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Abstract: In this paper, an adaptive human-machine interaction (HMI) method that is based 

on surface electromyography (sEMG) signals is proposed for the hands-free control of an 

intelligent wheelchair. sEMG signals generated by the facial movements are obtained by a 

convenient dry electrodes sensing device. After the signals features are extracted from the 

autoregressive model, control data samples are updated and trained by an incremental 

online learning algorithm in real-time. Experimental results show that the proposed method 

can significantly improve the classification accuracy and training speed. Moreover, this 

method can effectively reduce the influence of muscle fatigue during a long time operation 

of sEMG-based HMI. 

Keywords: intelligent wheelchair; sEMG; incremental support vector machine;  
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1. Introduction 

The deployment of electric powered wheelchairs (EPWs) has been increased rapidly for better 

quality of life for handicapped and elderly people over the last 20 years [1]. However, most of  

these EPWs are traditionally controlled by joysticks, which are not suitable for people with severe 

physical disabilities like spinal cord injury or hemiplegia. Therefore, alternative HMI methods  
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for wheelchair operation have been studied, such as voice recognition [2], eye moment [3], head 

gesture [4] and biopotential signals interface [5–8]. Bio-potential signals such as Electrooculargraphic 

(EOG), electromyographic (EMG) and electroencephalographic (EEG) are also deployed to control 

such kind of smart service robot [9–11]. Compared to other signals, EMG signal is more easily obtained 

and has less signal interference, especially for the weak groups, such as patients with upper limb 

amputation and elderly people for which other methods are inconvenient for their daily life. 

The EMG signal, which is sampled from the skin’s surface, can directly reflect the movement 

intention of human body and could be very suitable to serve as the controller. Englehart and Hudgins 

investigated a continuous segmentation or continuous classification by using different analysis window 

lengths [12]. Moon used a preset threshold value method to distinct the scapulae muscle signal at fairly 

high recognition rates [13]. Hiroki Tamura et al. obtained s-EMG signals from facial movements and  

six patterns were recognized to control the wheelchair movements [14]. Lai Wei combined forehead 

sEMG signals and color face image information to control the smart robot [5]. However, it suffers 

from poor reliability and robustness in long-term operations, which were mainly caused by muscle 

fatigue. These may arise not only because of peripheral changes at the level of the muscle, but also 

because the central nervous system fails to drive the motoneurons adequately [15]. Usually, the amplitude 

of the sEMG signals from muscles we used without fatigue is lower than 400 μV. However, after 

fatigue occurs in muscles, there are significant rises to 600 μV, which can be seen Figure 1. Qin and 

Mitsuhiro investigate a torque estimation method for muscle fatigue tracking, using stimulus evoked 

electromyography in the context of a functional electrical stimulation rehabilitation system [16]. 

However, how to choose the best signal evaluation parameter according to specific muscle condition 

and method of reducing the influence of muscle fatigue is still not very clear, and has been discussed 

during recent decades [17,18]. 

Figure 1. The amplitude of surface electromyography (sEMG) signals. 

 

To investigate the real time and long time performance of the proposed system in this paper, 

forehead sEMG signals are first obtained and analyzed by using three dry electrodes sensor. Then,  

a four-order autoregressive model parameter algorithm is deployed to acquire data compression and 

extract four coefficients of the signals. An incremental online support vector machine (SVM) is 

employed to classify sEMG patterns that have the systematic parameters corresponding to the changes 
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of the signals during the running time. Furthermore, the improved incremental training algorithm is 

presented and applied on the HMI system. 

2. The Research Objects and Methods  

The sEMG signal controlled intelligent wheelchair should provide a high degree of intuitive and 

dexterous control, and offer a convenient and high level of performance for disabled people. The human 

face has plenty of facial muscles to make expressions. The frontalis muscle, located on the front of the 

head, is one of the largest muscles which can provide continual and distinct, recognizable signals.  

The main components of the system include sEMG signals collected by electrodes placed on the skin 

over a user’s forehead muscle, electrodes accompanied by miniature pre-amplifiers to differentiate 

small signals of interest, signal features detected after amplified, filtered, digitized via standard EMG 

instruments, and finally transferred to a wheelchair controller. Five subjects voluntarily participated in 

the experiment and have independent consciousness without facial disease, deformity or trauma.  

In addition, there was no muscle fatigue before the experiments were performed.  

