted behavior and have limited autonomy and unrealistic responsiveness. They are
therefore limited in their personalized and adaptive behavior. Advances in AI technol-
ogy, and in particular the development of NLP-driven models of human language, the
fast elucidation of facial and physical expressions via computer vision, and the design of
new models for AEI, should lead to simultaneous monitoring and adaptive responses to
sensed behavior.

5. Advances in AI-Driven Personalized Neurorehabilitation Technologies
5.1. Artificial Emotional Intelligence (AEI)

Social robotics can enhance the psychological intervention aspect of neurorehabili-
tation. However, to be effective, these robots should be able to feature some aspects of
emotional intelligence. AEI is considered by many to be a futuristic “Space Odyssey”-like
wishful thinking [90]. However, it has potential value for the design of personalized robot-
assisted neurorehabilitation, above all for pediatric patients. AEI is closely connected to
recent developments in AI. AEI consists of the integration of emotion recognition, emotion
augmentation (planning, creativity, and reasoning), and emotion generation, all under
a contextual model (the state of the user, interaction, system, and world) [91] (Figure 5).
AEI underlies AI-enabled emotion-aware robotics [92]. Emotion recognition (sentiment
analysis) from voice acoustics (accounting for arousal and dominance), facial expression,
body poses and kinematics, brain activity, physiological signals [93], and even skin tem-
perature [94] in the context of robot–human interaction are currently being extensively
explored. For example, ML algorithms can capture verbal and non-verbal (e.g., laughing,
crying, etc.) cues, which are then implemented to recognize seven emotional states (e.g.,
anger, anxiety, boredom, etc.) with 52% accuracy [24]. The researchers used an SVM to
extract sound segments. Each segment was introduced to a CNN, providing features. These
features were fed to an LSTM, resulting in an identified emotion. Another example is the
End4You Python-based library [95], which has a deep learning-based capacity to use raw
data (audio, visual, physiological, etc.) to identify emotions (anger, happiness, neutral,
etc.) [96]. Emotion generation in robotics is also extensively researched in the context of
human–machine interactions. A robot exhibiting neutral, happy, angry, sad, surprised,
fearful, and worried facial expressions has been tested in various systems [97]. In pediatric
rehabilitation, these robotic systems have been successfully applied to autistic children,
who were encouraged to use gestures by imitating the robot’s expressions [98].
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5.2. Learning by Demonstration

As described above, robots for diagnostics, physical therapy, and assistance in ADL
have to be controlled to execute the desired motion. This is traditionally achieved through
conventional programming, in which a behavior is predefined to respond to a specific set
of stimuli. However, instead of programming robots to follow predefined trajectories or to
respond to a stimulus with a preset pattern of behaviors (via supervised, reinforcement,
and unsupervised learning), robots can be directed to learn appropriate behaviors by im-
itating a (human) expert through LbD (also known as imitation learning, programming
by demonstration, or behavioral cloning). LbD enables robots to facilitate adaptive behav-
iors by implicitly learning the task constraints and requirements through observations,
without a predefined reward function or “ideal behavior” [99]. These adaptive robots
can perform better in new, convoluted, stochastic, unstructured environments, without
a need for reprogramming. LbD can be executed via (1) kinesthetic teaching, where a
human expert physically manipulates the robots’ joints to achieve the desired motions;
(2) teleoperation, where the robot is guided by an external interface such as a joystick;
and (3) observation, where a motion is demonstrated by a human body (or a different
robot) and tracked with sensors (Figure 6A). In assistive robotics, LbD has been utilized
for a wide spectrum of applications. For example, a dataset comprising haptic and motion
signals acquired while human participants manipulated food items with a fork was used to
guide a robotic arm for autonomous feeding, so that it could move food items with various
compliances, sizes, and shapes (generalization) [100,101]. LbD was used by a robotic arm
to learn a physiotherapist’s behavior as it interacted with a patient through kinesthetic
teaching, thus allowing the patient to continue practicing the exercise with the robotic
system afterward [102,103]. A similar approach was taken to provide robotic assistance
to children with CP through “pick and place” playing, thus increasing their engagement
in meaningful play [104]. In conjunction with reinforcement learning, LbD can also be
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used to personalize socially assistive robots (e.g., instruct and aid a cognitively impaired
person to prepare tea through a set of instructions, social conversations, interactions, and
re-engagement activities) [105].
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5.3. Interactive Reinforcement Learning (IRL)

