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Abstract: Swarming and modular robotic locomotion are two disconnected behaviours that a
group of small homogeneous robots can be used to achieve. The use of these two behaviours
is a popular subject in robotics research involving search, rescue and exploration. However,
they are rarely addressed as two behaviours that can coexist within a single robotic system.
Here, we present a bio-inspired decision mechanism, which provides a convenient way for
evolution to configure the conditions and timing of behaving as a swarm or a modular robot
in an exploration scenario. The decision mechanism switches among two behaviours that
are previously developed (a pheromone-based swarm control and a sinusoidal rectilinear
modular robot movement). We use Genetic Programming (GP) to evolve the controller
for these decisions, which acts without a centralized mechanism and with limited
inter-robot communication. The results show that the proposed bio-inspired decision
mechanism provides an evolvable medium for the GP to utilize in evolving an effective
decision-making mechanism.

Keywords: collective robotics; modular robotics; swarm robotics; hormone-inspired; XGP;
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1. Introduction

Modular robots present potential robustness characteristics beyond the capabilities of wheeled
vehicles, such as: the ability to traverse challenging terrain and insignificant performance degradation
when partial damage is inflicted. On the other hand, they lack the emergent intelligence, manoeuvrability
and flexibility of swarms. Thus, modular robotic movement and swarming can be viewed as two
complementing behavioural traits rather than mutually exclusive ones. In this article, we present
a hormone- and emotion-inspired control mechanism for a collective reconfigurable robotic system.
The objective of the proposed control mechanism is to decide whether a robotic organism that is
deployed for the exploration of an unknown environment will benefit from switching between states
of swarming into moving as a single modular robot and vice versa. Although a single decision at its
core, the aforementioned mechanism’s result is a determining factor in a switch between different and
conflicting behaviours. Furthermore, the behavioural switching is time-consuming and a determining
factor in the success and survival of the robotic organism. Such a decision can not be easily made
via a predetermined algorithm or predetermined protocol, because of the environment being unknown,
unpredictable and only partially observed by the perception subsystems of the robotic modules.
Moreover, the collective decision, of the robotic system as a whole, to switch from a certain type of
behaviour into another one when each individual robot makes its own decisions is even more difficult to
formulate. Rather, it could emerge as a higher-level property of the complex, non-linear robotic system,
as a result of the interaction between the lower-level entities (modules) and the environment [1]. In terms
of the practical application being considered, the work by Berend et al. is the most related: to design a
system that is reliant on online evolution in achieving organism formation via a swarm of robots in order
to increase survivability of the robots [2]. The model presented here relies on offline evolution and is
aimed at addressing predetermined objectives. The adaptability of the system is obtained as an emergent
property derived from both the interactions (i) between the robotic modules and (ii) between modules
and the environment.

Hormone- and emotion-inspired decision models in collective robotics have been developed by
various authors to address a range of tasks in the control of a group of robots. The two terms (hormone
and emotion) are often used in highly related systems; thus, we consider models from both sources
of inspiration relevant and use the two terms interchangeably. The hormone-inspired decision systems
model the behavioural effects of emergent emotional changes, due to the hormonal fluctuations that can
be observed in biological organisms.

The models developed differ in the style of implementation, as well as the point of view taken on how
these hormone-inspired models function. Often, the difference in the modelling comes from whether
a low- or high-level point of view is used. In a system where the low-level interactions of hormones
and chemical pathways are modelled, the aim is to create a tightly-coupled control mechanism that can
define detailed behaviours in a robot. From a different point of view, the fluctuations in hormones are
associated with certain emotions leading to high-level behaviours (often used as a behaviour switching
mechanism among pre-defined behaviours rather than as a control mechanism). Shen et al. [3] present
a control model for multiple robot coordination that is based on detailed hormone interactions. Their
mechanism, based on Turing’s reaction-diffusion model [4], defines the coordinated movements of
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robots via hormone-messages passed between neighbouring robots. Another reaction-diffusion-based
complex coordination mechanism is used by Hamann et al. [5]. These two mechanisms presented by
Shen et al. and Hamann et al. behave as detailed coordination mechanisms inspired by the micro-level
interactions of the hormones in biological organisms. These mechanisms are designed to be applied
as controllers of low-level actions (such as controlling the actuators of wheeled robots) that lead to an
emergent higher-level behaviour. Due to the gap between the low-level properties of the micro-entities
and the emergent high-level properties of the system as a whole, these mechanisms would be difficult to
configure (or evolve).

