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Abstract: In this paper, we introduce an adaptive type-2 fuzzy logic controller (FLC)
for flexible-joint manipulators with structured and unstructured dynamical uncertainties.
Simplified interval fuzzy sets are used for real-time efficiency, and internal stability is
enhanced by adopting a trade-off strategy between the manipulator’s and the actuators’
velocities. Furthermore, the control scheme is independent of the computationally expensive
noisy torque and acceleration signals. The controller is validated through a set of
numerical simulations and by comparing it against its type-1 counterpart. The ability of the
adaptive type-2 FLC in coping with large magnitudes of uncertainties yields an improved
performance. The stability of the proposed control system is guaranteed using Lyapunov
stability theory.
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1. Introduction

Flexible-joint manipulators offer several advantages with respect to their rigid counterpart,
such as light weight, lower cost, smaller actuators, larger work volume, better manoeuvrability
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and transportability, higher operational speed, power efficiency, and larger number of applications.
Thus, they are often required to operate at high speed to yield high productivity. The conflicting
requirements between high speed and high accuracy make the robotic control task a challenging research
problem. Reducing the weight of the arms and/or increasing the operation speed make many industrial
flexible-joint manipulators face arm vibration problems, particularly in high speed motion, because of
the low stiffness. This can be resolved by increasing the stiffness. However, it increases the mass,
depleting the advantages listed above. Typical challenges include severe friction nonlinearities, coupling
stemming from the manipulator’s flexibility, varying operating conditions, structured and unstructured
dynamical uncertainties, and external disturbances.

Flexibility and nonlinear friction may have some destabilizing effects when failing to compensate
for modeling uncertainties in controlling flexible structures. These phenomena have been thoroughly
studied in many control systems for high quality servomechanisms. Several studies show these negative
consequences, such as severe tracking errors, limit cycles, chattering, and excessive noise [1,2]. Many
control laws have been proposed for flexible joints [1,3,4], including classical, robust and adaptive
control laws, using techniques such as singular perturbations and energy methods [5], but they generally
consider (structured) parametric uncertainties only. Several models and compensation schemes have
been proposed. Adaptive control techniques have been regarded among the most promising solutions to
such type of problems. However, not much has been achieved yet for systems that exhibit both flexibility
and severe nonlinearities.

Flexible-joint manipulators are governed by complex dynamics and hence controlling them depends
on their dynamic models. There are many modeling techniques for mechanical systems, such as
Lagrangian approach, Hamilton’s principle, and Kane method. Yet, the system is inevitably subjected
to the ubiquitous presence of high, particularly unstructured, modeling nonlinearities, such as Coulomb
friction and external disturbances. The presence of such uncertainties on a manipulator driven through a
flexible joint significantly changes the system’s dynamics as opposed to when the load is driven with
a rigid joint [6,7]. In this case, solving the inverse dynamics of the system is not realizable since
the motor position is not uniquely defined at standstill. This last condition also illustrates that the
actuator’s state cannot be observed continuously from the load output. Henceforth, only an approximate
inverse model can be realized. Therefore, modeling the system’s dynamics based on presumably
accurate mathematical models cannot be applied efficiently in this case. This raises the urgency to
consider alternative approaches for the control of this type of manipulator systems to keep up with their
increasingly demanding design requirements.

Various control techniques were proposed over the years to control flexible-joint manipulators [8–10].
De Luca et al. [11] and Khorasani [12] proposed feedback linearization-based controllers. However,
these controllers depend on excessively noisy joint acceleration and jerk signal measurements and are
hence unreliable in most real-world robotic systems. On the other hand, C. de Wit [13] proposed a robust
control scheme for friction overcompensation due to uncertainties in friction models. Even as such, the
suggested controllers require the full a priori knowledge of the system’s dynamics. This problem has
been partially overcome by several adaptive control schemes [14–16]. Most of these control techniques
capitalize on the singular perturbation theory to extend the adaptive control theory developed for rigid
bodies to flexible ones [17–20]. M. Spong [21] reduced the flexible-joint manipulators model to the
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standard rigid manipulators model as the joint stiffness tends to infinity. This model has been widely
used by many researchers to achieve better tracking performance. For example, F. Ghorbel et al. [5] used
a rigid manipulator’s conventional method as slow controller and a fast feedback control law to damp out
the oscillations of the joint flexibility modes. In a similar way, K. Khorasani et al. [22] illustrated how
standard adaptive control schemes for rigid robots may be generalized for flexible-joint manipulators
under a certain set of assumptions. Although many of these controllers are shown to be quite performant
in theory, they failed to address important issues that might stand against their practical implementation,
like basing the control laws on joint torques and their derivative [23,24], for instance, which are well
known to be extremely noisy in real-life applications.

Moreover, such type of control algorithms uses online continuous estimation through well-defined
adaptation laws of a set of the plant’s physical parameters to approximate the system’s dynamics. For
it to provide a satisfactory performance, a typical adaptive control algorithm assumes that the dynamic
model is perfectly known and free of significant external (unmodeled) disturbances. In other words,
the controller is only robust to parametric or structured (also called modeled) uncertainties and possibly
to minor unstructured uncertainties. Moreover, the unknown physical parameters must have constant or
slowly varying nominal values. An explicit linear parameterization of the uncertain dynamics parameters
also has to exist, and even if it does, it might not be trivial to derive, especially with complex dynamic
systems. Although the latter condition is guaranteed for robotic systems, it might not be the case for
many other dynamic models. Although some conventional adaptive control techniques, proposed in
the literature, did indeed tackle external disturbance attenuation in addition to the compensation for
parametric uncertainties, they did not take into consideration the effects of modeling uncertainties [14].