Cognitive training and smart interfaces should be interactive and highly adaptive.
Programming adaptive and interactive frameworks is a difficult task, as the variety of
inputs is enormous, and creative response is intractable to conventional if–else modalities.
The reinforcement learning paradigm is used to design an adaptable personalized model for
cognitive training and robot–human interactions. To provide personalized robotic behavior,
ML can be enhanced by incorporating a human-in-the-loop component through interaction
to optimize the agent’s policy. IRL can be implemented with various learning approaches,
most often when user feedback in response to an action is used as a reinforcement signal
(learning from feedback), or when a corrective intervention is selected prior to user action
(learning from guidance) [106] (Figure 6B). Because feedback is imperative to IRL, various
feedback sources have been developed and tested. Feedback can be either uni- or multi-
modal. Unimodal feedback can be delivered via dedicated hardware (e.g., clicking a mouse
or pressing a button) or natural interactions (facial expression, audible cues, or gestures).
Multimodal feedback can integrate speech and gesture feedback, as well as a laugh or a
smile [107]. IRL was first proposed with the COBOT system, which was embedded within a
social chat [108]. COBOT learned to adapt its behavior in accordance with data it collected
from numerous users, thus maximizing its rewards and allowing it to learn individual
and communal action preferences (such as proposing a topic for conversation, introduc-
ing two human users to each other, or engaging in certain wordplay routines) [109]. IRL
was later implemented in specialized simulation frameworks to evaluate various learning
methodologies [110]. More recently, IRL was used to drive adaptive robot-guided therapy,
when the user performs a set of cognitive or physical tasks (e.g., the “nut catcher”) [111]. In
this work, the robot selects an action (the next difficulty level or task switching) according
to its policy. The robot keeps track of the task duration and the user’s score while playing
with the user and updates its policy in real time.
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5.4. Natural Language Processing (NLP)

AI-driven RNN-based natural language processing (NLP) makes it possible for an
algorithm, as an artificial being, to interpret unstructured human language and thus engage
in interactions with a human. This technology is particularly important for cognitive train-
ing, social robotics, and smart interfaces. NLP is powered by innovative RNNs, CNNs, and
attention-based models, which can identify complex linguistic relationships. Advances in
NLP are also driven by hardware developments, the increased availability of databases and
benchmarks, and the development of domain-specific language models [28]. Today, NLP is
routinely utilized for language tagging, text classification, machine translation, sentiment
analysis, human language understanding, artificial conversation companion, and virtual
personal assistance [112,113]. In clinical settings, NLP has proved invaluable in numerous
applications, including the derivation of consequential knowledge from healthcare incident
reports [114], as well as for inferring personalized medical diagnoses [115], performing risk
assessment [116], and providing follow-up recommendations [117]. Importantly, NLP is
also emerging as an imperative technology in recent governmental efforts to lessen national
health inequality [28]. NLP has been powered by recent attempts to efficiently screen a large
pool of electronic health records for patients with chronic mobility disabilities [118]. While
useful, algorithmic screening depends on having suitable confirmation for NLP-flagged
cases. There is still a long way to go in designing equitable and inclusive NLP-driven mod-
els. Models are inheritably limited to the social attributes on which they were trained. In
recent work, it was shown that NLP models contain social biases toward toxicity prediction
and sentiment analysis, thus creating barriers for people with disabilities [119]. These biases
are reflected in the overexpression of gun violence, homelessness, and drug addiction in
texts discussing mental disorders. Designing a robot that can naturally communicate with
pediatric patients in real-life stochastic environments is also an immense challenge. This
type of robot would have to support a symbolic system in which signs are interpreted in
the context of a specific environment and understood subjectively by a young population.
Supporting a shared “belief system” between a child and a robot is indispensable for
effective neurorehabilitation. Interestingly, robotics has been used to advance the current
capacity of NLP by providing it with a notion of embodiment. Sensors and motors can
provide the basis for grounding language in a physical and interacting world [120]. In the
field of robotic neurorehabilitation, NLP has been employed for personalized cognitive
assessment [30] and smart human–robot interactions [121]. NLP underlies many recent
attempts to personalize social robots by allowing them to convey empathy by interactively
providing gestures, gazing, and spatial behavior through NLP-powered automatic speech
recognition and scene understanding [122].