The experimental system consists of an intelligent wheelchair with two independently driven 

motors, a laptop computer for human-machine interface, and a data acquisition device. A Cyberlink or 

NIA system is used to acquire the sEMG signals of the subjects. The interface unit has an amplifier 

with a gain of 50,000, and a filter system provides a band pass filter with a bandwidth of 0.5 to 45 Hz. 

The weak bioelectricity signals from forehead surface skin are adopted from the user by wearing a 

sensory headband. The interface box processes the signals and connects to a computer through a serial 

or USB port. Figure 2 shows the headband devices we used in the experimental system. 

Figure 2. The headband EMG device in the human-machine interaction (HMI) system.  

 

The muscle movements are defined to be control signals for a HMI system, namely single jaw click 

(SJC) and double jaw click (DJC). They are generated by the subjects contracting the masseter muscle 

and buccinator muscle with a jaw clenching and chewing-like movement. Every subject uses a 

designed sEMG pattern based HMI system to control an intelligent wheelchair, and the control signals 

are recorded at the same time. There are five control states designed for the wheelchair, namely: 

“Forward”, “Backward”, “Left”, “Right”, and “Stop”. Note that the first four states are scanned in turn. 

Users can use a single jaw click movement to switch the direction to whereas they want. If the 
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wheelchair is in the control state of “Forward”, “Backward”, “Left”, or “Right”, a double jaw click 

movement will be used to switch the wheelchair to the “Stop” state. The complete structure of the HMI 

system is depicted in Figure 3.  

Figure 3. The diagram of the proposed HMI system. 

 

3. Feature Extraction 

Myoelectric control systems can be divided into two groups. In the first group, the desired classes 

of functions are discriminated from signal patterns by classifiers, and the variety of functions depends 

directly on classification performance. In the second group, recognition-based controllers, which are 

mainly constructed on threshold control and/or finite state machines, are merely output limited and  

pre-defined control commands based on a sequence of input signal patterns [19]. The latter gives a 

direct sense sometimes but has a non-adaptive shortage. After the forehead sEMG signals are obtained 

by using the dry electrodes sensor, an autoregressive model parameter algorithm is deployed to extract 

the signal feature. 

sEMG signals can be considered as the output signals of a linear sequence with zero mean  

white noise. The white noise reflects the randomness of signals, while the deterministic part (the order 

and parameters of the model) reflects the predictability of the process. The four-order AR model is 

chosen to analyze the sEMG signals; the mathematical expression is as follows: 

p

k
k=1

x(n) = - a x(n - k) + w(n)å  (1)

where x(n) is the current sampling value of sEMG signals. w(n) is the current incentive value, i.e.,  

the residual of the white noise. p is the order of the model. ak is the kth coefficient of the AR model.  

The meaning of Equation (1) is that x(n) is generated by the linear combination of several past 

values x(n − k) and the current incentive value w(n). The model function is defined as follows: 

p
-k

k
k=1

1
H(z) =

1 + a zå
 

(2)
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For the AR model, the selection of p is critical. If the order is too low, like a high-order curve fitted 

with a low-order curve, it will produce a smooth result; if the order is too high, like a low-order curve 

fitted with a high-order curve, it will produce a dramatic change and vibration. Many experiments 

show that the analysis and recognition results of sEMG signals are the best when the order of AR 

model is 4, so the four-order AR coefficient vector A = [a1, a2, a3, a4] is the input to the SVM 

algorithm. Table 1 shows four groups of all four-order AR coefficients of Single jaw click and Double 

jaw click. The AR coefficients corresponding to two kinds of facial movements have obvious 

differences, so the variations of coefficients can be used as the basis for judging the changes of 

movement patterns. Meanwhile, it verifies whether the AR coefficients are reasonable as sEMG features. 

Table 1. AR coefficients of Single jaw click and Double jaw click. 

 1 2 3 4 

Single jaw click a1 −1.6459 −1.4644 −0.84630 −1.6434 
a2 0.77630 1.0654 −0.44390 0.72990 
a3 −0.15580 −1.1692 −0.10020 −0.11680 
a4 0.039300 0.57750 0.40900 0.048200 

Double jaw click a1 −0.96300 −0.99530 −1.2525 −0.98050 
a2 −0.22440 −0.38880 0.12190 −0.32100 
a3 0.087300 0.088600 0.31680 0.22390 
a4 0.12780 0.31810 −0.16790 0.097000 

Since EMG is a random signal, its power spectral density (PSD) should be estimated prior to 

calculating the time-course of the spectral variables. The mean (MNF) and median (MDF) spectral 

frequencies, which provide some basic information about signal spectral, have been the most popular 

such variables both in academic studies and in clinical practice, owing to their relevance to underlying 

physiological processes that control fatigue [20,21]. To measure muscle fatigue, the widely used Fast 

Fourier transform technique (FFT) is utilized to analyze mean frequency of sEMG. 