Utilizing a simpler hormone-inspired decision mechanism limits the flexibility and creativity of the
underlying system. However, it drastically simplifies the control models and allows them to be easy to
modify, as well as easy to integrate with other control models. Murphy et al. [6] achieved multi-robot
coordination in a small team of heterogeneous robots using a simple emotion-based control with a limited
amount of coding. Moioli et al. [7] showed that a simple hormone-inspired approach to task switching in
a swarm of robots works well with tasks featuring conflicting objectives (such as exploration and energy
preservation). The ALLIANCEarchitecture [8], as well as a similar approach by Walker and Wilson [9]
also provides simple, yet efficient, behaviour switching mechanisms based on motivations, such as
impatience and acquiescence, similar to the hormone-inspired model proposed in our work. Both of these
models use continuous broadcasts between robots, since they require the robots to be aware of others’
tasks. This presents problems with scalability, as well as reliability issues as the number of modules
in the swarm grows. Although not comprehensive enough to cover all the related hormone-inspired
control mechanisms, an analysis of a large number of emotion-inspired mechanisms can be found in [10].
The proposed hormone-inspired mechanism is similar to the simple behaviour switching mechanisms
used by many other authors. The novelty of our approach is in its area of application, integration, as well
as its implementation.

The proposed decision mechanism is inspired by the fluctuations in the hormonal signals of biological
organisms that cause changes in the emotional states, which, in turn, determine the actions for many
crucial decisions. Our work is inspired by the drastic behavioural fluctuations often observed in
biological organisms, due to the changes in hormonal regulators [11]. We propose an automated design
of the decision mechanism via simulated evolution, because we believe that an a priori hand-coded
solution would not be adaptable, due to the unknown and unpredictable nature of the environment.
Moreover, such a solution would not be an optimal one, due to the inherent complexity of the modular
robotic system. Indeed, the analytical models for such complex, modular robotic systems do not
exist, and often, the desired high-level properties of the system as a whole cannot be directly inferred
from the hand-coded low-level behaviour and morphology of its entities. We use XML-based Genetic
Programming (XGP) for the evolution of the control mechanism (Tanev [12]). The evolved model is
intended to decide the timing of switching between the swarming and snake-like locomotion behaviours,
and vice versa. Both behaviours were developed in our earlier works [13,14]. The task is for a group
of robots that approach a corridor as a swarm to overcome the various obstacles presented and explore
as much of the area as possible in the process. The experiments demonstrate the intuitive behaviour
achieved by the robots as a group by switching among the main behaviours (swarming, modular robot
reconfiguration and movement) via the use of the presented hormone-inspired decision mechanism.
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This article is organized as follows. In Section 2, we describe the adopted robotic modules and their
simulated environment. Section 3 details the algorithms executed for all three behaviours that the robotic
system can perform. Section 4 explains the decision mechanism designed for switching among various
behaviours (described in Section 3). In Section 5, we describe the experimental setup and present the
empirical results obtained from the hand-tuned version of the hormone-inspired algorithm. In the same
section, we provide the values of the major parameters of XGP and the results obtained by the simulated
evolution. Section 6 provides a comparative analysis on the results, presented in the preceding section,
and Section 7 draws a conclusion of our work.

2. Robots and Their Environment

We use the commercially available robot simulation platform, Webots, in our experiments, which
realistically models the physics of the adopted mobile robots, their interactions with each other and
with the environment [15]. Table 1 details the parameter settings used for the Webots simulation
platform. The robots are spherically shaped two-wheeled robots with a differential drive and 7 cm in
size. Robots feature a set of a simulated radio emitter/receiver and four infra-red (IR) sensors in front, as
shown in Figure 1. The radio emitter and receiver set allow the robots to establish direct one-to-one and
one-to-many communication with other robots. The radio communication models a simple RFmodule
with a custom communication protocol, i.e., without a known communication protocol, such as WiFi or
Zigbee. The robots are equipped with two actuators—one in front (vertically oriented) and one at the
back (horizontally oriented)—which have magnetic connectors attached that allow them to connect with
other robots. The front actuator has an “active” connector (an electromagnet) that can be activated or
de-activated by the robot. The rear actuator has a “passive” connector (a permanent magnet), which is
always in the same state and can only be connected with an “active” type connector (since two passive
connectors have the same polarity). Thus, the robot that is connecting with its “active” (front) actuator
has the initiative in establishing a robot-to-robot connection.

Table 1. Webots related parameters of the simulated robots.

World Properties Robot Physics Properties

CFM 0.00001 density −1

ERP 0.2 mass 0.1

basicTimeStep 32 centerOfMass 0 −0.03 −0.031

bounce 0.5 bounce 0.5

bounceVelocity 0.01 bounceVelocity 0.01

coulombFriction 0.5 coulombFriction 1

forceDependentSlip 0.004 forceDependentSlip 0

runRealTime true

The robots are designed to reflect a realistic size of a robot with similar capabilities (e.g., epuck,
Symbrion robot [16]). They are aimed at being capable of forming a swarm of wheeled robots and
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achieve common tasks, such as exploration of unknown environments. The robots are also designed to
substitute the spherical modules used in the sidewinding Snakebots in our earlier work [17]. The latter is
the reason why the robots have a spherical casing. The robots here do not use ball joints as before (due
to the limitations of the Webots simulation platform), but utilize two separate joints.

Figure 1. The differential-wheeled robot used in simulation experiments with four infra-red
(IR) sensors of 7 cm range pointing forward and two connection points that allow docking
with other robots.