5.5. Real-Time Learning for Adaptive Behavior

Computational motion planning is fundamental to autonomous systems such as the
ones described for diagnostic, assistive, and social robots. Conventional computational mo-
tion planning uses a set of predetermined parameters, such as mass matrices and forward
and inverse kinematic models, to provide motion trajectories [123,124]. While such conven-
tional controllers have been shown to handle intricate robotic maneuvers in challenging
convoluted settings, they often struggle in a stochastic, uncertain environment requiring
adaptive control. Adaptive robotics is key in assistive and diagnostic rehabilitation robotics.
Real-time, ML-powered adaptive control schemes are employed to enable robotic systems
to dynamically respond to changing conditions (Figure 7). Adaptive motor control is
commonly mediated by neural networks that provide vision and proprioception-driven
real-time error-correcting adaptive signals to achieve dynamic motor control [125]. In
sharp contrast to traditional ML schemes in which a model is trained with historical data
offline (supervised learning), learning in real time is governed by a live stream of data
that propagates through the model while changing it continuously. Real-time ML is an
event-driven framework, which adheres more closely to the principles of biological learn-
ing. Whereas ANNs are modulated via global learning rules and propagate differential
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error signals, biological learning is characterized by local learning rules and spike-based
neural communication. Biological adaptive motor control is known to be mediated by
projection neurons involving the basal ganglia and the neocortex [125]. Failure to generate
these error-correcting signals can manifest as Parkinson’s [126] or Huntington’s [127] brain
disorders. Notably, while adaptive control has been implemented in conventional neural
computational frameworks [128], in recent years, they have also implemented spiking
neural networks (SNNs). A typical SNN comprises a densely connected, spike-generating
neuron-weighted fabric through which spikes are propagated, thus closely emulating
biological neural networks [129]. SNNs can provide efficient adaptive control of robotic
systems [130], and their architecture usually mimics brain circuitry. SNNs were shown to
be able to shed new light on cognitive processes, particularly on visual cognition [131,132].
Spiking neuronal architectures can enhance performance with lower energy consump-
tion [133,134] and support the sensing–moving embodiment of robotic systems [135]. An
SNN-based framework was devised to control a robotic arm by anatomically organizing the
spiking neurons to move downstream through the premotor, primary motor, and cerebellar
cortices [136]. Recently, SNNs were reported to enable motion guidance and adaptive
behavior in a wheelchair-mounted robotic arm, supporting ADL tasks, such as drinking
from a cup and lifting objects from shelves [137].
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5.6. Classifiers for the Identification of Intended Behavior