There is an increasing interest in developing new adaptive control schemes for robot
manipulators [25,26]. For example, in [25] an adaptive neural network based sliding mode control
was developed. The authors in [27] developed a neural network and an estimator to estimate the
external perturbation on flexible robot manipulators. This work does not consider uncertainty in
the robot parameters and was validated in simulations only. In another work, an adaptive based
output-feedback control strategy for global position stabilization was developed in [28]. Although
this work guarantees the adaptive regulation objective without the need for velocity feedback, it does
not consider parameter uncertainties. A voltage-based adaptive control methodology for flexible joint
manipulators was developed in [29,30]. The advantage of this work is that it is not torque-based control.
However, it does not consider dynamic parameter uncertainties and was validated only in simulations.

In the literature, several papers on the robust control of robot manipulators have been developed, most
of which use sliding mode techniques [31–33]. In [31] a multiple model/control strategy was proposed.
It uses sliding mode control to reduce the high gain control for robot manipulators with large parameter
uncertainty. In another work, a digital sliding mode controller for manipulators with three joints was
developed by Corradini et al. [32]. This controller is not adaptive and uses sliding mode structure, which
is prone to chattering.

On the other hand, computational intelligence tools, such as artificial neural networks and fuzzy logic
controllers, have been credited in various applications as powerful tools capable of providing robust
controllers for mathematically ill-defined systems that may be subjected to structured and unstructured
uncertainties [34,35]. The universal approximation theorem has been the main driving force behind
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the increasing popularity of such methods as it shows that they are theoretically capable of uniformly
approximating any continuous real function to any degree of accuracy. This has led to the recent advances
in the area of intelligent control [36,37]. Various neural network and fuzzy logic models have been
applied in the control of flexible joint manipulators, which have led to a satisfactory performance [9,10].
H. Chaoui et al. [38–41] used a neural network based adaptive control approach inspired by sliding
mode control to learn the system’s dynamics. A time-delay neurofuzzy network was suggested in [42],
where a linear observer was used to estimate the joint velocity signals and eliminated the need to
measure them explicitly. Subudhi et al. [43] presented a hybrid architecture composed of a neural
network to control the slow dynamic subsystem and an H∞ to control the fast subsystem. A feedback
linearization technique using a Takagi–Sugeno neurofuzzy engine was adopted in [44]. Despite the
success witnessed by neural network-based control systems, they remain incapable of incorporating any
human-like expertise already acquired about the dynamics of the system in hand, which is considered
one of the main weaknesses of such soft computing methodologies. In another work, an adaptive neural
network based sliding mode control was developed in citeSun-2011. However, only simulations were
used to verify the results. Type-1 FLCs have also been developed for robot manipulators. Some of these
control techniques have hybridized type-1 FLCs with sliding mode control to achieve good robustness;
e.g., Li and Huang [45] developed an MIMO adaptive sliding mode based manipulator. However, only
simulations were performed to validate the theory.

As type-2 FLCs can handle uncertainties more effectively than type-1 FLCs, they are becoming a
more viable tool for the control of uncertain systems [46]. Melin and Castillo [47,48] reviewed genetic
algorithms, particle swarm and ant colony optimization methods in the design of optimal type-2 fuzzy
systems for different applications. The authors concluded that although genetic algorithms have been
used more frequently, the other two methods are rapidly gaining ground for the design of optimum
type-2 FLCs. The same authors adopted the chemical reaction algorithm (CRA) to tune the parameters
of type-1 and type-2 FLCs for a unicycle tracking applications [49].

While several type-1 FLCs have been developed for robot manipulators [50], very few interval type-2
FLCs have been devised for this purpose [51–53]. In [52], a type-2 fuzzy controller was developed
and tested on a parallel robot. Most recently, in [53], a type-2 TSK fuzzy controller was used to
control a modular robot. Chen developed a sliding mode based type-2 FLC for trajectory tracking. The
computational complexity of the hybrid controller is rather significant because of its learning structure.
In all of these works, it was concluded that type-2 FLCs can outperform their type-1 counterparts despite
noise and uncertainty.