3. Collective Behaviours

To behave as a collective robotic organism, the robots need to be able to achieve two behavioural
states: (i) swarming; and (ii) modular robot. These two states require completely different behaviours
from the individual robots, and thus, they are coded as separate control mechanisms. In order to achieve
a transition between these two states, the robots need to be able to “reconfigure” themselves, which is
the third behavioural state: (iii) reconfiguration. All three behavioural states are illustrated in Figure 2 to
demonstrate an example case where these three behaviours would be highly beneficial if used correctly.
All these behaviours are previously developed and are not the main focus of this work. Therefore, in the
following subsections, we will only provide a brief explanation of these two behaviours.

Figure 2. An example scenario of the collective robotic organism utilizing all
three behaviours.

Swarm Reconfigure

Reconfigure

Snakebot

Swarm
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3.1. Swarming

Swarm intelligence is an emergent behaviour from the decentralized interactions between many
systems. In robotics, it is the coordinated (explicitly or implicitly) movement and actions of many robots
that contribute to achieving tasks via the emergent behaviour. We use the pheromone-inspired swarm
control [14], which does not require any direct interaction within the robots to achieve the multi-robot
coordination required. Pheromones can be used to provide a stigmergic medium of communication,
which influences the future actions of a single individual or a group of individuals via changes made
to the environment. A term first introduced by Grasse [18], stigmergy as a communication mechanism
allows the history of an individual’s actions to be tracked without the need to construct a model of
the environment within the individual’s own memory; making the emergence of higher complexity
behaviours from a group of simple individuals possible.

The swarm control algorithm used here is a pheromone-inspired mechanism that builds environmental
information by chemical gradients. The environment is assumed to handle the storing and diffusion
of chemicals; thus, the robot controllers do not store any chemical information, except the sampled
concentrations within the immediate vicinity of the robot. The algorithm used is developed
specifically for achieving optimum exploratory behaviour via a large number of real robots in unknown
environments. Such environments include areas of high devastation (e.g., earthquake or tsunami stricken
settlements) or distant and dangerous missions. Exploring an unknown area quickly is a mission-critical
objective in rescue operations. Such operations can face a list of limitations, such as the lack of a
terrain map, the failure of previously established communication networks and the lack of reliable GPS
tracking. In such missions, the first task is to search the area in question as quickly as possible and locate
targets. The robots would be required to be capable of various functionalities other than area exploration;
therefore, it is desired that the integration to a swarm and the ability to explore are seamless and do not
consume a large amount of the robot’s resources. Utilizing a real stigmergic communication would be
an efficient method of achieving such emergent behaviour with low overhead.

Robots that utilize stigmergic trails to communicate with each other have been shown to effectively
coordinate and quickly explore a given terrain [19,20]. The use of stigmergic pheromone-based
communications in robotics has a range of other potential advantages, such as the possible ability
to adjust the range and persistence of a pheromone, not being limited to line-of-sight, the ability of
pheromones to propagate through the environment (while forming gradients) and freeing the individual
robots from the burden of communication management and processing—usually involved with other
forms of commonly used communications (such as radio, IR, visual, audio, etc.). On the other hand,
the use of physical substances for pheromone-based communication within robots is problematic and
poorly understood. However, there is undergoing work in improving their use with promising results,
and it is predicted that with improvements in sensing technology, it may be possible that a robot could
carry a lifetime supply of chemicals [21]. The use of olfactory sensors in robotics is a developing
area with promising demonstrations of distinguishing multiple odours by mobile robots, e.g., [22],
and recent development of high resolution olfactory sensors for robotic systems [23]. With these
developments, the use of real chemicals for inter-robot communication can become as convenient as
any other conventional method, such as infra-red or radio.
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The swarming behaviour used here is similar to the “node counting” algorithm described in [20];
however, in our case, the goal is to achieve a quick “survey” of an area by visiting key locations as
quickly as possible, instead of “sweeping” by visiting all the available locations in the environment.
The developed algorithm assumes that a more probabilistic approach to exploration is highly beneficial
in realistic situations and that the common strategy of sweeping of the whole area for the exploration
of unknown environments is highly inefficient and unrealistic. The algorithm is implemented as a
three-layered subsumption architecture, where each layer implements one basic behaviour: random
walk (“exploration”) is the behaviour corresponding to the lowest priority layer, while pheromone-based
coordination is the middle layer, and the wall avoiding behaviour is realized by the highest priority
architectural level. In the pheromone-inspired algorithm, the robots explore a given environment by
dropping artificial pheromones in their environment (to mark the visited locations) and sampling the
pheromones dropped by other robots. Each pheromone has the ability to diffuse and evaporate, and they
are simulated in a grid-like environment, where each grid point is the size of a robot.

The pheromone-inspired swarming (a completely separate mechanism from the hormone-inspired
mechanism, which is the main focus of this article) is explained in detail in [14].