The identification of intended behavior is key to the design of intelligent robotic
systems that aim to support physical therapy and assistive robotics. For example, in 2005, a
robust wearable system to support health monitoring via real-time event data streaming
with context classification, termed LiveNet, was developed in the MIT Media Lab [138].
Through a behavioral classification, LiveNet was suggested as a support for a wide range
of clinical applications, such as Parkinson’s disease monitoring (using accelerometers to
detect dyskinesia, hypokinesia, and tremors) [139]; seizure detection (unlike standard
EEG- and EMG-based classifications, LiveNet used accelerometers to classified epileptic
seizure-characterizing motions); depression therapy (using heart rate variability, motor
activity, vocal features, and movement patterns to monitor the impact of electroconvulsive
therapy to depressed patients); and quantifying social engagement (using infrared IR tags
and voice features) [140]. LiveNet served as a multimodal feedback-powered approach
to neurorehabilitation that provided an instantaneous classification of the patient’s state
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and context, thus significantly reducing feedback time [140]. Behavioral classification such
as the one used for monitoring the progress of Parkinson’s disease can be implemented
in neural networks and tree classification models [139]. For example, features can be
derived from accelerometric data using SVMs, Bayesian, nearest neighbors, and neural
networks after training on specific motion patterns (e.g., extending the arm forward). These
accelerometric data can be synchronously acquired from distributed sensors located on
various parts of the body from both healthy and motor-impaired individuals. Features
can then be derived from the accelerometric data segments based on a discrete Fourier
transform, which can provide the mean power across frequency bands. In recent work,
ataxic gait assessment with a neural network achieved accuracy rates of 78.9%, 89.9%,
98.0%, and 98.5% on 201 signal segment power band accelerometric data acquired from the
feet, legs, shoulders, and head/spine, respectively [141]. Combining the combined power
of a neural network and a decision tree, physiological tremors were correctly classified with
an accuracy of ~85% using acceleration and surface electromyography data [142]. Similarly,
ML was utilized to classify movement patterns in gymnastics [143], eye movements [144],
and gait patterns during load carriage [145].

5.7. AI on the Edge

Smart rehabilitation assistive robotics is driven by AI algorithms, which are usually
deployed on the edge (and not in centralized data-processing computing devices). This
imposes considerable space, energy, and latency (time to response) constraints on the
computing hardware. This is particularly true when the robot is mobile (e.g., involving
wearable sensors mounted on a wheelchair). Edge computing is therefore facing a tremen-
dous challenge since neural networks and ML models are rapidly increasing in size and
complexity and are most often deployed in large data centers and servers. One way to
access large-scale ML models is via the cloud, which only requires a sensor and a wireless
communication channel installed on the edge that can stream data to a remote computing
service. This approach, however, is limited by the required latency requirement and net-
work bandwidth [146]. Edge computing is often divided into edge training (for real-time
learning) and edge inference (using pretrained AI models). A recent comprehensive review
of both is available [147]. The importance of edge computing is also reflected in the growing
set of graphical processing unit (GPU) supporting hardware [148] and dedicated software
libraries [149]. Having GPUs (or other ML-relevant acceleration hardware) on the edge is
important since they allow for efficient neural network-driven inference and training [150].
For example, NVIDIA was behind the development of the Jetson microprocessors with
an embedded GPU having varying complexities on which various robotic [151] and vi-
sion [152] edge applications can be deployed. Real-time learning with SNN requires its own
dedicated (silicon neuron-based) hardware, such as Intel’s Loihi or OZ [153]. Computing
at the edge also has the added advantage of more secure data processing, which is crucial
in medical applications. There is an ongoing debate on the tradeoff between the required
low latency and the high data security in medical edge devices. This topic is discussed in
detail in [154].

In rehabilitation, many applications require wearable sensors and processors. To
eliminate the need for multichip on-body communication with AI-capable hardware,
several specialized systems have been designed. For example, a neural processor designed
for an AI-driven wearable rehabilitation system successfully provided 5 ms networking
operation latency with a mere 20 uW of power consumption [155]. Another important piece
of hardware for smart edge computing is Google’s tensor processing unit (TPU), which is
specifically designed to accelerate inference on the edge. A study showed that TPU was
able to efficiently infer body posture during knee injury rehabilitation [156].