The present work contributes to the merits and the latest developments of type-2 fuzzy logic
theory for the design and implementation of an adaptive type-2 FLC for the control of flexible-joint
robot manipulators with uncertain dynamics. The combination of high, particularly unstructured,
nonlinearities, such as in the form of Coulomb friction, and manipulator’s joint elasticity changes
significantly the system’s dynamics. In this case, the system’s inverse dynamic model cannot be
found and only an approximation can be made. Therefore, modeling the system’s dynamics based on
presumably accurate mathematical models cannot be applied efficiently in this case. Conventional type-1
fuzzy logic systems (FLSs) can be used to identify the behavior of this highly nonlinear system with
various types of uncertainties. However, type-1 fuzzy sets may not fully capture the uncertainties in the
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system due to membership functions and knowledge base imprecision. Hence, higher types of fuzzy sets
have to be considered. However, the computational complexity of operations on fuzzy sets increases with
the increasing type of the fuzzy set. Therefore, interval type-2 fuzzy sets are adopted in this work for
their simplicity and efficiency to capture the severe nonlinearities of flexible-joint robot manipulators.
Thus far, type-2 FLSs have been used in very few control applications, such as nonlinear control and
mobile robot navigation [54]. The work presented in this manuscript has two main contributions:
(i) it devises a novel adaptive control law for type-2 FLCs; and (ii) it proposes a computationally
efficient inference mechanism for such type of controllers, which are reputed for their typically high
computational complexity, to make them more suitable for real-time applications. This work represents
one of the scarce attempts in developing adaptive type-2 FLC to control flexible-joint manipulators with
uncertain dynamics. To the best of our knowledge, adaptive type-2 FLCs with a Mamdani structure
have not yet been developed for the control of robot manipulators. As shall be detailed later, and unlike
other types of control systems proposed in the literature, the proposed adaptive type-2 FLC is proven
to be stable by Lyapunov stability theory and does not depend on the excessively noisy acceleration
signals or joint torque measures [23,24]. We also present a comparative study between the proposed
adaptive type-2 FLC and its type-1 counterpart to better assess their respective performances in various
operating conditions.

The rest of the paper is organized as follows: Section 2 outlines the dynamical model of a typical
flexible-joint manipulator. In Section 3, an overview of type-2 fuzzy logic systems is presented.
In Section 4, we present interval type-2 FLSs and describe the functionality of a type-2 fuzzy inference
engine. The design of the proposed controller is detailed in Section 5. In Section 6, simulation results
are reported and discussed before concluding the paper with a few remarks about this important, yet
complex, control problem in Section 7.

2. Flexible-Joint Manipulator Dynamics

2.1. Modeling of a Flexible-Joint Manipulator

The schematic representation for the ith flexible-joint in a multi-joint manipulator is shown in
Figure 1. The actuator is coupled to a flexible transmission through an r:1 reduction gear. The
transmission is dynamically simplified as a linear torsional spring linked directly to the load (e.g.,
manipulator link.)

Figure 1. Flexible-joint model.
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Consider a robot manipulator with n revolute flexible joints. Using Euler–Lagrange formulation, the
dynamic equations of the manipulator can be written as:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τt − τfl − τdl (1a)

Jmθ̈ = τm −
1

r
τt − τfm − τdm (1b)

τt = K(
θ

r
− q) (1c)

where,
q ∈ Rn:vector of links’ positions
θ ∈ Rn:vector of motors’ positions

M(q) ∈ Rn×n:manipulator’s positive definite inertial matrix
C(q, q̇) ∈ Rn×n:matrix of Coriolis and centrifugal terms

G(q) ∈ Rn:vector of gravitational torques
Jm ∈ Rn×n:motors’ diagonal inertial matrix

τt ∈ Rn:vector of transmission torques
τm ∈ Rn:motors’ generalized torque vector (control input)
τfl ∈ Rn:load friction vector
τfm ∈ Rn:motors’ friction vector
τdl ∈ Rn:load’s unmodeled dynamics and external disturbance vector
τdm ∈ Rn:motors’ unmodeled dynamics and external disturbance vector
K ∈ Rn×n:diagonal matrix of joints’ stiffness coefficients

r ∈ R:gear ratio

The dynamics of a robotic manipulator is characterized by the following properties:

Property 1 The inertia matrix M(q) is characterized by the following properties.
(1) Positive Definite Symmetric (PDS), i.e., MT (q) = M(q) and xTM(q) x > 0 for any non-null
vector x.
(2) Upper and lower bounded, i.e., there exist two scalars α1(q) and α2(q) such that α1(q)I ≤ M(q) ≤
α2(q)I , where I is the identity matrix.

Property 2 The Coriolis and centripetal term C(q, q̇) has the following properties.
(1) Matrix Ṁ(q)− 2C(q, q̇) is skew symmetric, i.e.,

xT (Ṁ(q)− 2C(q, q̇)) x = 0 ∀ x ∈ Rn

(2) C(q, q̇)q̇ is quadratic in q̇ and bounded, i.e., there exists a scalar α3(q) such that ‖C(q, q̇)q̇‖ ≤
α3(q)‖q̇‖2.

Property 3 The gravity vector G(q) is bounded, i.e., ‖G(q)‖ ≤ α4(q), for a scalar α4(q).

Before we proceed further, we introduce the following realistic assumption.

Assumption 1 The norm of the unknown disturbance τd is upper bounded by a scalar bd, i.e., ‖τd‖ ≤ bd.
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2.2. Friction Modeling

Friction is highly nonlinear and it is therefore important to capture the essence of the friction
phenomena with models of reasonable complexity. The behavior of friction has been extensively
examined lately, a good accurate representation was introduced in [4] as the sum of Coulomb, viscous,
and static friction terms. The model of such a memoryless linear or angular friction F ∈ Rn operating
along a linear or angular displacement rate vector ẋ = (ẋ1, . . . , ẋn)T ∈ Rn can be expressed as