1

1

M

i ii
M

ii

f P
MNF

P




 


 (3)

1

1

2

M

i ii
MDF f P


   (4)

where Pi is the ith line of the power spectrum; fi is the frequency variable; and M is the highest 

harmonic considered.  

MNF and MDF were calculated as previously described [22]. Statistical analysis is applied to find 

meaningful differences of sEMG from different subjects during various periods. The five subjects are 

required to perform repetitive movements and the average MNF and MDF calculated by before muscle 

fatigue, run 20 min, 40 min, and 60 min is showed in Figure 4. Each period lasted 20 s. Both MNF and 

MDF will decrease with time when muscle fatigue takes place. The MNF and MDF of forehead 

muscle decreased 10.8%, 17.2% separately while the average err fluctuation was almost unchanged 

after 60 min muscle contractions. It is experimentally proven that the manifestation of fatigue in 

myoelectric signals is significant during long-term muscular activities. 
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Figure 4. Mean (MNF) and median (MDF) shifts during different periods. Each period lasted 20 s. 

 

4. Adaptive Incremental Online SVM  

sEMG patterns gradually change during long durations of muscle activities due to muscle fatigue, so the 

threshold method will lose its effectiveness. As we know, a SVM classifier constructs an optimal 

separating hyperplane in a high dimension feature space of training data that is mapped using a 

nonlinear kernel function [23,24]. The key ideas of SVM are: getting a maximized classification 

margin by solving dual optimization problem, and then obtaining an optimal separating hyperplane. 

If the data is linearly separable, the decision function is: 

1

( ) ( ) ( )
n

i i
i

g x w x b y x x b


       (5)

where {xi, yi}, i = 1,…, l, are the training samples, yi is the class label of the training sample xi, l is the 

number of the training samples, b is the offset.  

When the data is nonlinearly separable, the original data is mapped into a high dimensional feature 

space by kernel function K(xi, x), in which the mapped data is linearly separable. Then, the decision 

function is as follows: 

2
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   (7)

According to the Karush-Kuhn-Tucke (KKT) condition [25], there is only one solution for the 

optimization problem based on the quadratic optimization theory, and α = [α1, α2,…, αl] is the optimal 

solution for the dual problem. When it satisfies the KKT condition, the problem is divided into the 

following three situations: 
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where α is Lagrangian dual, c is an upper bound for samples that lie on the wrong side of the 

hyperplane. Nonzero constant αi is the sample corresponding to support vector. Samples are located on 

the classification interval 0 < αi < c. When αi = c, samples lie in the classification interval. 

Incremental support vector machines are instrumental in practical applications of online learning. 

The purpose of the incremental algorithm is to add the new sample data to the three sets and to delete 

the redundant data, while maintaining all other samples that still belong to the three sets. In the 

classical SVM, the hyperplane in m dimensions can be shown as wT·x + b = 0. In our updating samples 

method, only the samples that are closest to the current boundary are chosen to train the classifier. 

There is a maximum distance of all update samples to boundary, which is defined as 2δ. 
* arg ( )ii g x    (9)

If the new added training sample violates the KKT conditions, the Lagrange multiplier α that is 

obtained from the previous sample will not be the optimum solution. The proposed improved online 

incremental training algorithm with the updating method is as follows. The standard SVM is used to 

initialize the classification and a training set is obtained. The next step is choosing the most 

informative patterns that have the best possibility of becoming the support vectors in the in-put sEMG 

sequence, and checking whether these samples meet the KKT conditions. If not, try the next data until 

KKT conditions are satisfied. Then construct samples including the update data, and train samples 

online to form a new classifier. The process repeats until there is no in-put sEMG data. 

5. Experiment Results 

Traditional SVM, such as LIBSVM, employed a radial basis function kernel to classify data, with 

the same parameter (C = 1 and γ = 0.5) [26]. The data is normalized and limited to the range of −1 to 1. 

800 samples are randomly selected from 2,000 pre-collected signals as a training set. After that, choose 

800 samples in the rest samples randomly as a testing set. When the result is compared with the 

method given above, the classification accuracy is shown in Table 2. The training time was generated 

at 300 samples. 