5.8. Unbiased, Explainable, and Interpretable AI

AI is often regarded as a black box that cannot provide explainable high-level reasoning
about its decisions (classification, chosen behavior, etc.). While AI holds great promise
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for clinical work, it entails a new dynamic for patient–healthcare provider interactions.
Traditionally, patients discuss their condition with their physician, who makes the clinical
decision after patients give their informed consent. AI in its current form could incorporate
automated, often unexplainable biases into the decision-making space. To overcome
these hurdles, clinicians are expected to oversee and take responsibility for AI inferences.
Whereas the engineer who designed the AI system, in most cases, would not be present
at the patient’s bedside with the clinician, the clinician would still be accountable for the
outcome of the AI decision process. At the very least, AI must adhere to “common norms
which govern conduct”, which entail unbiased, explainable, interpretable, responsible,
and transparent AI [157]. Biased AI systems have become a major concern, particularly
in the medical field, and as a result, major companies such as IBM and Microsoft have
made public commitments to “de-bias” their technologies [158]. Although AI remains
a black box, building a transparent AI system has become an important goal to reach
before AI can be adopted, as is evident from the growing body of relevant literature and
dedicated conferences [159]. This is particularly true for the clinical field. A survey of the
algorithms and techniques developed for explainable AI in the medical field can be found
in [160]. One way of increasing the interoperability and explainability of an AI model is
through visualization. The Shapley additive explanation (SHAP) visualization tool is a
widely adopted technique [161]. Recently, SHAP was utilized to provide an explainable AI
for predicting readmission risk for patients after discharge to rehabilitation centers [162].
In the rehabilitation space, having transparent AI can also improve users’ engagement
and cooperation. While the design of explainable AI in rehabilitation is still in its infancy,
transparent AI is a reality in the context of home rehabilitation [163] and is used in the
assessment of stroke rehabilitation exercises [164], as well as for detecting the development
of neurological disorders [165] and identifying the biomechanical parameters of gait [166].

6. Conclusions

Revisiting the challenges listed earlier in the introduction will allow us to shed light
on the current state of the art in pediatric robotic rehabilitation while listing challenges and
open research directions.

• Rehabilitative care covers an extremely wide spectrum of conditions. Therefore, a
preprogrammed robotic system would find it hard to create real value over expert-led
therapy. For many years, the high level of requirements expected from such robotic
systems made the transition from lab to clinic unfeasible, thus making the introduction
of intelligent robotics into neurorehabilitation a topic of heated debate for several
decades. A rehabilitation robot is expected to have high mechanical compliance, adap-
tive assistance levels, soft interactions for proprioceptive awareness, interactive (bio)
feedback, and precisely controlled movement trajectories while supporting objective
and quantifiable measures of performance [167]. This implies a paradox in which a
rehabilitation robot needs to support standardized treatment while being adaptable
and offering patient-tailored care [168]. While this paradox can be effectively handled
by a human healthcare provider, it requires a level of agility that surpasses traditional
robotics. The highlighted research above points toward developments in real-time
and reinforcement learning as well as adaptive control as a means to work with robots
that change themselves in real time in response to a new condition. These proved
useful for mechanical aid, such as in diagnostic and assistive robotics, as well as for
designing social robots. This point was recently highlighted as a need for precision
rehabilitation, which has the potential to revolutionize clinical care, optimize function
for individuals, and magnify the value of rehabilitation in healthcare [169]. There is
still a need for further improvement in real-time learning, for it to apply to high-level,
behavioral, and cognitive training.

• Recent advances in the utilization of neuromorphic designs to provide adaptive
robotic control show great promise in various applications such as classical inverse
kinematic calculations in joint-based systems featuring low [123] and high degrees of
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freedom [170], as well as in free-moving autonomous vehicular systems [171]. It was
recently implemented for the first time in a clinical rehabilitation framework where a
neuromorphically controlled framework was used to control a robotic arm mounted
on a wheelchair, providing accurate responsive control with low energy requirements
and a high level of adaptability [137]. The contribution of neuromorphic systems for
neurorehabilitation is still under development in research facilities, and the extent to
which those frameworks might contribute to clinical applications remains to be seen.