F (ẋ) = Fc sign(ẋ) + Fv ẋ+ Fs Υ(ẋ) sign(ẋ) (2)

where Fc = diag(Fc1 , . . . , Fcn), Fv = diag(Fv1 , . . . , Fvn) and Fs = diag(Fs1 , . . . , Fsn) are
the Coulomb, viscous and static friction positive definite diagonal matrices, respectively, and
Υ(ẋ) = diag(e−(ẋ1/ηs1 )2 , . . . , e−(ẋn/ηsn )2) is a positive definite diagonal matrix representing the rate of
decay of the static friction for some decay rate scalars ηs1 , . . . , ηsn , along the n degrees of freedom. The
term sign(ẋ) ∈ Rn is the vector (sign(ẋ1), . . . , sign(ẋn))T defined by

sign(ẋi) =

{
1 , if ẋi ≥ 0

−1 , if ẋi < 0
, i = 1, . . . , n

Note the friction’s high sensitivity and nonlinearity in the vicinity of ẋ = 0, as illustrated in Figure 2.
At very low velocity, manipulators are likely to exhibit undesirable stick-slip, a cycle of stop and motion.
Friction will act as a constraint and not as a motion generator [55]. τ is the control input and ε is a very
small constant.

Figure 2. Friction model.
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In a single stage speed reduction system, a lumped flexibility model can be used if the dominant
flexion appears in the gear teeth. In the following, the input gears inertia are combined with the actuators
inertia Jm while the output gears inertia is lumped with the load inertia M(q). As shown in [38] and the
references therein, this model reduction method has been used in multi-stage reduction systems, such as
planetary gears, and in multi-mass flexibility models, like harmonic drives, for instance.
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2.3. Problem Statement

Given the desired trajectories qd and q̇d, the aim is to design a control law τm which ensures that
the manipulator’s position q and velocity q̇ track their desired trajectories under unknown or uncertain
dynamics and in the presence of external disturbances. The proposed controller uses q, q̇, and θ̇ as the
system’s measurable states. The manipulator’s parameters, M(q), C(q, q̇), G(q), Jm, τfl, τfm, τdl, τdm
are assumed to be unknown or uncertain.

3. Type-2 FLSs

A type-2 FLS is comprised of five components: fuzzifier, rule base, fuzzy inference engine,
type-reducer and defuzzifier. A block diagram of a typical type-2 FLS is depicted in Figure 3.

Figure 3. Block diagram of a type-2 FLS.
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A type-2 fuzzy set is defined by a fuzzy membership function, where the membership value or grade
for each element of this set is a fuzzy set in the interval [0, 1] rather than a crisp value. As such, the
footprint of uncertainty (FOU) provides type-2 FLSs with additional degrees of freedom, making the
membership functions of type-2 fuzzy sets three dimensional functions. Therefore, type-2 fuzzy sets
can handle more types of uncertainties with higher magnitudes using a smaller rule base than their
type-1 counterparts.

A type-2 fuzzy set, denoted as Ã, is characterized by a type-2 membership function µÃ(x, u), where
x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), µÃ(x, u) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]}

in which 0 ≤ µÃ(x, u) ≤ 1. For a continuous universe of discourse, Ã can be expressed as

Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u) Jx ⊆ [0, 1]}

where Jx is referred to as the primary membership of x. As in type-1 fuzzy logic, discrete fuzzy sets are
represented by the symbol

∑
instead of

∫
. The secondary membership function associated to x = x′, for

a given x′ ∈ X , is the type-1 membership function defined by µÃ(x = x′, u), ∀u ∈ Jx. The uncertainty
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in the primary membership of a type-2 fuzzy set Ã is represented by the FOU and is illustrated in
Figure 4. Note that the FOU is also the union of all primary memberships.

FOU(Ã) =
⋃
x∈X

Jx

Figure 4. Type-2 fuzzy logic membership function.
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The upper and lower membership functions, denoted by µÃ(x) and µ
Ã

(x), respectively, are two type-1
membership functions that represent the upper and lower bounds for the footprint of uncertainty of an
interval type-2 membership function µÃ(x, u), respectively [56].

The structure of rules in the type-2 FLS and its inference engine is similar to those in type-1 FLS.
The inference engine combines rules and provides a mapping from input type-2 fuzzy sets to output
type-2 fuzzy sets. In this process, unions and intersections of type-2 sets as well as compositions of
type-2 relations are used. The output of the type-2 inference engine is a type-2 set. Using extension
principle, type-1 defuzzification can derive a crisp output from type-1 fuzzy set; similarly, for a higher
type set as type-2, this operation derives the type-2 sets to a type-1 set. This process is the so called
“type-reduction”.

4. Interval Type-2 FLSs

The computation intensity of type-2 FLSs has been behind the development of interval fuzzy
sets [56,57] as it provides a simplified and efficient way to compute meet and join operations and
perform type-reduction for FLSs. It distributes the uncertainty evenly among all admissible primary
memberships and offers a balanced trade-off between performance and complexity. Before proceeding
further, a few concepts need to be introduced. An FLS with an interval singleton type-2 fuzzifier and
product or minimum t-norm satisfies the following properties [57]:

1. the firing strength of the lth fuzzy rule is an interval type-1 fuzzy set defined as

F l(x′) ≡ upi=1µF̃ l
i
(x′i) = [f l(x′), f

l
(x′)] ≡ [f l, f

l
]

where

f l(x′) = µ
F̃ l

1

(x′1) ? · · · ? µF̃ l
p
(x′p) (3)

f
l
(x′) = µ

F̃ l
1
(x′1) ? · · · ? µF̃ l

p
(x′p) (4)

with the t-norm operator denoted by “?”.
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2. the fired output consequent set of the lth rule is a type-1 fuzzy set characterized by a
membership function

µ
B̃l(y) =

∫
bl∈[f l?µ ˜

Gl (y),f
l
?µ ˜

Gl (y)]

1/bl ∀y ∈ Y

with µ
G̃l(y) and µ

G̃l(y) being the lower and upper membership grades of µ
G̃l(y).