3.2. Modular Snakebot

Due to its simple chain-like geometry, the automated formation and configuration of a modular
Snakebot is relatively easy. Some useful features of snake-like robots include the smaller size of the
cross-sectional areas (in comparison to other modular robots), stability, ability to operate in difficult
terrain, good traction and complete sealing of the internal mechanisms [24,25]. Moreover, due to the
modularity and homogeneity of their design, the snake-like robots have high redundancy, which, in turn,
provides it with inherent fault tolerance and adaptability properties [17].

In our model, once the robots connect to each other to form a long chain, they can use the actuators
between the neighbouring robots to achieve locomotion. To achieve coordinated movement amongst the
modules, the robots synchronize their internal timers and assign themselves individual IDs depending
on their location in the Snakebot. The head of the snake being zero, the tail, n − 1 (in a Snakebot
with n modules). It was noted in an earlier work that a sidewinding locomotion is the fastest and most
efficient form of locomotion for a snake-like robot [17]. Even though the results obtained in those early
studies are used here, we implement a rectilinear locomotion instead. The current robots achieve a stable
rectilinear locomotion, due to the presence of wheels. In fact, the addition of wheels also makes it
difficult to use the previously evolved sidewinder controls, since the wheels can change the geometry
of the module. Equation (1) (adapted from the evolved solutions in [13]) is used for the movement of
vertical actuator in each robot, which successfully achieves a moving sine-wave within the Snakebot.
The horizontal actuators are locked at their initial perpendicular position. Although the motion gait,
considered in this work, is the rectilinear one (which is also similar to the locomotion gait of caterpillars)
instead of sidewinding, as exhibited in our previous implementations of the Snakebot, we use the term
Snakebot to refer to the specific morphology of the modular robot (rather than particular locomotion
gait) in order to provide a clear connection to the source and inspiration of this work [17]. A rectilinear
locomotion is preferred in these preliminary experiments, because, compared to sidewinding, it offers
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the advantages of (i) simplicity of implementation, (ii) simplicity of steering and (iii) a much reduced
cross-sectional area of the moving Snakebot.

Vp = −0.1× (id− 16)× πsin(id+ 3t− 1) (1)

Equation (1) is used with a maximum of 15 modules in the experiments. Vp is the position of the
vertical actuator in radians. This equation is only used for achieving locomotion within a modular robot
and does not have an impact on the hormone-inspired mechanism described here.

3.3. Reconfiguration

In order to switch from a swarm to a single, yet modular, robot (and vice versa), the robotic modules
need to coordinate their motion and assemble together (or disassemble, respectively). This process is
referred to as reconfiguration, and it can be initiated by one or more robots. The remaining robots
then have the freedom to join or not join the initiating robot. When there are no robots willing to
join the modular robot, the connected robots (if more than one) may then start to move as a single,
snake-like modular robot. In a reverse situation, the robots simply decide to disconnect, while moving as
a Snakebot, and, once separated, to start moving as entities of a robotic swarm. For the experiments
presented in Section 5, the initiating robot first turns towards east, which is the direction that the
experimental corridor stretches. This is done to make sure that the Snakebot is facing the correct
direction once it is formed. Reconfiguration is the only stage the presented robots communicate directly
via wireless messages. These wireless messages involve broadcasts of a robot’s request for potential
partners to dock and the positive responses that the other robots may give.

Self-assembly and automatic reconfiguration can be quite a challenging task on its own depending on
the number of the degrees of freedom of the modular robot (e.g., [16]), and sophisticated solutions
that rely on evolutionary computational techniques have been developed, e.g., [26]. The focus of
our work, however, is not in the self-reconfiguration of modular robots; hence, the complexity of the
reconfiguration scenario is kept to a minimum. Since the considered modular robots have only two points
of connection (front and back), the only shape that can be achieved is a snake-like shape, which simplifies
the possible control mechanisms required for the locomotion of the formed modular robot. The tasks
of robotic modules in achieving a reconfiguration of a swarm of robotic modules into a single modular
Snakebot involve:(i) finding robots in the swarm that want to dock; (ii) locating and docking to each other
without collisions; (iii) generating the correct IDs (used for Snakebot locomotion) for each robot; and
(iv) deciding when the reconfiguration is complete. The initial decision to initiate a reconfiguration or to
become available for reconfiguration participation is decided by a separate mechanism. This mechanism
is the primary focus of our work and will be elaborated upon later in Section 4.

Once a robot decides to initiate a reconfiguration process, it broadcasts a message (via radio
communication) to all other robots to signal its decision. The robots that are available for docking
respond with messages addressed to the initiating robot. If no responses are received (implying that no
robots are available for docking), the initiating robot terminates the reconfiguration process and returns
back to the swarm. Otherwise, the initiating robot picks the closest one of the responding robots by
estimating the distances from the signal strength of the received responses. Once chosen, the initiating
robot waits for the other to dock, occasionally exchanging messages in order to: (i) maintain connection;
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(ii) provide the docking robot with the direction the waiting robot is facing; and (iii) allow the docking
robot to have a rough estimation of the distance between them. If the connection between the two
robots is lost or the docking robot takes a long time to accomplish the procedure, the waiting robot
terminates the procedure and looks for a different robot to connect with. If the docking process completes
successfully, the docked robot takes the role of the initiating robot and looks for other robots to connect
with. However, if in this case, the waiting robot is unable to get a response from other robots for docking,
it then signals all the other robots that are part of the same modular robot to switch into modular robot
mode (by synchronizing timers) and start moving as a Snake.