Table 2. Comparison real time performance of the LIBSVM and the Incremental online 

support vector machine (SVM). 

 LIBSVM Incremental online SVM  

Single jaw click 73% 90% recognition rate 
92 ms 58 ms training time 

Double jaw click 81% 93% recognition rate 
103 ms 62 ms training time 

Note that five subjects in the experiment are required to control the intelligent wheelchair running 

throughout a specified path in the lab. A map of the experiment environment with the designed path  
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is given in Figure 5. The size of the map is 8,000 × 6,000 mm and the actual size of the wheelchair is 

1,000 × 700 mm. “Forward”, “Backward”, “Left”, “Right”, and “Stop”: we tried to generate an 

average for each control state over two experiment days. For each experiment, the five subjects are 

required to control the intelligent wheelchair for 90 min without a rest.  

Figure 5. The path designed for experiment. 

 

Figure 6 shows the average time consumptions of five subjects in repetitive experiments during 

deferent periods. The average consuming time is 103 s for one round at the beginning, but the average 

time increased to 154 s at the last period when muscle fatigue occurred. After using the new method, 

the average time at the last period could decrease to 110 s. Table 3 shows the average recognition rate 

of five subjects controlling the wheelchair using the proposed HMI system with the two online SVM in 

different periods. The recognition of jaw click, or what is called “single jaw click” and “double jaw 

click”, is the most important factor of the experiment. 

Figure 6. The five subjects’ average time consumptions of repetitive experiments during 

different periods.  

 

  8m

6m
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Table 3. Comparison long time performance of the LIBSVM and the Incremental online SVM. 

Subjects 

Recognition rate for  
five state using LIBSVM 

Recognition rate for five state using 
incremental online SVM in seconds 

0–20 min 20–40 min 40–60 min 0–20 min 20–40 min 40–60 min 

A 86.5 80.1 73.8 92.6 88.4 86.7 
B 88.7 81.6 73.3 92.8 89.5 87.4 
C 83.1 79.2 70.9 86.7 82.8 79.3 
D 90.4 85.5 79.2 93.6 90.1 88.3 
E 80.8 75.3 70.1 84.9 81.6 78.4 

Average 85.9 80.34 73.46 90.12 86.48 84.02 

Experimental results indicate that the performance of the sEMG based HMI system with LIBSVM 

gradually declines as time increases with the occurrence of muscle fatigue. The subjects control the 

intelligent wheelchair by this system using more time in different periods, as shown in Table 3. Also, 

one should note that, although the threshold EMG method has a pretty high recognition rate before 

muscle fatigue, the performance after that declines quickly. The incremental online SVM proposed 

showed good properties in both convergence and optimality. 

6. Conclusions  

Muscle fatigue can negatively influence the performance of human-machine interaction using 

sEMG signals. This paper presents a novel sEMG based HMI system for the hands-free control of an 

intelligent wheelchair both in real time and in long time operations. The system is used to control the 

simple movements of the intelligent wheelchair, i.e., forward, turn-left, turn-right, backward and stop. 

The experimental results show that the proposed HMI is easy to operate in real-time and has a high 

recognition rate. It could be deployed in many aspects of real world applications, such as helping the 

elderly and disabled, rehabilitation, and so on.  

The speed and accuracy of pattern recognition of forehead sEMG signals are to be further improved 

in our next stage of research. By improving the incremental online SVM algorithm, we hope to reduce 

the false recognition rate, and obtain a fast response time. In addition, we will investigate how to 

effectively reduce the noisy signals from facial movements when a user is talking and looking around 

in the practical application. Moreover, Electrooculography (EOG) signals will be combined with EMG 

signals to generate the control signals for wheelchair motion control so that the control method is more 

flexible and robust. 

Finally, it is worth remarking that Brain Computer Interface (BCI) based on the Electrooculography 

(EEG) signals have been used to control the electric-powered wheelchair during the last decade [17,18]. 

However, these EEG based HMIs are not performing well in the real world since they are non-stationary 

and low in signal to noise ratio. This was mainly caused by the subject’s brain conditions or dynamically 

changing environments. Therefore, it is necessary to carefully design signal processing algorithms for 

feature extraction, classification and adaptation. Alternatively, EEG signals could be fused with EMG 

and EOG signals for accurate human intension detection in real time. 
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