3. if N out of a total of L fuzzy rules in the FLS fire, where N ≤ L, then the overall aggregated
output fuzzy set is defined by a type-1 membership function µB̃(y) obtained by combining the
fired output consequent sets into one. In other words, µB̃(y) = tNl=1µB̃l(y), where µ

B̃l(y) is
defined in Equation (5).

The following is a brief description of the different stages of the type-2 fuzzy logic inference engine.

µ
B̃l(y) =

∫
b∈

[
[f1?µ ˜

G1 (y)]∨···∨[fN?µ ˜
GN (y)],[f

1
?µ ˜

G1 (y)]∨···∨[f
N
?µ ˜

GN (y)]
] 1/bl, ∀y ∈ Y (5)

4.1. Type-2 Fuzzification

In the fuzzification stage, the crisp input vector with n elements x = (x1, . . . , xn)T in the universe of
discourse X1×X2× . . .×Xn is mapped into type-2 fuzzy sets [56,57]. The type-2 fuzzification process
is schematically depicted in Figure 5. The upper and lower membership functions are computed for each
point of the universe of discourse, resulting in an interval type-1 set [f l, f

l
] for each rule l.

Figure 5. Interval type-2 inference process.
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4.2. Type-2 Fuzzy Rule Base

Type-2 IF-THEN rules have the same structure as their type-1 counterpart. However, the antecedents
and the consequents are represented by interval type-2 fuzzy sets. Thus, the lth rule is of the form:

Rl : IF x1 is F̃ l
1 and x2 is F̃ l

2 and . . . and xn is F̃ l
n

THEN y1 is G̃l
1 and y2 is G̃l

2 and . . . and ym is G̃l
m

where •̃ is type-2 fuzzy set.
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4.3. Type-2 Fuzzy Inference Engine

A type-2 fuzzy inference engine provides a mapping from the input type-2 fuzzy sets to the output
ones. Each rule l in the knowledge base is interpreted as a type-2 fuzzy implication that, when aggregated
with the fuzzified inputs, infers a type-2 fuzzy set B̃l such that:

µ
B̃l(y) = tx∈X [µÃx

(x) u µRl(x, y)]

The t-norm and t-conorm used for the type-2 FLC herein are the “minimum” and “maximum”
operators, respectively. These operators have been accredited in the literature for their computational
efficiency and satisfactory performance.

4.4. Type Reduction

Type-reduction is an “extended version” of type-1 defuzzification methods (using the extension
principle) because this operation reduces a type-2 output fuzzy set to a type-1 fuzzy set, which is called
the “type-reduced set”. Several type-reduction methods have been suggested in the literature, such as the
center-of-sums, the height, the modified height and the center-of-sets. The calculation of type-reduced
sets is performed in two stages. First, the centroids of the type-2 interval consequent sets of the fuzzy
rules are computed. This is conducted ahead of time and is not part of the control cycle. In the second
stage, the type-reduced sets are computed at each control cycle before being defuzzified [54].

Calculation of the Rule Consequents Centroids The centroid of the tth output fuzzy set ytk is a type-1
interval set determined by its left and right most points, ytlk and ytrk, respectively, which are expressed
by [57]:

ytk = [ytlk, y
t
rk] = y(θ1, . . . , θz) =

∑Z
z=1 yzθz∑Z
z=1 θz

(6)

Algorithm 1 describes the iterative procedures for computing ytrk and ytlk [54]. Without loss of generality,
we assume that yz, z = 1, . . . , Z, are arranged in an ascending order; i.e., y1 ≤ y2 ≤ . . . ≤ yZ .

Note that both algorithms are guaranteed to converge in at most Z iterations. However, as mentioned
earlier, these procedures are conducted ahead of time and are not part of the control cycle. Such a
property helps alleviate the heavy computational burden that is usually associated to computational
intelligence-based controllers in general.

4.5. Calculation of the Type-Reduced Set

Using the centroid method, the center-of-sets type reduction reduces the resulting type-2 fuzzy sets to
an interval type-1 fuzzy set [yilk, y

i
rk] for each rule i. The inferred interval type-1 fuzzy set is then defined

by [ylk, yrk], such as:

ylk =

∑L
i=1 f

i
l y
i
lk∑L

i=1 f
i
l

(7)

yrk =

∑L
i=1 f

i
ry
i
rk∑L

i=1 f
i
r

(8)
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where f il , f
i
r are the firing strengths corresponding to yilk and yirk of rule i, to minimize yilk and maximize

yirk. Algorithms 2 and 3 reveal the iterative procedures to compute ylk and yrk, respectively [57]. Without
loss of generality, we here assume that the pre-computed yilk, i = 1, . . . , L, are arranged in an ascending
order; i.e., y1

lk ≤ y2
lk ≤ . . . ≤ yLlk. Hence, ylk and yrk can be mathematically expressed as:

ylk =

∑Q
u=1 f

u
yulk +

∑L
v=Q+1 f

vyvlk∑Q
u=1 f

u
+
∑L

v=Q+1 f
v

yrk =

∑R
u=1 f

uyurk +
∑L

v=R+1 f
v
yvrk∑R

u=1 f
u +

∑L
v=R+1 f

v

It is worth pointing out that both procedures are proven to converge in no more than L iterations,
where L is the total number of rules [57].