Disassembly is a much simpler process, which does not require any coordination among the robots.
Again, the decision is made by the mechanism explained in detail in Section 4. The disassembly results
in the deactivation of the front (“active”) connector of the corresponding robot.

4. Hormone-Inspired Behavioural Switching Based on Patience

The decision to switch states (disconnect from a modular robot and join a swarm or start forming a
modular robot while swarming) is made on an “impatience” value that the robots increase or decrease
depending on the environmental factors. This is modelled after the biological organisms, namely
animals, which maintain emotions, such as anxiety, tolerance, restlessness and eagerness, that contribute
to large changes in behaviour via hormonal feedback in their bodies. Hormones in biological organisms
are known to achieve coordination amongst different members and are a determining factor for social
behaviours [11]. We are inspired by this duty of hormones in biology and believe that a similar decision
mechanism could provide intuitive changes in robotic behaviour. Here, we provide a simplistic model
of a hormone, where we do not try to provide a biologically-plausible implementation. The main
source of inspiration is not how the hormonal chemical networks work in biology, but the situational
uses (i.e., behavioural switching) of slow, but smooth, chemical gradients instead of fast and sharp
logical decisions. The model presented provides some of the basic functions of a hormonal network
in biological organisms, namely: (i) storage and secretion of hormones; (ii) recognition and processing
of the hormone; and (iii) degradation of the hormone. The hormones in our model are not transported to
other “cells”, since they are used in the regulation of a single-cellular entity (i.e., the individual robot)
that does not share its hormonal state with other robots. However, the resulting behavioural shifts in a
robot are shared with other members of the group, which affects the status of the other individuals. Thus,
the hormones produced indirectly control the behavioural state of the whole group.

The impatience value used to model the behaviour of hormones has a certain range, and it constantly
degrades over time (multiplied by 0.95 every time step in the presented experiments), even when not in
use. The production (secretion) of the impatience value is determined by a separate logic (hand-coded or
evolved), which only controls the incremental changes in the value of the impatience value, as elaborated
in Section 5. We define a threshold level for the impatience value, and if this value is reached, an action
takes place depending on the robot’s state. If the impatience value is high enough to initiate an action,
it is reset to zero (i.e., it is “consumed”). The three major behaviours described in Section 3 define
the states that a robot can be in. We spread these three behaviours to a total of five states: State 0 is
swarming only, State 1 is Snakebot locomotion only, State 2 is swarming, but ready to join a Snakebot,
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State 3 is initiate reconfiguration for a Snakebot and State 4 is docked and looking for other robots to
form a Snakebot. The three behaviours are spread over five states in order to simplify the reconfiguration
process and the integration of the three distinct behaviours and encourage gradual change in behaviours
rather than abrupt switching. For the experiments presented in Section 5, the robots are initialized in
State 2. The decision mechanism determines the changes between these states that place the robot in
a different behavioural zone. When a change in state is triggered, the state transitions are as follows:
State 0 –> State 2; State 2 –> State 3; states 1, 3 or 4 –> State 0. Figure 3 illustrates the state machine
built to accomplish the desired behaviours, with the aforementioned five states.

Figure 3. The states and the possible transitions in the main controller of the robots.
The solid lines illustrate the state transitions, due to the decisions made by the
hormone-inspired behaviour switching, whereas the dashed lines represent the state
transitions, due to changes in the environmental conditions.
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build a modular robot

These states and the state transitions define the behaviours and the order of change between these
behaviours, which are easy to define. The most difficult task, however, is to decide when to initiate
these state transitions. Table 2 shows a list of variables that each robot has access to and we believe are
sufficient for the robots to analyse their environments and adjust their internal states. All these variables
are either acquired without any communication or via the existing communication taking place among
the robots during the reconfiguration procedure.

Table 2. Perception information available to each robot relevant for determining the change
in the impatience value.

Perception Description

lowestPH Value of lowest pheromone conc.requests

No. largestModuleSize No. of modules in the largest active Snakebot.

moduleImpact largestModuleSize− currentSnakebotSize
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The pheromone levels, which are stored by the environment, provide information to individual robots
about the environment and whether the goal of exploration is being satisfied [14]. The requests,
largestModuleSize and moduleImpact are affected by the behavioural state of the other robots in
the environment. These variables inform the individual robots about the state of the other robots and
create the means for social monitoring and pressure. Thus, the hormonal changes within the other robots
have the possibility to cause hormonal changes within.