• Neurological impairments are inherently multidimensional, encompassing physical,
sensory, cognitive, and psychological aspects, therefore imposing challenges to ade-
quate autonomous robotic-driven assessment. While a one-stop robotic solution for a
complete neurological assessment might be the holy grail for rehabilitation robotics,
it seems that it is currently out of reach. Therefore, currently, neurological assess-
ments should incorporate multiple robots and complementary assessment methods to
comprehensively evaluate the different aspects of neurological impairment.

• Neurorehabilitation protocols vary across rehabilitation centers and patients. This
challenge can most definitely be addressed by adopting user-centered AI-driven
robotic systems. As neurorehabilitation protocols can quickly become monotonous
because exercises repeat themselves with the same cognitive and physiological tests,
a robotic system can provide the patient with motivation and a sense of continuous
adaptation/improvement [172]. The challenge currently lies in the adoption of new
technologies in this area. Developments in unbiased and interpretable AI are crucial
to allow experts and centers to rely on AI over expert-led intervention. As mentioned
above, this research direction is heavily explored and remains an important open ques-
tion. One of the most crucial upcoming milestones is the adoption of AI-driven systems
in medical care, which involves overcoming the four key challenges of regulation,
interpretability, interoperability, and the need for structured data and evidence [173].
Recent developments in transparent, explainable, unbiased, and responsible AI may
be able to bridge the “trust gap” between humans and machines [174,175]. The trust
gap in the unique patient–clinician–robot triad was highlighted in a call for the devel-
opment of design features to foster trust, encouraging the rehabilitation community
to actively pursue it [176]. While there are no specific guidelines for AI, the FDA has
begun to clear AI software for clinical use [177]. For example, all AI-driven clinical
decision support systems (CDSSs) (e.g., the diagnostic robots discussed above) must
be validated for secure use and effectiveness [173]. However, because the role of
intelligent robotics in rehabilitation is multidimensional, the regulatory process for
each robotic application is different and should be addressed carefully.

• Specialized neurorehabilitation centers may require the patient to be medically stable,
be able to actively participate in a daily rehabilitation program, demonstrate an ability
to make progress, have a social support system, and be able to finance a prolonged
stay at the center. By providing robotic-assisted neurorehabilitation, this barrier to
admission can be significantly lowered as it can significantly reduce associated costs.
For example, a physiotherapist was shown to be able to simultaneously handle four
robots, which quadruples the effectiveness of the post-stroke rehabilitation of the upper
and lower limbs [178] and was shown to cost ~35% less than the hourly physiotherapy
rate [179]. The economic case for robotic rehabilitation is nevertheless complicated
since it is dependent on the national healthcare system’s reimbursement strategy [180],
which in many cases is not fully supportive of robotic solutions.

• The efficiency of neurorehabilitation programs is hard to evaluate. By having a robotic-
assisted diagnosis, which can periodically produce reliable progress reports, a neu-
rorehabilitation treatment protocol can be readily evaluated. Current technologies,
however, are limited to physical therapy.

• The disciplines comprising neurorehabilitation care generally require practitioners
who evidence conscious emotional intelligence to provide optimal treatment. This is
particularly true when the target population is young and involves gaining the trust of



Robotics 2024, 13, 49 19 of 25

parents and children while remaining sensitive enough to the child’s special emotional
and physiological needs. While advances in AEI are impressive, they are still limited
to basic social robots. There is room for vast improvements in that field for it to be
applicable in neurorehabilitation.

To conclude, recent developments in AI, in particular in the fields of artificial emotional
intelligence, interactive reinforcement learning, natural language processing, real-time
learning, computer vision, and adaptive behavior, suggest that AI-driven robotics are
coming closer to providing individual intensive care during neurorehabilitation.
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