Algorithm 1: Computing ytrk or ytlk.

begin
Set θz = hz for z = 1, . . . , Z;
Compute y′ = y(h1, . . . , hz) using Equation (6);
Set Stop = False;
while Stop = False do

Find e, where 1 ≤ e ≤ Z − 1, such that ye ≤ y′ ≤ ye+1;
if ytrk is to be computed then

Set θz = hz −∆z for z ≤ e;
Set θz = hz + ∆z for z > e+ 1;
Compute y′′ = y(h1−∆1, . . . , he−∆e, he+1 + ∆e+1, . . . , hz + ∆z) using Equation (6);

else if ytlk is to be computed then
Set θz = hz + ∆z for z ≤ e;
Set θz = hz −∆z for z > e+ 1;
Compute y′′ = y(h1 + ∆1, . . . , he + ∆e, he+1−∆e+1, . . . , hz −∆z) using Equation (6);

if y′′ = y′ then
Stop = True;
if ytrk is to be computed then

Set ytrk = y′′ (y′′ is the maximum value of y(θ1, . . . , θz));

else if ytlk is to be computed then
Set ytlk = y′′;

else
Set y′ = y′′;

end
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Algorithm 2: Computing ylk.

begin
Set f ir = (f i + f

i
)/2, for i = 1, . . . , L, with f i and f

i
as defined in Equations (3) and (4);

Set y′lk = ylk;
Set Stop = False;
while Stop = False do

Find Q (1 ≤ Q ≤ L− 1) such that yQlk ≤ y′lk ≤ yQ+1
lk ;

Compute ylk as in Equation (7), using f il = f
i

for i ≤ Q and f il = f i for i > Q;
Let y′′lk = ylk;
if y′′lk = y′lk then

Stop = True;
Set y′′lk = ylk;

else
Set y′lk = y′′lk;

end

Algorithm 3: Computing yrk.

begin
Set f ir = (f i + f

i
)/2, for i = 1, . . . , L, with f i and f

i
as defined in Equations (3) and (4);

Set y′rk = yrk;
Set Stop = False;
while Stop = False do

Find R (1 ≤ R ≤ L− 1) such that yRrk ≤ y′rk ≤ yR+1
rk ;

Compute ylk as in Equation (8), using f ir = f
i

for i ≤ R and f ir = f i for i > R;
Let y′′rk = yrk;
if y′′rk = y′rk then

Stop = True;
Set y′′rk = yrk;

else
Set y′rk = y′′rk;

end

4.6. Type-2 Defuzzification

The type-reduced set Ycos(X)k determined by its left most and right most points, ylk and yrk,
respectively, is defuzzified using the interval set average formula to get a crisp output value. As such,
the defuzzified crisp output for each output k is formulated as [56]:

Yk(x) =
ylk + yrk

2
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In this work, we are concerned with adaptive type-2 FLC, and hence, Algorithms 1–3 will be
replaced with the adaptive mechanism explained in the next section. As such, we overcome the heavy
computational burden traditionally associated to computational intelligence-based controllers.

5. Control Strategy

Let ∆q = qd − q and ∆θ = θd − θ denote the links’ and actuators’ position errors, respectively, with
θd being the unknown desired time-dependent motor position vector. The control strategy is based on the
design of an adaptive controller that not only leads to a precise tracking of the system’s nominal desired
signals but also improves the motors’ internal stability. Should the motors’ desired position θd have been
available, the control strategy would be based on tracking ∆q and ∆θ to zero. Since that is not the case,
we define the following compounded velocity error signal:

∆ε̇r = q̇d −
(
λq̇ + (1− λ)

1

r
θ̇

)
(9)

for a diagonal matrix λ = diag(λ1, λ2, . . . , λn) with λi ∈ [0, 1], i = 1, . . . , n. The feedback gain λ is
introduced to provide a trade-off between the link tracking performance and internal stability, due to the
high nonlinear coupling between the two. Note how a choice of λi = 1, ∀ i ∈ {1, . . . , n}, completely
annihilates the motor’s internal stability factor. The fuzzy control strategy is based on a human operator
experience to interpret a situation and initiate its control action. A block diagram for the fuzzy controller
is illustrated in Figure 6. Given the desired control signals qd and q̇d, the link’s position error ∆q and the
compounded velocity error ∆ε̇r are computed. The FLC takes these two inputs and provides a control
action τm that is proportional to the input values. These signals are quantized into 5 levels represented
by a set of linguistic variables: Negative Large (NL), Negative Small (NS), Zero (Z), Positive Small
(PS), and Positive Large (PL). In this study, triangular membership functions are used, mainly due to
their high computational and performance efficiencies [58]. To assess the performance of both types of
controllers, the proposed fuzzy controller is implemented in two different ways: the first is based on a
type-1 fuzzy control scheme while the second is based on a type-2. The input membership functions
adopted by both types of control systems are shown in Figure 7. In order to perform a fair comparison
between type-1 and type-2 FLCs, the type-2 membership functions have been designed such that they are
very similar to those of type-1 and have small blurbs in their FOUs. The fuzzy rules of the two control
techniques are the same, they were chosen heuristically and can be refined by an expert (see Table 1).
These rules are based on three hypotheses: (i) when the input signals are far from their respective nominal
zero-valued surfaces, then the FLC’s output assumes a high value; (ii) when the inputs are approaching
the nominal zero-valued surfaces, the output is adjusted to a smaller value for a smoother approach;
(iii) once the inputs are on the nominal zero-valued surfaces, then the output is set to zero. This way,
the FLC forces the link position error ∆q and the compounded velocity error ∆ε̇r to approach zero.
It is worth mentioning that an empirical study was conducted beforehand to tune the input membership
functions. The center of area method is used for defuzzification.
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Figure 6. Block diagram of the proposed fuzzy control scheme.