5. Experiments

An experimental environment is designed to develop and test the decision mechanism for its ability
to provide efficient and intuitive switching between behaviours in order to accomplish quick exploration
of unknown areas. The environment is designed to test the ability of the robotic group to demonstrate
all three behavioural states to successfully explore a given environment without any information about
the area. The environment is a long corridor (24m) with two types of obstacles: low continuous walls
and high walls with gaps. The low walls present a challenge to individual robots, which are too small to
overcome these obstacles, but these low walls can be climbed over by a Snakebot. The high obstacles
cannot be overcome by either the individual robots or a Snakebot. However, the high obstacles are
arranged to have small offset gaps that give individual robots the opportunity to circumnavigate. Figure 4
provides different views of the environment.

Fifteen robots are initialized at the left end of the corridor as a swarm. The goal for the robots is to
clear all the obstacles in the way and explore as much of the environment as they can. The robots are
expected to explore this section as well as they can before joining together to overcome the low obstacles
blocking their way. Once formed, the modular robots that overcome the low obstacles are expected to
partially disassemble after the first low obstacle, while the rest disassemble when they reach the high
obstacles, where they can no longer move forward. The disconnected individual robots that reach the
high obstacles are then expected to find their way to the other side of these high obstacles. This requires
the robots to form a Snakebot and then go back to being a swarm at least once.

We use a simple hand-coded algorithm shown in Algorithm 1 to successfully clear all the obstacles
shown in Figure 4 with appropriate task switching in approximately 7.5 min. Different behaviour control
patterns can be obtained by adjusting the constants used for the impatience increment, as well as the
constant values, PHEROMONECEILING, REQUESTCEILING and NHEADMODULES.
The values used for the latter three in our experiments are 600, 100 and 1, respectively. The constants are
picked and optimized via numerous trial and error runs in the experimental environment. For example,
PHEROMONECEILING is set to 600, as this is the commonly encountered minimum pheromone
concentration surrounding a robot in an already explored area. In cases where a smaller value is detected,
the area is likely to be only partially explored, and for higher values, there is a chance of long delays
in behaviour switching, even after the area is fully explored (thus, 600 is picked as a sub-optimal
compromise). The value of the impatience increment in the case of high pheromone levels is set to
2, which is not a large enough increase to bring the impatience levels high enough (50) to trigger a
change in behaviour, since the impatience value is multiplied by 0.95 every time step (thus, the maximum
impatience value attainable is 2

0.05
= 40). Most of the other sub-conditions under the initial condition
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(of high pheromone values or requests) increase the impatience value with larger increments of 5.0.
In these cases, a quick change in behaviour is required, and we aim to bring them about with large
increments. The latter is not true for the first condition, which checks if the robot is part of a moving
modular robot. In this case, the increments are made in significantly smaller values (0.5001, which means
that the maximum value impatience can reach is 2.0+0.5001

0.05
= 50.002) in order to allow the Snakebot the

opportunity to move when it is first formed. By the time the newly formed modular robot can start
moving, the impatience value is already high (i.e., 40.0); thus, using a large increment value would cause
the Snakebot to disassemble before it can start to move.

Figure 4. The experimental environment viewed from three different positions.

(a)

(b) (c)

Algorithm 1 The hand-coded algorithm for controlling behaviour changes by adjusting the
impatience value.

1: if lowestPH > PHEROMONECEILING or requests > REQUESTCEILING then
2: impatience← impatience+ 2.0

3: if state = 1 and impatience >= 39.9 then
4: impatience← impatience+ 0.5001

5: else if (state = 1 or state = 3 or state = 4) and moduleImpact > 0 then
6: impatience← impatience+ 5.0

7: else if state = 0 and largestModuleSize < 6 then
8: impatience← impatience+ 5.0

9: else if state = 2 and largestModuleSize < NHEADMODULES then
10: impatience← impatience+ 5.0

11: end if
12: end if



Robotics 2013, 2 177

An example run in the environment shown in Figure 4 with 15 robots is illustrated in Figure 5.
As mentioned earlier, it takes a total of 7.5 min for the first robot to clear all the obstacles.

The algorithm is written to ensure that there is only one robot initiating the configuration of a Snakebot.
Although the latter ensures that the Snakebot formed is as large as it can be to have the best chances
of overcoming the obstacles, it is time-consuming, and the configuration process takes more than three
minutes. The amount of time it takes for the first robot to clear all the obstacles can be reduced by
allowing two robots to initiate the Snakebot configuration process (by setting NHEADMODULES

to 2). In the latter case, the first robot clears all the obstacles within 5 min. However, neither of the
Snakebots disassemble between the two low obstacles; thus, that area remains unexplored. If, however,
the number of robots that can initiate the Snakebot configuration process is set to 3 or more, no Snakebots
that can cross the low barriers form (they are too small); thus, none of the robots can clear the obstacles.

Figure 5. Snapshots of a run using the hand-crafted Algorithm 1. (a) 10 s; (b) 1 min 18 s;
(c) 4 min 20 s; (d) 4 min 35 s; (e) 5 min 3 s; (f) 7 min 33 s.

(a) (b)

(c) (d)



Robotics 2013, 2 178

Figure 5. Cont.

(c) (d)

We believe that this is a well-fitting problem for GP, as it only involves 4 perception inputs and a
single output; yet, it is a difficult problem to solve using hand-coded logic without any map-specific
information. The mechanism of incrementing the impatience value that yields a desired behaviour of
the robotic system as a whole is not obvious. The changes in behaviours need to be well synchronized
amongst the robots in order to prevent fruitless oscillations between their respective states. By utilizing
XGP, we intended to evolve the optimal mathematical model of the conditions that can trigger the
transitions among a large group of robots to overcome the obstacles in order to successfully explore
their environment. The population of XGP includes 200 individuals with an elite size of 10 individuals.
To create the remaining 190 individuals of a new generation, we employ a binary tournament selection:
two individuals are picked at random. Ninety-percent of the time, a new individual is created via single
point crossover (reproduction), and 10% of the time, the fittest of the two is chosen to be passed on
to the next generation. The crossover point is randomly selected within the genotype. The mutation
randomly alters 2% of the newly created individuals (all except the elites). Each run lasts 40 evolutionary
generations. Table 3 illustrates the main parameters of XGP. The set of terminal symbols of XGP consists
of the four perception values (as shown in Table 2), the randomly generated floating point constants of
[0..1], and the integer constant of [0..100]. The function set consists of the mathematical operations,
addition, subtraction, multiplication and division.

The genotype of the individuals in XGP is represented as parse trees. These threes are evolved to
increment the impatience value in order to trigger beneficial state changes in various environmental
conditions. Each individual is evaluated for 1,000 s in the Webots simulation platform, which roughly
corresponds to 5 min of a real-time run of the simulation platform on average. Each experiment involves
15 robots, with a homogeneous breeding strategy in that each robot is controlled by the same individual
of XGP being evaluated. The fitness of each individual is determined by the number of checkpoints
visited and the number of robots that clear all the obstacles. Checkpoints are placed every 25 cm in
the environment, and they are meant to encourage exploratory behaviour, as well as prevent an over-fit
solution to overcoming the obstacles in the corridor (i.e., filter out the solutions that start reconfiguration
to form a modular robot before any exploration is done). The fitness value is evaluated according to
Equation (2).

fitness = 10×NoRobotsClearObstacles+ checkPointsV isited (2)
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Table 3. Main parameters of XML-based Genetic Programming (XGP).

Category Value

Genotype Impatience increment (parse tree)

Population Size 200 individuals

Selection
Binary tournament selection; ratio: 0.1

Reproduction ratio: 0.9

Elitism 10 individuals

Mutation Rate 0.02

Trial Interval 1,000 simulated seconds

Termination Criteria No. of generations = 40

After a total of 20 independent evolutionary runs, various successful control mechanisms evolve
that can achieve the desired behaviour. Figure 6 shows the average fitness convergence over the
20 evolutionary runs. In 10 of the runs, the robotic system, controlled by the evolved mechanism
of reconfiguration, was able to clear all the obstacles in the experimental environment. Out of the
10 successful runs, 6 provided robust solutions, where the re-runs could achieve good results. The reason
for the latter is the over-fitting of the environmental conditions created during the evolutionary runs.
Although half of the evolved controllers were able to cross both the low and high obstacles, only two got
stuck at the tall obstacles, 1 got stuck in between the low obstacles and the rest could not cross the low
obstacles. We can conclude that the successful formation of a Snakebot in time to cross the low obstacles
was the major crux of the problem for evolution.

We expected to obtain a control mechanism that can form a single Snakebot from all 15 modules to
carry them over the two low obstacles and then disassemble when the high obstacles are encountered.
Although such control mechanism emerged, the most common evolved behaviour was the formation of
multiple Snakebots (mostly two or three Snakebots) to overcome the obstacles. The latter was implicitly
favoured by evolution, due to the gains in speed in carrying the robots over the obstacles, which allowed
them a longer time to explore the much larger area beyond the high obstacles. By having multiple
Snakebots configured at the same time, not only the reconfiguration process was parallelised, but also
the problem with narrowing spaces behind the large Snakebots that slow down the docking robots were
alleviated. Furthermore, the formation of multiple robots is a more robust approach, since the Snakebots
are prone to falling over (which immobilizes the Snakebot) when using the rectilinear locomotion. In the
case of a single Snakebot, this meant that the robots are unable to cross the low obstacles if the Snakebot
falls over shortly after they are formed, whereas, in the case of multiple Snakebots, there is a smaller
chance of all of the modular robots toppling over. Figure 7 shows snapshots from some of the successful
runs, all of which demonstrate different behaviour and utilize different environmental information in
making the decisions.
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Figure 6. The fitness convergence of the runs over the evolutionary generations. The dashed
lines at fitness 60 and 80 roughly indicate the fitness values when the first two low obstacles
are crossed. The thick dashed line is the average fitness convergence of all the runs.
The standard deviation starts at around 10 for the first generation and reaches and stays
constant at 90 after the 5th generation.