Motors + Links

Compounded
velocity error

q̇d

qd

q

∆q
τm

θ̇, q̇

θ̇, q, q̇

∆ε̇r

∆ε̇r

Figure 7. Fuzzy membership functions: (a) type-1; and (b) type-2.
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Table 1. Fuzzy rules for type-1 and type-2 FLCs.

∆q

∆ε̇r NL NS Z PS PL

PL Z PL PL PL PL

PS NS Z PS PS PL

Z NL NS Z PS PL

NS NL NS NS Z PS

NL NL NL NL NL Z

5.1. Adaptive Type-2 FLC

The adaptive type-2 FLC structure is depicted in Figure 8. It consists of four layers. Input nodes and
type-2 fuzzification nodes are shown in layer 1 and layer 2, respectively, forming the antecedent part of
the fuzzy rules. Consequent parts are represented by layers 3 and 4, which are constructed with fuzzy
rule nodes and output nodes. They are linked by interval weighting factors [wmlz w

m
rz].

The adaptive type-2 FLC’s output can be written as:

Y = ΦTw + ε = ΦT ŵ (10)

where w ∈ Rz×m is a weight matrix and Φ is a m-dimensional vector of known functions (regressor).
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Figure 8. Adaptive Type-2 fuzzy logic control structure.
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Define the following signals:

s = ∆ε̇r + Ψ∆q = q̇r − Λq̇ − (1− Λ)
1

r
θ̇ (11)

q̇r = q̇d + Ψ∆q (12)

where Ψ = [ψ1, ψ2, . . . , ψn] with ψi being a positive constant, i = 1, . . . , n.
Recall Euler–Lagrange formulation (1):

M(q)q̈ + C(q, q̇)q̇ +G(q) + τfl + τdl − τt = 0

Jmθ̈ + τfm + τdm − τm = −1

r
τt

where q, q̇, q̈, θ̈ ∈ Rn. Substituting for τt, and letting the stiffness constant K tend to infinity (singular
perturbation), we obtain the following rigid model [16]:

Mt(q)q̈ + C(q, q̇)q̇ +G(q) + τFrd = τm (13)

where,

Mt(q) = Jmr +M(q)

τFrd = τfl + τdl + τfmr + τdmr + (1− r)τm

Using the linear in parameters property of the manipulator dynamics, we can approximate the model
with a linear regression:

Mt(q)q̈r + C(q, q̇)q̇r +G(q) + τFrd = Φ(q̈r, q̇r, q̇, q)
Tw
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The control law is:
τm = ΦT ŵ +KDs (14)

where KD is a positive diagonal matrix gain and the sign •̂ denotes the parameter estimate vector.

Theorem 1 Consider the nonlinear system in Equation (1) with reference signal (11) and control
law (14). The adaptive control law is asymptotically stable and the tracking error converges to zero
with the following adaptation law:

˙̂w = −Γ Φ s

where Γ = diag(γ1, γ2, . . . , γn) and γi is a positive constant, i = 1, . . . , n.

Proof: Taking the derivative of the error signal s yields

ṡ = q̈r − Λq̈ − (1− Λ)
1

r
θ̈

Let K →∞, i.e., displacement (θ − q)→ 0. We get:

ṡ = q̈r − q̈

Mt(q)ṡ = Mt(q)q̈r −Mt(q)q̈

Substituting Mq̈ from Equation (13):

Mt(q)ṡ = Mt(q)q̈r + C(q, q̇)q̇r +G(q) + τFrd − C(q, q̇)s− τm

The linear in parameters property yields

Mt(q)ṡ = ΦTw − C(q, q̇)s− τm (15)

Set
τm = ΦT ŵ +KDs (16)

Equation (15) becomes
Mt(q)ṡ = ΦT w̃ − C(q, q̇)s−KDs (17)

where w̃ = w − ŵ.

Choose the following Lyapunov candidate:

V =
1

2
{ sTMt(q)s + w̃T Γ−1 w̃ }

Taking the derivative of V:

V̇ = sTMt(q)ṡ+
1

2
sTṀt(q)s+ w̃TΓ−1 ˙̂w

Substituting for Mt(q)ṡ:

V̇ = sTΦT w̃ + sT{1

2
(Ṁt(q)− 2C(q, q̇))}s+ w̃TΓ−1 ˙̂w − sTKDs
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sT{(Ṁt(q)− 2C(q, q̇))}s = 0 due to the skew-symmetry property. Hence,

V̇ = sTΦT w̃ + w̃TΓ−1 ˙̂w − sTKDs

Setting the adaptation law as

˙̂w = −Γ Φ s

leads to
V̇ = −sTKD s ≤ 0

Therefore V , and so s, w̃ and ŵ, are bounded and converge to finite values. It follows from
Equation (16) that τm is bounded, which implies that all the terms in Equation (17), including ṡ, are
bounded. Thus, V̈ = −2sTKDṡ is also bounded. Hence, from Barbalet’s Lemma, it implies that
limt→∞ V̇ = 0. Therefore, limt→∞ s = 0.