Sheet1

Page 1

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

Generations

F
itn

e
ss

Min Fitness: 27
Max Fitness: 288
STDEV after gen 5: 90

Figure 7. Snapshots of three different control mechanisms evolved using XGP. Runs 1 and
2 illustrate the formation of two separate Snakebots, and Run 3 shows a large Snakebot
being formed to cross the low obstacles. The controllers evolved for the first and third
runs dismantle the Snakebot when an unexplored area is encountered, whereas the evolved
controller used in the second run utilizes a strategy of disassembling the Snakebot after some
time passes from the discovery of an unexplored area. In the latter case, the Snakebots cross
the low obstacles and get stuck at the high obstacles for a while until there is a high enough
pheromone concentration nearby. (a) Run 1; (b) Run 1; (c) Run 1; (d) Run 2; (e) Run 2;
(f) Run 2; (g) Run 3; (h) Run 3; (i) Run 3.

(a) (b) (c)
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Figure 7. Cont.

(c) (d) (e)

(f) (g) (h)

6. Discussion

In our observations, the resulting genetic programs mainly utilize the lowestPheromone variable to
initiate state changes in the robots. The remaining inputs are used to limit the frequency and number
of robots changing into particular states (such as initiating modular robot reconfiguration). In all cases,
we observed that when the lowestPheromone level reached above a certain threshold, the robots under
the influence would start reconfiguration (if they were swarming). On the other hand, the variables,
largestModuleSize and moduleImpact, were used for preventing the robots from initiating too many
reconfigurations. The use of randomized inputs were rare. The initial idea of using random variables
as an input was to encourage specialization among robots and avoid switching to same states at the
same time. In our attempts to construct some simple hand crafted controllers prior to the evolution runs,
the most common problem was preventing global state changes (for example, when all the robots want
to initiate reconfiguration). The inputs listed in Table 2 seem to be sufficient in preventing this; thus,
a random input may not be beneficial.

The procedure for disassembling from a modular robot was significantly different among the various
controllers evolved. One of the two common solutions involved detecting low pheromone concentrations.
This proved to be a good approach to ensuring that all the newly discovered areas can be efficiently
explored by a swarm. This, however, caused two problems: (i) early disassembly, where some of
the modules might be left behind or on top of an obstacle (e.g., Figure 7(c)); or (ii) the inability of
some robots to disconnect from the Snakebots once the pheromone levels increase in the environment.
The latter could be solved by not allowing the robots to drop pheromones while they are part of a
modular robot. This may, however, lead to other unanticipated problems and needs experimenting.
The release of pheromones by robots in modular mode help them keep the other robots away during
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reconfiguration. This helps to reduce collisions and to speed-up reconfiguration process. The second
solution to disassembly of Snakebots involved using pheromone values within a certain range, which
made sure that the Snakebots do not disassemble the moment they start moving (high pheromone
concentration area), as well as cover some new ground, which ensured that all robots are carried as
far as they can be via the Snakebot (no disassembly in the low concentration areas). Although this
solution scored quite high, due to the large number of robots that could clear all the obstacles, it meant
that the small area between the two low obstacles remains partially explored. In this case, there were
also some robots that could never disassemble, due to the pheromone levels becoming too high, which
left them defunct.

7. Conclusions

In this work, we presented a simple decision mechanism for behaviour switching in a collective
robotic organism. The decision mechanism uses simple rules and is based on the accumulation, as well as
decay of an “impatience” value inspired by the hormonal regulation of emotions in biological organisms.
The decision mechanism is used to orchestrate a range of previously developed behaviours (such as
swarming, modular robotic locomotion and reconfiguration) in accomplishing a challenging task for a
group of 15 robots. The control of the decision mechanism is achieved via an evolved Genetic Program
(GP), which utilizes various information that is readily available to the robots from their interactions
with the environment or other robots. The controllers developed for the behaviour switching relied
heavily on the information gathered via the pheromones dropped by swarming robots, which show that
the use of simple chemical gradients in the environment can be useful for coordinating behaviours other
than swarming.

The evolved solutions present multiple ways of achieving the target goal of exploration of the whole
corridor. The robots are able to clear the obstacles quickly (≈4 min when three Snakebots are formed
and ≈6 min when a single Snakebot is formed). The presented hormone-inspired behaviour switching
mechanism provides a gradual, yet constrained, way to control the changes in the emergent behaviours.
The use of XGP yielded quick results in achieving the desired behaviours, demonstrating that the
underlying mechanisms are evolvable. The evolved solutions outperformed the hand-coded controller
by a large margin and provided a greater diversity of strategies. The solutions indicate a few remaining
uncertainties, such as the need for a Snakebot to release pheromones, and the use of random variables,
which require further investigation.
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