6. Simulation Results and Discussion

6.1. Simulation Setup

To demonstrate the performance of the proposed controller, two numerical simulations are carried out
on a single link flexible-joint manipulator. Table 2 summarizes the manipulator’s physical parameters
along with their respective values. The stiffness coefficient and gear ratio are set to be K = 7 N·m/rad
and r = 1, respectively. The link’s mass and length are taken as m = 0.21 Kg and l = 0.3 m,
respectively. The manipulator’s dynamics in terms of its physical parameters is defined by: M(q) = I ,
C(q, q̇) = 0, and G(q) = mgl sin (q), where g = 9.8 m/s2 is the gravitational constant and I is the link’s
rotational inertia given in Table 2. The nonlinear friction model described in Section 2 is considered to
model the actuator’s and load’s mechanical frictions, τfm and τfl, respectively.

Table 2. Manipulators physical parameters.

Parameter Link Motor

rotational inertia (kg·m2) I = 5.05× 10−2 Jm = 4× 10−3

viscous friction coefficient (N·m·s/rad) Fvl = 4× 10−3 Fvm = 3× 10−3

Coulomb friction coefficient (N·m) Fcl = 1× 10−2 Fcm = 4× 10−3

static friction coefficient (N·m) Fsl = 2× 10−3 Fsm = 2× 10−3

static friction decreasing rate (rad/s) ηsl = 7× 10−2 ηsm = 5× 10−2

The manipulator’s desired position trajectory is taken as the step response of a critically damped
second order system with a natural frequency of 3 rad/s, as shown in Figure 9. The feedback gain λ
in Equation (9) is set to 0.8. The control structure scheme and the system’s model are implemented in
SimulinkTM while the fuzzy control engines are programmed in C. Both controllers are set to operate at
a bandwidth of 100 Hz.
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Figure 9. Manipulator’s position and velocity reference signals.
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6.2. Numerical Simulations and Results

Two simulations are carried out to highlight the proposed type-2 FLC as opposed to type-1 in
tolerating a higher degree of parametric and modeling uncertainties. In both simulations, the system’s
dynamics is assumed to be a priori unknown. For each simulation, the system’s response is studied
taking into account the manipulator’s position and velocity errors, the joint’s internal stability, and the
controller’s output torque, τm.

The first simulation is meant to study the controller’s ability to sustain various types and magnitudes
of load uncertainties. For this purpose, the load’s inertia and the link’s mass are both doubled abruptly
at 5 s and returned back to their original values at 15 s of the simulation. The results are shown in
Figure 10. A slight increase is noticed in the manipulator’s position and velocity errors due to a heavier
load. However, the error signals and the controller’s output under type-1 FLC are fairly fluctuating
as opposed to a smooth and steady convergence behavior with the type-2 FLC. It is quite important to
notice here the degradation in the actuator’s internal stability (Figure 10(e)) under type-1 FLC despite the
settling of the load’s velocity. The superiority of the adaptive type-2 FLC in compensating for such a type
of uncertainty is manifested with a better load position, speed accuracy and control effort performance
over its type-1 counterpart.

In the second simulation, the elastic joint’s stiffness coefficient is changed abruptly toK = 5 N·m/rad
at 5 s and returned back to its original value (K = 7 N·m/rad) at 15 s of the simulation. The controller’s
performance under such conditions is revealed in Figure 11. As in simulation 1, adaptive type-1 FLC is
able to maintain bounded error signals but fails to make them converge smoothly. This is especially clear
with the load’s position and velocity errors (Figure 11(a) and 11(c)) and the motor’s internal stability
(Figure 11(e)). On the other hand, it is clear that the adaptive type-2 FLC does indeed maintain these
signals smoother and with less control effort than its type-1 counterpart.
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Figure 10. System’s response to varying load’s mass and inertia: (a), (b) manipulator’s
position error; (c), (d) manipulator’s velocity error; (e), (f) motor’s velocity vs. manipulator’s
velocity; and (g), (h) controller’s output torque (τm).
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Figure 11. System’s response to varying stiffness coefficient: (a), (b) manipulator’s position
error; (c), (d) manipulator’s velocity error; (e), (f) motor’s velocity vs. manipulator’s
velocity; and (g), (h) controller’s output torque (τm).
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7. Conclusions

In this paper, an adaptive type-2 FLC with a Mamdani inference engine has been proposed
for flexible-joint manipulators in the presence of dynamical modeling and parametric uncertainties
of various magnitudes. The control strategy takes into account the actuators’ relative stability by
introducing a trade-off criterion between the actuators’ internal stability and the links’ position.
A comparison of the proposed controller and its type-1 counterpart is performed under similar operating
conditions. The simulations show the superiority of the adaptive type-2 FLC in compensating for high
magnitude of uncertainties, which confirms the theoretical credentials associated to type-2 FLSs.
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